
www.manaraa.com

1*1 National Library
of C a n a d a

Acquisitions and
Bibliographic Services Branch

39 5 W ellington S treet
O ttaw a. Ontario
K1A 0N 4

B ibliotheque nationale
d u C a n a d a

Direction d es acquisitions et
d e s services bibliographiques

395. ru e W ellington
O tlaw a (Ontario)
K1A 0N 4

> iM/r fi/t* V ttrrt’ r t 'h '/ tw c

NOTICE AVIS

The quality of this microform is
heavily dependent upon the
quality of the original thesis
submitted for microfilming.
Every effort has been made to
ensure the highest quality of
reproduction possible.

If pages are missing, contact the
university which granted the
degree.

Some pages may have indistinct
print especially if the original
pages were typed with a poor
typewriter ribbon or if the
university sent us an inferior
photocopy.

Reproduction in full or in part of
this microform is governed by
the Canadian Copyright Act,
R.S.C. 1970, c. C-30, and
subsequent amendments.

La qualite de cette microforme
depend grandement de la qualite
de la these soumise au
microfilmage. Nous avons tout
fait pour assurer une qualite
superieure de reproduction.

S’il manque des pages, veuillez
communiquer avec I’universite
qui a confere le grade.

La qualite d’impression de
certaines pages peut laisser a
desirer, surtout si les pages
originates ont ete
dactylographiees a I’aide d’un
ruban use ou si I’universite nous
a fait parvenir une photocopie de
qualite inferieure.

La reproduction, meme partielle,
de cette microforme est soumise
a la Loi canadienne sur le droit
d’auteur, SRC 1970, c. C-30, et
see amendements subsequents.

Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

T H E F O R M A L M O D E L I N G O F
E N G I N E E R I N G D E S I G N I N F O R M A T I O N

B Y M E A N S O F A N A X I O M A T I C S Y S T E M

by

Filippo A rnaldo Salustri

A thesis su b m itte d in conform ity w ith th e req u irem en ts
for th e D egree o f D o c to r o f Philosophy,

D ep artm en t o f M echanical Engineering, in th e
U niversity o f T oron to

© C o p y rig h t by F ilippo A rnaldo S alustri 1993

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1*1 National Library
ot Canada

Acquisitions and
Bibliographic Services Branch

3 9 5 W ellington S treet
O ttaw a. Ontario
K1A 0N4

Bibliotheque nationale
du C anada

Direction d es acquisitions et
d e s services bibliographiques

395. ru e W ellington
O ttaw a (Ontario)
K1A 0N 4

O i r f hlo Nona i& ftvn c#

The author has granted an
irrevocable non-exclusive licence
allowing the National Library of
Canada to reproduce, loan,
distribute or sell copies of
his/her thesis by any means and
in any form or format, making
this thesis available to interested
persons.

L'auteur a accorde une licence
irrevocable et non exclusive
permettant a la Bibliotheque
nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de sa these
de quelque maniere et sous
quelque forme que ce soit pour
mettre des exemplaires de cette
these a la disposition des
personnes interessees.

The author retains ownership of
the copyright in his/her thesis.
Neither the thesis nor substantial
extracts from it may be printed or
otherwise reproduced without
his/her permission.

L’auteur conserve la propriete du
droit d ’auteur qui protege sa
these. Ni la these ni des extraits
substantiels de celle-ci ne
doivent etre imprimes ou
autrement reproduits sans son
autorisation.

ISBN 0 - 3 1 5 - 8 6 3 5 0 - 1

Canada

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Name
Disserta tion A bstracts In te rna tio na l is a r ra n g e d by b ro a d , g en e ra l subject ca teg o rie s. P lease select the o n e subjec t w hich most
n ea rly d esc rib es the content of your d isserta tion . Enter the co rresp o n d in g S u r-d ig it c o d e in the sp aces provided .

SUBJECT TERM
pm4i¥l U M I

SUBJECT CODE

Subject Categories

THE HUMANITIES AND SOCIAL SCIENCES
COM MUNICATIONS AND THE ARTS
Architecture 0 7 2 9
Art H is to ry 0 377
C inem a ... 0 9 0 0
D a n c e ...0378
Fine Arts ...0 J 5 7
Information Science . 0 723
Journalism 0391
lib rary S cio n ce 0 399
M oss Com m unications.................. 0 708
M u s ic 0413
Speech Communication0 4 5 9
m ooter ...0 465

EDUCATION
G oneral ... 0 515
A dm inistration 0 514
Adult an d C ontinu ing 0 516
A gricu ltu ra l...................................... 0 517
A r t ... 0273
Bilingual an d Multicultural 0 282
Business 0 688
Community Collogo . 0275
Curriculum a n d Instruction0727
Early Childhood 0518
Elementary 0524
Finance 0277
G uidance an d C o u n selin g 0519
H e a lth 0680
Higher 0745
History o l ... 0 520
Homo E c o n o m ic s 0278
In d u stria l...0521
Languago an d Literature 0279
M athem atics 0 2 8 0
M usic 0 522
Philosoohy o f 0 998
Physical .. 0 523

Psychology.....
Reading
Relig ious............
Sciences
S eco n d a ry
Social Sciences
Sociology of
Special

.0 5 2 5
. . .0 5 3 5
.. .0 5 2 7

. .0 7 1 4
. . .0 5 3 3

0 5 3 4
. . 0 3 4 0

0 5 2 9
Teacher Training 0 5 3 0
Technology...................................... 0 7 1 0
Tests a n a M easurem en ts............... 0 2 8 8
V ocational....................................... 0 7 4 7

LANGUAGE, LITERATURE AND
LINGUISTICS
la n a u o g e

G eneral 0 6 7 9
A ncien t.. 0 2 8 9
Linguistics...................................0 2 9 0
M o d e r n0291

Literature
G e n e ra l 0401
C lo ssica l..................................... 0 2 9 4
C o m p a ra tiv e0 2 9 5
Medicvol 0 2 9 7
M odern 0 2 9 0
A fric a n .. 0 3 1 6
A m e r ic a n0591
A s ia n ... 0 3 0 5
C an ad ian (English)0 3 5 2
C an ad ian (French)0 3 5 5
E n g lish .. 0 5 9 3
G e rm a n ic0311
Latin A m erican 0 3 1 2
M iddle Eastern 0 3 1 5
R o m a n c e 0 3 1 3
Slavic an d East European . 0 3 1 4

PHILOSOPHY, RELIGION AND
THEOLOGY
Philosophy... 04 2 2
Religion

G e n e ro l0 3 1 8
Biblicol S tu d ie s0321
C le rg y 0 3 1 9
History o f 0 3 2 0
Philosophy o f 0 3 2 2

T heology.. 0 4 6 9

SOCIAL SCIENCES
Am erican S tu d ies.............................0 3 2 3

A rc h ae o lo g y0 3 2 4
C ultu ro l....................................... 0 3 2 6
Physica l.......................................03 2 7

Business Administration
G e n e ra l 03 1 0
A c coun ting02 7 2
B a n tin g 07 7 0
M anagem ent04 5 4
M arketing 0 3 3 8

C onodian Studies 0 3 8 5
Economics

G e n e ra l 0501
A gricultural.................................0 5 0 3
Comm erce Business 0 5 0 5
f in a n c e 05 0 8
H istory..0 5 0 9
L a b o r ... 05 1 0
T heory ..0511

Folklore... 03 5 8
G e o g ra p h y .. 03 6 6
G e ro n to lo g y0 3 5)
History

G e n e ra l 0578

A ncien t 0 5 7 9
M edieval 0581
M o d e rn 0 5 8 2
B la ck .. 0 3 2 8
A fricon .. 0331
A sia, A ustralia ond O cean io 0 3 3 2
C a n a d ia n 0 3 3 4
E u ro p e an 0 3 3 5
Latin A m eric an 0 3 3 6
M iddle E as te rn 0 3 3 3
United S ta tes 0 3 3 7

History of S c ie n c e0 5 8 5
Law .. 0 3 9 8
Political Science

G e n e ro l............................... .0 6 1 5
international Law an d

R elations......................... 0 6 1 6
Public A dm inistration......0 6 1 7

R ecrea tion 0 8 1 4
Social W o r k 0 4 5 2
Sociology

G e n e ro l0 6 2 6
Criminology a n d P enology... 0 6 2 7
D em ography0 9 3 8
Ethnic a n a Racial S tu d ie s 0631
Individual ond Family

S tu d ie s 0 6 2 8
Industrial a n d Labor

Relotions..........................0 6 2 9
Public a n d Social W elfare 0 6 3 0
Social Structure ond

D evelopm ent................. 0 7 0 0
Theory a n d M eth o d s....... 03 4 4

T ran sp o rta tio n0 7 0 9
U rban a n d Regional Planning ... 0 9 9 9
W om en 's S tu d ie s0 4 5 3

THE SCIENCES AND ENGINEERING
BIOLOGICAL SCIENCES
Agriculture

G e n o ra l .
A g ro n o m y
Animal Cufturo an d

N utrition
Animol Pathology
Food Science and

T echnology
Forestry one j Wildlifo .
Plant Culture

Bioli

Plant Pathology .
Plant Physiology
R ange M anagem ent
W ood Technology

S o , , , '
Anatomy
Biostalislics
Botany
Cell
E co lo g y
Entom ology...............
G enetics
Limnology
Microbiofogy
M o lecu la r
Nouroscience
O ceanography
P hysio logy....................
R a d ia tio n
Votermary Science
Z o o lo g y

ophysics
G enera l
M e d ic a l

EARTH SCIENCES
Biogeochemistry
G eochem istry

. 0473
.0 2 8 5

0475
.0 4 7 6

. 0359
0 478
0 4 7 9

. 0 4 8 0

.0 8 1 7
.0 7 7 7

.0 7 4 6

.0 3 0 6
02far
0308

.0 3 0 9
0 379
0 1 2 9
0353
0 369
0793
0 410
0307

.0 3 1 7

.0 4 1 6
0433
0821
0778
0472

0786
0760

0 425
0996

G eodesy ...0 3 7 0
G e o lo g y .. 0 3 7 2
G eophysics 0 3 7 3
H ydro logy 0 3 8 6
M inera logy0 4 1 1
P o le o b o to n y 0 3 4 5
P aleoeco logy 0 4 2 6
P aleontology................................... 0 4 1 8
P aleozoology.................................. 0 9 8 5
Palynology0 4 2 7
Physical G e o g ra p h y 0 3 6 8
Physical O c e a n o g ra p h y 0 4 1 5

HEALTH AND ENVIRONMENTAL
SCIENCES
Environmental S c ien c es 0 7 6 8
Health Sciences

G e n e ra l 0 5 6 6
A udio logy................................. 0 3 0 0
C h em o tn ero p y 0 9 9 2
D entistry................................... 0 5 6 7
E d u c a tio n 0 3 5 0
Hospital M a n a g e m en t........... 0 7 6 9
Human D evelopm en t.............0 7 5 8
Im m unology............................. 0 9 8 2
M edicine a n d Surgery 05 6 4
Mental Health 0 3 4 7
N u rs in g 0 5 6 9
N u tritio n 0 5 7 0
O bstetrics a n d Gynecology 0 3 8 0
O ccupational Health a n d

T h ero p y0 3 5 4
O p h th alm o lo g y 0381
P a th o lo g y0571
Phorm ocology..........................0 4 1 9
P h a rm a c y0 5 7 2
Physical Therapy 0 3 8 2
Pualic H e a lth 0 5 7 3
R od io logy0 5 7 4
Recreation0 5 7 5

Speech Patho logy0 4 6 0
Toxicology 0 383

Home Economics 0 3 8 6

PHYSICAL SCIENCES
P u r e S c i e n c e s
Chemistry

G e n e ra l 0 4 8 5
A gricultural.............................. 0 7 4 9
A naly tica l................................... 0 4 8 6
B iochem istry.............................. 0 4 8 7
In o rg an ic 0 488
N uclear 0 738
O rg a n ic 0 4 9 0
Pharmaceutico! 0491
P h ssic o l....................................... 0 494
Pofym er.......................................0 4 9 5
R ad ia tion0754

M athem atics......................................0 4 0 5
Phys'cs

G e n e ra l 0 6 0 5
A coustics.....................................0 9 8 6
Astronom y o nd

A strophysics........................... 0 6 0 6
Atmospheric S cience0608
Atomic .. 0 7 4 8
Electronics an d Electricity 0 6 0 7
Elementary Particles o n a

High E nergy........................... 0 7 9 8
Fluid o nd P la sm a 0 7 5 9
M o lecu la r 0 6 0 9
N u c le a r 0 6 1 0
Optics ..0 7 5 2
R ad ia tio n0 7 5 6
Solid S to le0611

S ta tistics ..0 4 6 3

A p p l i e d S c i e n c e s
Applied M e c h a n ic s0 3 4 6
Computer S c ie n c e 0 9 8 4

Engineering
G e n e ra l 0 5 3 7
A e ro sp a c e0 5 3 8
A gricultural.............................. 0 5 3 9
A utom otive...............................0 5 4 0
Biom edicol................................0541
C h em ica l...................................0 5 4 2
C iv il ..0 5 4 3
Electronics an d Electrical 0 5 4 4
Heat a n d Therm odynam ics... 0 3 4 8
H ydraulic0 5 4 5
Industrial0 5 4 6
M o rin e0 5 4 7
Moterials S c ie n c e 0 7 9 4
M echon ico l...............................05 4 8
M etallu rg y 0 7 4 3
M in in g0551
N u c le a r......................................0 5 5 2
Packaging0 5 4 9
Petroleum 0 7 6 5
Sanitary ond Municipal0 5 5 4
System S cien c e 0 7 9 0

G e o te ch n o lo g y04 2 8
O perations R eseorch 0 7 9 6
Plastics Technology 0 7 9 5
Textile Technology..........................0 9 9 4

PSYCHOLOGY
G eneral ...0621
B ehavioral...0 3 8 4
Clinical .. 06 2 2
D evelopm ental................................ 0 6 2 0
E xperim en ta l................................... 0 6 2 3
Industrial...0 6 2 4
Personality...0 6 2 5
Physio loaico l................................... 0 9 8 9
P sychob io logy0 3 4 9
P sychom etrics..................................0 6 3 2
S o c ia l .. 0451

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

THE UNIVERSITY OF TORONTO LIBRARY
MANUSCRIPT THESIS - DOCTORAL

AUTHORITY TO DISTRIBUTE

NOTE: T he AUTHOR will sign in o n e of th e two p laces indicated. It is the intention of th e University that
th e re b e NO RESTRICTION on th e distribution of th e publication of th eses sa v e in exceptional
c a s e s .

M oal Library is authorized.Im m ediate publication in mil

A uthor’s signature Date .— .

-O R -

(b) Publication by th e N ational Library is to be p o stp o n ed un til_______________________ 1 9 ___
(norm al maximum delay is two y ears). Meanwhile this th es is m ay not be c o n su lted in th e Univer­
sity Library except with written perm ission on e ac h occasion from me.

A uthor's s ig n a tu re ___ Date__________________________

This restriction is authorized for re a so n s which seem to m e, a s C hair of the G rad u ate D epartm ent of
 , to be sufficient.

S ignature of G rad u ate D epartm ent C h a i r ___

Dale

BORROWERS u n d ertake to give p ro p er credit for any u s e m ad e of th e thesis, and to o b ta in th e consent ol
the au tho r if it is p roposed to m ake ex tensive quotations, o r to reproduce the thesis in w hole o r in part.

S ig n a tu re of borrow er A ddress D ate

1989

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

To
Mina

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

T IT L E : T he Form al M odeling o f Engineering Design Inform ation by m eans o f an Axiom atic System
D E G R E E /Y E A R : Ph.D., 1993
A U T H O R : F ilippo A m aldo Salustri
D E PT : Departm ent o f M echanical Engineering. University o f Toronto

A B S T R A C T

There is m ounting evidence in the current literature which suggests that our collective understanding of

engineering design is insufftcicnl to support the continued growth o f the engineering endeavor. Design

theory is the em ergent research field that addresses this problem by seeking to im prove o u r understanding

of, and thus o u r ability to, design. The goal o f this au thor's work is to dem onstrate that formal lcchnii|ues

o f logic can im prove o u r understanding o f design. Specifically, a formal system called the H ybrid M odel

(HM) is presented; this system is a set-theoretic description o f engineering design inform ation that is

valid independent o f (a) the processes that generate o r m anipulate the inform ation and (b) the role o f the

hum an designer. Because o f this, HM is universally applicable to the representation o f dcsign-spccilic

inform ation throughout all aspects o f the engineering enterprise. The fundamental unit in HM is a design

entity, w hich is defined as a unit o f information relevant to a design task. T he axiom s o f HM define

the structure o f design entities and the explicit m eans by which they m ay be rationally organized. HM

provides (a) a basis fo r building taxonom ies o f design entities, (b) a gcncraii/.cd approach for making

statem ents about design entities independent o f how the entities arc generated o r used, and (c) a formal

syntactic notation for the standardization o f design entity specification. Furtherm ore, HM is used as the

foundation o f DESIGNER, an extension to the Scheme program m ing language, providing a prototype-based

object-oriented system fo r the static m odeling o f design information. Objects in the D e s ig n e r language

satisfy the axiom s o f HM while providing convenient program m ing m echanism s to increase usability and

efficiency. Several design-specific exam ples dem onstrate the applicability o f D e s i g n e r , and thus o f I >M

as well, to the accurate representation o f design information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ACKNOWLEDGMENTS

I would like to thank a num ber o f people who have assisted m e in one way or ano ther to com plete
Ihis work. First, I m ust thank Dr. R. D. Venter, m y advisor and mentor, for his inspiration and
guidance. As well, I feel deep gratitude to Drs. B. Benhabib and K. C. Smith who, as m em bers o f m y
Endrcnyi Com m ittee, provided valuable feedback and helped m e steer clear o f sand-traps; and Dr. W.
R. Johnson, with whom I began m y Doctorate and who introduced me to com puter-aided engineering.
The assistance o f NSERC is also acknowledged with appreciation.

I m ust also thank iny fiancee, M ina, whose patience w ith m e during the last two and a h a lf years has
certainly qualified h er for sainthood.

M any others - graduate students, professors, and friends - contributed too, professionally and other­
wise; to all o f them , m y sinccrest thanks.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Contents

I INTRODUCTION 14

1 Introduction 15

1.1 P re a m b le ... ■5

1.2 P r e m is e s ... 17

1.3 Statem ent o f Thesis ...

1.4 General R e m a rk s .. 20

2 L ite ra tu re S u rv ey 23

2.1 I n t r o d u c t io n .. 23

2.2 D esign T h e o r y ...24

2.3 Com puter-A ided E n g in e e r in g ... 29

2.4 Cognitive and Concurrent Design R e s e a r c h ... 32

2.4.1 Cognitive Design Research ... 33

2.4.2 Concurrent E n g in e e r in g .. 34

2.5 S u m m a ry ... 35

n THE ROLE OF LOGIC IN DESIGN 37

3 Introduction 3s

4 M o tiv a tin g D iscussion 41

4.1 T etm inologic C o n sid e ra tio n s ...41

4.2 Taxonom ic C o n sid e ra tio n s ...43

4.3 Com putational C o n s id e ra tio n s ... 44

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

2

4.4 S u m m ary ..46

5 A New View of Design 48

5.1 The Nolion o f S e lf -R c fe rc n c e ...48

5.2 Design as an “ Artificial" S c ie n c e ..50

5.2.1 The Scientific A p p ro a c h ..50

5.2.2 Design Versus Natural Phenom ena .. 52

5.2.3 The Role o f Design T h e o r y .. 53

5.3 S u m m ary ..55

6 Logical Solutions 56

6.1 L im iting Self-Reference in D e s ig n ..56

6.2 Categorization o f Design A s p e c t s ..59

6.2.1 Artifact M o d e l in g ... 60

6.2.2 Behavioral M odeling ..62

6.2.3 Design Evolution, o r M e ta -M o d e lin g .. 62

6.2.4 Im p lem en ta tio n s...63

6.2.5 The Exam ple, R e v is i t e d ..63

6.2.6 Relationship to the Layered S t r u c tu t e .. 64

6.3 S u m m ary ..64

7 Discussion 65

III FORMALIZING DESIGN INFORMATION 67

8 Introduction 68

8.1 M odeling the Design Process ...69

8.2 Basic Structures and C o n c e p ts ...72

8.2.1 Basic Aim o f H M ...72

8.2.1.1 A Prescriptive, Axiom atic A p p r o a c h .. 72

8.2.1.2 Universe o f D iscourse and Design E n t i t i e s ... 74

8.2.2 Theory o f Logical Types and Set Theory .. 74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3

8.2.3 Fundam ental Structures and Isom orphism s ... 76

8.3 S u m m a ry ..78

9 The Structure o f Objects 79

9.1 I n t r o d u c t io n ... 79

9.2 Definition o f O b je c ts .. 79

9.3 Views o f O b je c ts ... 81

9 .4 D om ains and Ranges o f A ttr ib u te s .. 85

9.4.1 Set Theoretic F o u n d a tio n s ..85

9.4.2 Dom ains and Ranges in H M .. 86

9.5 D im ensions o f M easu rem en t... 87

9.6 C onstraints and A t t r ib u te s ..88

9.7 S u m m a ry ...89

10 Ordering Mechanisms for Design Information 90

10.1 I n t r o d u c t io n ... 90

10.2 Types o f O b je c t s ..91

10.3 A ggregations o f O b j e c t s ... 95

10.4 C lasses o f O b j e c t s .. 99

10.5 Specialization and Generalization o f Objects ...100

10.5.1 Specialization o f Types ... 100

10.5.2 G eneralization o f T y p e s ...102

10.5.3 R elationship Between Specialization and V ie w s ... 103

10.6 S u m m a ry ... 103

11 Discussion 104

11.1 General S u m m a r y ...104

11.2 Future W o r k ..105

IV ENGINEERING COMPUTATION 107

12 Introduction 100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

4

13 Requirements for a New Programming Paradigm 113

13.1 Functional P ro g ram m in g ... 114

13.2 Sem antic Data M o d e lin g ... 116

13.3 O b jc c t-O ricn ta tio n .. 117

13.3.1 M essage Passing Protocols ... 118

13.3.2 A bstraction M ech an ism s...120

13.3.3 Hierarchical Construction o f Objects ...121

13.4 C om bining O bjcct-Oricntation and Functional P r o g ra m m in g ..122

13.5 S u m m a ry ... 123

14 Concepts and Forms in Designer 124

14.1 Syntactic C o n v e n tio n s ... 125

14.2 Creating O b je c t s ...125

14.3 Attributes ..128

14.4 C onstraints betw een A ttrib u te s ...129

14.5 Function O v e r lo a d in g ... 130

14.6 M essage Form s .. 131

14.7 Intentional Versus Extensional A t t r i b u t e s .. 132

14.8 S u m m a ry ... 132

15 Examples 134

15.1 Sim ple E x am p les ...134

15.2 M ultiple I n h e r i ta n c e ... 138

15.3 M im icry o f C lasses ... 138

15.4 Prelim inary D esig n /S yn thesis-F our-B ar L in k a g e ..140

15.5 Hierarchical O rganization - Therm al Analysis o f a W a l l ...146

15.5.1 Structural M odeling C o n s id e ra tio n s ...148

15.5.2 Therm al Analysis M odeling C o n s id e ra tio n s ..148

15.5.3 Definition o f Wall Prototype Objects ... 149

15.5.4 Exam ple o f Wall Model Usage .. 154

15.5.5 O b se rv a tio n s ... 1.66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5

16 Discussion 157

V CONCLUSION 16.1

17 Final Discussion 164

18 Future Directions 166

19 Closing Remarks 16H

VI APPENDICES I7«

A Source Listings of Designer 171

A .l D esigner S o u r c e .. 171

A.2 Support/U tility Functions ...178

B Designer Prototype Library 181

B .l Com plex N u m b e rs .. 181

B.2 3D Spatial C o o rd in a te s .. 183

B.3 Cuboid Param etric V o lu m e s .. 185

B .4 C oordinate F r a m e s .. 186

B.5 G eneralized G eom etric E n t i t i e s ... 187

B .6 3D L i n e s .. 188

B.7 Generalized Physical P a r t s ..189

B .8 Q u e u e s ...190

B.9 C ircular L is ts ..191

B.10 S t a c k s ...193

B . l l G eom etric T ra n s fo rm . '... 194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Figures

5.1 Relationship betw een design theory and science... 51

6.1 Logical structure lo r removal o f se lf-re fe ren ce .. 57

6.2 Graphical representation o f the 4D Design Space as two 3D s p a c e s ... 61

10.1 Aggregation o f a Four-Bar Linkage in HM ...98

15.1 Definition o f tw o O bjects..135

15.2 A constraint on C uboid ..136

15.3 Exam ple o f constraint on intentional attributes.. 136

15.4 Exam ples o f D e s ig n e r queries and m essages... 137

15.5 An exam ple o f m ultiple inheritance in D e s ig n e r ... 139

15.6 Exam ple o f use o f D e s ig n e r Class object.. 140

15.7 Schem atic geom etry o f 4bar and Link objects... 141

15.8 Definition o f four-bar linkage object...142

15.9 Definition o f L ink ob jects...142

15. lOGeom ctric constraints for L in k objects... 143

15.11 Three point synthesis m ethod...144

15.12Kinem atic constraints for 4 b a r objects... 145

15.13Inhcritance/A ggregation Network for Wall Exam ple..147

15.142D Shape objects..149

15.15Layer objects..150

15.16M atcrial Prototype and Instances...150

15.17 Atom ic wal 1 com ponents for openings and segm ents... 151

15. ISPrototypc for wall openings.. 151

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

7

15 .19Prototype for wall segm ents...152

15.20Prototype object for doors...153

15.21 Prototype objects for w indow s.. 153

15.22 Prototype object for w alls... 154

15.23Two sam ple wall segm ents... 155

15.24M essages sent to the sam ple wall..155

15.25 Altering the sam ple w all..156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

List of Symbols

T he notation presented in this section is drawn from accepted system s o f notation in predicate calculus

and axiom atic set theory. In addition, a num ber o f sym bols used exclusively by the author fo r the Hybrid

M odel (Part III) are also included. Usage o f these sym bols is restricted to Part III, w herein the formal

statem ent o f the Hybrid M odel in the language o f m athematical logic is presented.

Basic logic and set theoretic sym bols are:

6 Set m em bership; for exam ple, x e / is read “ x is a m em ber o f I " . T h is is taken to be

prim itive to the 1st o rder predicate calculus and so is considered an undefined prim itive

in axiom atic set theory.

= The identity operator, which is transitive (x) (y) (((x = y) 0 (y = z)) =s> (x = 2)),

sym m etrical (x) (y) ((x = y) =*• (y = x)) and to tally reflexive (x) (x = x). F o r

exam ple, x = y iff every attribute o f x is an attribute o f y, and conversely. T h is is taken

to be prim itive to the 1st o rder predicate calculus and so is considered an undefined

prim itive in axiom atic set theory.

=dj Read as " , . . define a s . t h i s sym bol is used to introduce definitions (e.g. X =d/ { x :

(x e K) . (x e Z) } , which defines X to be the set o f elem ents occurring in both Y and

Z) and is distinct from the identity operator (above).

C Subset relationship; for exam ple, x c y is read “ x is a subset o f y".

V T he universal qualifier, read as “ for all ...” . Statem ents using V are com posed o f

three parts: the V sym bol, the specification o f a variable o r variables o v er w hich the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

9

quantification is perform ed, and a statem ent which is true for the variablc(s). The pans

are separated by parentheses. For exam ple, V (i) (i € /) is read " for a ll x . x is a m ember

o f I" . A lso, if I is the set o f all integers, V(x € l) (x > 0) defines all positive integers,

and is read “fo r a ll x in I . x is greater than 0".

T he existential qualifier, read as “ there exists...". Statem ents using 3 have the stune

form as statem ents using the universal quantifier. Forcxam plc. 3 (x 6 /) (. r = l) is r c a d

as “ there exists an x in I , such that x equals 1". It is generally unclear w hether this

qualifier should be read as “ there exists at least one x in I . . . " o r as " there exists exactly

one x in I . . ." . A distinction is m ade in [1] between the two by using !3 to indicate

the latter and 3 for the former. We adopt this distinction here because the sem antic

difference is relevant to the developm ent o f the Hybrid Model.

Logical equivalence. T his rule o f inference is defined by the statem ent (i = y) ~ (x =s

y) n (y => x).

Logical not operator, read as “ ...not...” , and resulting in the logical negation o f its

im m ediate consequent. For exam ple, if x is true, then ->x is false.

Intersection operator, read as “ ...and...". The result o f this operation is the set intersection

o f its antecedent and consequent. For exam ple, x n y results in the intersection o f the

set entities x and y. T his form is used exclusively for set operations. A lso, the form

PI; AT; m eans the intersection o f all AT,.

Boolean “and” operator. The result o f this operation is true iff both its antecedent and

consequent are true. For exam ple p • q is true iff both statem ents p and q arc true.

Inclusive union operator, read as “ ...or...” . T he result o f this operation is the set union o f

its antecedent and consequent. F o r exam ple, x u y is the set containing all the m em bers

o f both set x and set y. A lso, the form U . Af; m eans the union o f all AT,.

T he boolean inclusive “o r” operator. T he result o f this operation is true iff c ither o r both

o f its antecedent and consequent are true. F o r exam ple, p + q is true iff (a) p is true,

o r (b) q is true, o r (c) p and q are true. T he exclusive union operator (i.e. the operator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

10

the result o f which is true if only one but not both o f p o r q is true) is defined by the

expression (p + </) • -i(p • </).

=> M aterial im plication, read as “ ...im plies...” . Classically, this is the only kind o f im pli­

cation used in formal logic. The antecedent o f => im plies the consequent; that is, i f the

antecedent is true, then the consequent is also true. T his operator is used w hen only the

truth value o f the antecedent is known and the value o f the consequent is unknown.

(. . .) Angle brackets denote tuples, which are short ordered lists treated as single units. For

exam ple, V ((x ,t/)) ((x € /) • (3/ € /)) denotes an ordered pair o f integers.

D Superset operator. Equivalent to =>.

2 Superset-or-equality operator.

0 T he em pty (o r null) set.

V (X) T he pow er set o f A '; i.e. the set containing all subsets o f X (including the em pty set).

A fu n c tio n is denoted by its nam e followed by arguments. T he argum ents are in parentheses. For

exam ple, V IEW (A ', 9) is a function whose name is VIEW, and whose argum ents (in th is case) are X and

1p. Functions m ay have no argum ents. A function w ith one aigum ent is called a unary function; a function

w ith two argum ents is called a binary function; a function w ith m ore than tw o argum ents is called an

n-ary function. A function returns som e data entity. In general, a function is written f (x) .

Function variables (i.e. variables that represent functions) are w ritten in greek characters, fo r exam ple <p.

A predicate is like a function, but it can only return one o f two values, true o r fa lse .

T he follow ing sym bols are used exclusively in the Hybrid Model.

A', Y , Z individual objects.

C i A collection i o f objects.

a, b, c attributes o f objects.

0 T he set o f all objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

11

T The set o f all object types.

T , U , V types.

C The set o f all classes o f objects.

A The set o f all attributes.

D The set o f all attribute domains.

R The set o f all attribute ranges.

T The se t o f all view definitions.

7 A view definition.

IS_A The typing predicate, read as “ . . . is

exam ple: IS_A (A \ T) is true if object

IN H ER ITS The inheritance predicate, read as “ . . . inherits f ro m .. . ” and used to relate object types.

For exam ple: 1NHERITS(T, U) is true if type T inherits from (i.e. is specialized from)

type U or, similarly, if type U is inherited by (i.e. is generalized from) type T .

A The set o f all aggregate predicates.

6 An aggregate predicate.

a . . . ” and used to relate objects to types. For

A' is o f type T , and false otherw ise.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Glossary

T his g lossary contains term s relevant to the work presented herein that are not com m only used in

engineering, but that are quite com m on in o ther fields. For each term in the glossary, the page where the

term is first used is given in parentheses.

A b s tra c tio n M echan ism : A device o r technique whereby details are rem oved from som e collection o f

inform ation leaving only that which is considered essential. A bstraction m echanism s perm it the

ordering, o r organization, o f inform ation, (page 19)

C a rte s ia n P ro d u c t: The cartesian product o f two sets A and B is defined as the set o f ordered pairs

such that the first elem ent o f every ordered pair is a m em ber o f A and the second elem ent o f every

ordered pa ir is a m em ber o f B . (page 85)

C o m p le ten ess : T he property o f a formal system wherein exactly all tree sta tem ents can be proven true

and exactly all false statem ents can be proven false, (page 48)

C o n sisten cy : In logic, the state o f a formal system containing no contradictions; that is, a form al system

is consistent i f all axiom s and theorem s in the system are valid (see below) w ith respect to each

other, (page 48)

D esign E n tity : A unit, not necessarily realizable in and o f itself, o f relevance in design; an inform ation

m odel o f real world structures o f use in a design process, but not including the design process itself,

(page 74)

D ynam ic D a ta M odeling : The m odeling o f sem antic properties and the m anipulation o f data structures,

often in reference to database transactions, (page 157)

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

13

E n ca p su la tio n : T he discretization o f a quantity o f inform ation into a m eaningful structure that can be

treated as a single unit, (page 76)

E p istem ology : The study o f a theory o f the nature and grounds o f knowledge, especially w ith reference

to its lim its and valid ity1, (page 81)

F o rm a l System : A system consisting o f a set axiom s taken as premises, and a set o f rules by which

theorem s m ay be proven by application o f the axioms, (page 19)

H eu ris tic : Som ething valuable for empirical research, but unproved o r incapable o f proof, (page 34)

Iso m o rp h ism : In logic, the relationship betw een a formal system and som e perceived aspect o f reality.

A form al system is isom orphic to som e real-world phenom enon if it m odels it correctly, (page 40)

O n to lo g y : A branch o f m etaphysics relating to the nature o f being; a particular theory about the nature

o f being o r the kinds o f existence2, (page 90)

P a ra d o x : In logic, a statem ent that can be proven both true and false in a given form al system , (page 48)

S ta tic D a ta M odeling : The description o f data objects and their relationships w ithout considering o f the

operations in w hich such structures m ay be used, (page 1 11)

U n iverse o f D iscourse : The dom ain about w hich all interesting argum ents arc m ade. For exam ple, in

se t theory, the universe o f discourse is that o f all sets, (page 74)

V alid ity : In logic, the state o f being true under any interpretation; that is, a statem ent o r form ula is valid

i f it can never be false, (page 38)

'F rom W ebster's 7th Dictionary.
’From W ebster's 7th Dictionary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Part I

INTRODUCTION

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 1

Introduction

1.1 Preamble

W hat is engineering design?

In the broadest sense, the issue addressed by this work is that hum anity lacks a sufficient understanding

o f the process o f engineering design. A lthough sim ple enough to phrase, this problem has been an issue

o f contention for years, and the som etim es very emotional argum ents m ade by various proponents o f one

view point o r another, m ethodology A o r B, system X or Y, have possibly done more harm than good.

It has alw ays struck this au thor as h ighly suspicious behavior when one is unable to refrain from overt

generalization and em otional rhetoric to convince an audience. Unfortunately, m em bers o f all the various

schools o f thought involved in the debate m ay be accused o f this kind o f behavior, leaving one with the

distinct im pression that no one is com pletely right.

How ever, the unavoidable facts are these: engineering design has existed in one form o r another since

ancient tim es. In this interval, design has changed - evolved - no t only in response to o u r ever-increasing

understanding o f the physical universe, but also in other, relatively arbitrary ways, responding to forces

no t particularly natural: sociological, psychological, environm ental, governm ental, and political. All

these forces have had a hand in shaping design as it is now, and their continued influence has required

designers and design researchers to adapt to their exigencies.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

16

The one constant throughout the history o f engineer! jcsign has been that the requirem ents placed on

designers and on the products they design have continually increased in com plexity. Sim ilarly, as we gain

m ore know ledge about the universe, that m uch m ore information can be applied to the problem s we have

to solve. T he com plexity o f m ost currcnt-day design problems is m any orders o f m agnitude greater than

that o f problem s faced by the designers o f the last century, and there is no reason to suspect that this trend

will change in the future. Correspondingly, in order to meet the challenge o f to d ay ’s design problem s, we

m ust Icam to m anage all the inform ation at our disposal in an efficient, concise and tim ely manner.

Design researchers are thus faced with the task o f dealing with this com plexity; sim ply ignoring it is

unacceptable. In response to this challenge, an ew field o f research has em erged: design theory. Its goals

arc (a) to respond to the increasing com plexity o f engineering design problem s, (b) to increase confidence

in o u r solutions to the design problem s o f the future, and (c) to overcom e lim itations and difficulties

associated w ith the process o f design by providing m ore consistent, logically structured m ethodologies

and techniques.

Furthering our understanding o f design is a worthwhile goal because it leads to verifiable explanations

o f the phenom enon o f design. Historically, explanations o f this kind in o ther fields (such as physics,

m edicine, etc.) have led to progress, advancem ent, and new insights into the nature o f the phenom enon.

M any segm ents o f the design process are still based in large m easure on arbitrary, ad-hoc decisions and

processes. Still, design theory has provided a focal point for the efforts o f hundreds o f researchers, and

their work has already m ade notable contributions towards the goals stated above. It m arks the beginning

o f a new stage in the evolution o f design, a renaissance o f sorts; we, as designers, are collectively and for

the first tim e attem pting to exam ine our role in society, and to exam ine design itse lf critically, objectively,

logically. Holding design theory as a central concept, researchers are striv ing tow ard a level o f formal

rigor in engineering design, a certain scientific legitim acy that has, to date, been ra ther elusive.

In the recent past, engineering design has been considered largely an “art” o r even a “sk ill” , an endeavor

not am enable to form alization and scientific scrutiny. T his is changing: the in troduction o f expert

and autom ated system s, quantitative cognitive design research, new m ethodologies such as concurrent

engineering, new forms o f m athem atics (for exam ple, fuzzy logic) and o ther technological and scientific

innovations are pennitting a new view o f design to develop, a view in w hich technology and creativity,

science and intuition are linked in a sym biotic relationship, forming a w hole that is greater than the sum o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

17

its parts. It is not unlike the Renaissance, during which tim e science grew from a highly m ystical practice

to the m uch m ore rational, reasonable, and far more useful endeavor, it is today. As this maturation

process continues, we will have to examine the engineering design enterprise and possibly change our

ideas about what it realty is. In order to be successful, every effort must be made to m aintain a flexible

yet definitive fram ew ork w ithin which design and design theory can evolve in a formal manner.

It is this au tho r’s hum ble desire to contribute to this endeavor, and to help the engineering profession

develop to its next plateau.

1.2 Premises

T he relevance o f the w ork presented herein depends on the acceptance o f certain prem ises. These premises

cannot be proved in any mathematical o r logical sense o f the word because they arc extralogical, that is.

they are em pirical, deriving directly from observation o f the state o f design and o f reality. As such, the

m ost that can possib ly be expected is to provide sufficient empirical evidence to suggest an acceptable

degree o f confidence.

These prem ises are discussed here, at the outset, so as to define the boundaries w ithin w hich the rest o f

this work exists.

D esign is n o t w ell-u n d ersto o d . There is no clear, precise definition o f what design is. It has, for exam ple,

been referred to in the recent literature as “ ...the evaluation and satisfaction o f m any constra in ts...”

[2]; “ ...planning for m anufacture...” [3]; a largely intellectual, cognitive process |4 |; an “ ...ill-defined

art...w hich lacks form al definition..." [5]; a som ewhat “m ystical” process [6]; a “ ...socially m ediated

process...” [7]; and m any others. All these descriptions are. to be sure, partly right. But the totality

o f w hat is involved in design is lost in each case. Certainly, m any researchers have been m otivated to

perform design research expressly due to the apparent lack o f current understanding [8,9].

D esign is n o t c u rre n tly efficiently pe rfo rm ed o r tau g h t. In a recent report [10], the National Research

Council (U SA) 1 has taken the position that engineering design education is weak, and that this weakness

'in collaboration with the National Science Foundation and other bodies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

18

is preventing the best available design practices from reaching industry. This point o f view has been

advocated widely, both in the United States, and in Canada [11,12]. Educators m ust find new ways to

com m unicate effectively to students if these students are to som eday design effectively. B ut w ithout a good

understanding o f what design is and how it is perform ed, such necessary com m unication is im possible.

Thus, the burden finally lies with researchers, who m ust advance our basic understanding o f design.

F o rm al theo ries o f design w ould lead to im proved p rac tica l m ethodologies. A form al theory is a

logical, objective system for the maintenance o f knowledge and the investigation o f phenom ena. Formal

theories arc the cornerstone o f both the natural and engineering sciences. The establishm ent o f formal

theories o f design m ay provide the benefits to designers that they have provided to scientists. T h is notion

has been echoed by o ther researchers (e.g. [13,14]).

I t is possible to fo rm alize a t least segm ents o f the design process. A num ber o f m ethodologies and

techniques already exist, defined in at least informal term s, that have provided considerable insights, i f not

into the nature o f design itself, then at least into the m ore practical aspects o f the engineering endeavor.

T he structure currently used every day in design processes all over the world did no t ex ist a century, o r

even a decade, ago. There is no indication that we have yet exhausted all the d irections in w hich such

a structure can extend. W hether the design process as a whole can be entirely autom ated rem ains an

open question; still, there are m any areas where increased form alization is possible and desirable. The

advantages are num erous: im proved com m unications and tools fo r teaching, m ore reliable analysis o f

designs fo r correctness, inform ation integrity and shorter developm ent tim es are but a few [15].

1.3 Statement of Thesis

T he thesis o f this w ork is: axiom atic se t theory provides a basis whereby design inform ation can

be rigorously specified independent o f design processes giving rise to or otherw ise m anipulating that

inform ation.

T his statem ent captures the essence o f a num ber o f argum ents, all o f which will be presented and

exam ined in this docum ent. Such term s as axiom atic se t theory, design inform ation, design process and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I‘J

so on will be defined where possible in accordance with com m only accepted practice; in som e cases,

w here conventional definitions arc vague or imprecise, an attempt will be made to specify them more

fully. Som e term s, such as isomorphism, have specific denotations in logic; since this work focuses on

the use o f logic, we will use the logical rather than engineering definitions. A glossary o f important tenns

is provided at the beginning o f this document.

T he heart o f the work focuses on the derivation o f a formal system called the Hybrid M odel o f design

inform ation (HM); the system consists o f nine axiom s and various definitions and theorem s. The axioms

capture essential properties o f design information within a logical framework, including live abstraction

m echanism s that perm it the organization o f information according to various criteria. The axiom s will he

presented in the notation o f m athematical logic; explanation and discussion will be presented in English.

In order to dem onstrate the application o f formal systems to practical issues in engineering design, a new

program m ing language for engineering com putation, called D e s ig n e r , shall be presented. D e s ig n e r

relies on HM for rigor. It represents a com putational model that captures arbitrary inform ation about

specific design entities and permits the organization o f that information; it is not intended to capture

m ethodological o r procedural inform ation about the design process itself. It will be show n that a strong

continuity o f logical rigor exists from HM through to the im plem entation >f D e s ig n e r . Various exam ples

specific to engineering are included to demonstrate D e s ig n e r ’s capabilities.

G iven the novelty o f design theory as a field o f research, a significant body o f fundamental work docs

not yet exist. T his is indicated in the premises (Section 1.2). T he au th o r’s work m ust remain som ewhat

general, i f for no other reason than this. In the process o f developing the theories and ideas presented

herein, the author has also developed a n u m b ero f collateral notions which, though not d irectly associated

w ith the precise topic o f this work, im pact upon it in an ancillary capacity. T h is material is nonetheless

relevant and original, and is included in this docum ent for the sake o f com pleteness.

W ith th is in m ind, the author also defines the thesis o f this work in a broader sense; nam ely that the use

o f fo rm al logic can significantly improve our understanding o f design, and provide a fram ew ork within

w hich h igh ly effective tools fo r m anaging the complexity o f design can be generated. The answ er to

the question o f the specific thesis o f this work, stated at the beginning o f this Section, will be used to

corroborate th is m ore general statement.

It is noted that this dissertation directly addresses w hat is given in [4] as the first m istake o f current

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20

design education: “ We have done very little research to develop a fundamental scientific understanding

o f engineering design processes."

1.4 General Remarks

As design theory continues to gain acceptance and popularity, the organizational aspects o f these research

efforts will become increasingly important. Successful organizational techniques rely on the detection of,

tuid accom m odation to, the structure that exists w ithin inform ation available to designers. T he creation

o f these techniques m ust occur in a logical fashion. Paraphrasing Quine [16], the tru ths o f logic m ay be

reckoned am ong the truths o f design, thus making logic an essential basis o f its form al understanding.

T hroughout this work, argum ents will be structured in as logical a m anner as is possible, and logic will

be invoked often as the basis upon which we will m ake o u r observations.

Efforts in design theory have rightly depended on the use o f com puters for their capacity to store

inform ation accurately and to calculate and m aintain the com plex relationships that exist betw een data.

As is noted in [17], “ ...the hum an brain is better able to recognize than recall....” C om puters, w ith their

relatively infallible m em ories, are o f great assistance in this regard. Furthermore, as the w orld econom y

continues to m ove from a product and service base to an inform ation base, inform ation m anagem ent issues

in design will becom e m ore im portant [7 ,18-20].

D esign research in the recent past has exam ined the use o f databases, application-specific languages and

expert system s, as well as m ore theoretical studies in such areas as constraint satisfaction and sym bolic

com putation. These tools have been applied with varying degrees o f success to com ponent assem bly [21],

design exploration [22,23], solid m odeling [24], finite elem ent analysis [25], etc. T he unique nature o f

design suggests that generalized information m anagem ent approaches will not necessarily support all o f

its aspects [26-28].

Currently, however, there is grow ing concern regarding the sem antics o f engineering design. M any recent

research efforts have m et w ith lim ited success because not enough is understood about the m eaning o f

the inform ation wc use. T he understanding we do have tends to be em pirical and intuitive [29 ,30] and its

organization is neither particularly structured nor logical. In response to this, researchers have begun to

backtrack, seeking a return to sound, logical first principles in design. Two notable exam ples o f th is trend

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

21

are [4 ,31]. The notion o f the existence o f formal first principles for design has guided the au th o r's work

presented herein as well.

T he im portance o f the organization o f design inform ation cannot be overem phasized. T his issue is

strongly tied to the search for sem antic formalization. To organize inform ation m eans to order it. The

im position o f order on inform ation is identical to the extraction o f m eaning from it, and m akes explicit

such inform ation as would otherw ise be implicit only. Increasing the amount o f explicit inform ation

present in a collection o f data decreases the am ount o f interpretation that m ust be perform ed to extract its

sem antics [32,33]. Therefore, the study o f organizational schem es for design inform ation is synonym ous

w ith the study o f its sem antics. T he them e o f organization pervades the au tho r’s work.

T h e search fo ra form alization for engineering design m ust necessarily be conducted in a logical, scientific

and internally consistent m anner [4], For this purpose, the author has selected axiom atic set theory and

discusses it briefly in Section 8.2. The role o f logic in design is critical to the developm ent o f the author's

theory, and will be discussed in detail before the actual theory is presented.

T h is docum ent is arranged in five Parts. The central three Parts form the body o f the work, beginning

w ith the m ost general and theoretical remarks, and proceeding towards m ore specific m atters. Part 11 will

focus on the role logic plays in design, indicating som e o f the short-com ings o f the current understanding

o f design and indicating how logic can help resolve these problem s.

Part III deals w ith the central thesis and presents the Hybrid M odel (HM) o f design inform ation. Naturally,

no discussion about design inform ation can be carried out w ithout som e reference to the design process,

bu t the author will dem onstrate that it is both reasonable and advantageous to separate inform ation about

a design artifact from the actions carried out on or w ith this inform ation. It is essential to understand

w hat form s o f inform ation are available before any m eaningful discussion regarding design processes can

occur. T hus, the theory deals specifically and only with design inform ation. T he design process will be

discussed on ly insofar as to define the design inform ation m anagem ent problem . Issues such as concurrent

design are no t addressed because they are aspects specific to the design process; that is, they affect how

inform ation is m anipulated, but no t the inform ation itself.

Part IV will describe a new program m ing paradigm devised by the author, built upon HM . The intention

is to indicate the im m ediate benefits that can be reaped from a form al theory such as HM , and to provide a

testbed w ith which further research in design theory m ay be conducted. Various design-specific exam ples

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

22

will dem onstrate the capabilities o f the resulting computational system.

Finally, Part V will conclude the work with a general discussion o f results and d irections for future

research.

A glossary o f im portant term s and a list o f sym bols are provided at the beginning o f the docum ent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 2

Literature Survey

2.1 Introduction

T his C hapter will present a survey o f recent literature exam ined in the course o f perform ing the work

reported herein. Due to the relative youth o f design theory as a research lieid, literature directly within

the field is no t abundant. However, the author has found a great deal o f inform ation in the peripheral

areas o f form al logic, computer-aided engineering, concurrent engineering, and com puter science which

is relevant to the m atter at hand.

B ecause th is dissertation is squarely w ithin the field o f design theory, com m ents that will appear in this

C hapter shall be biased in that direction. In other words, the prim ary criterion for the evaluation o f other

research shall be the degree to which it contributes to the overall understanding o f design. In som e cases,

this con tribu tion will be slight; this does not m ean that the surveyed work is o f no value, but only that it is

o f lim ited use strictly w ithin design theory itself. G iven the nature o f this survey, literature dealing with

theoretical aspects o f com puter program m ing, as well as fields such as formal logic and o thers will not be

dealt w ith directly.

T he au tho r has found that the existing literature can be divided coarsely into three categories; design

theory, com puter-aided engineering, and cognitive and concurrent design research. T hese three categories

are no t decoupled; som e cross-over is bound to occur as techniques are applied to various dom ains

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

24

(for exam ple, the application o f a specific design theory to the generation o f a com puterized desig n er’s

aide). However, principal contributions by various researchers can be categorized on the w hole using this

scheme; it shall be used here to help organize this survey.

2.2 Design Theory

Surveyed work which the author classifies as design theoretic in nature is hallm arked by three properties.

First, com puter technologies arc not essential to the contribution o f the work; that is, the principal

contribution is not sim ply a new computerized designer's aide, database, o r o ther program . Second,

design theoretic w ork aim s at a unified view o f design in the m ost global sense, not only as it affects some

very specific task w ithin design (for exam ple, synthesis and analysis o f m echanism s [34]). A lthough such

work m ay contain strong theoretic elem ents, it is not design theory because it deals w ith specific tasks and

excludes issues o f integration with other aspects o f the design endeavor. T hird , the role o f the designer is

not central to the developm ent o f the work; this excludes issues o f cognition, intuition, judgm en t, etc.

T he efforts o f tw o researchers in particular are exem plary o f the w ork currently being done in design

theory:

Nam P. Suh has recently published a text [31] wherein he sets forth an axiom atic theory o f design. Suh

assum es that a design problem can be stated in terms o f functional requirements (FRs) and that its solution,

a design artifact, is defined in term s o f a num ber o f design param eters (DPs). He argues fo r th is approach

based on the em pirical evidence o f how design problem s are com m only stated, and how the ir solutions

are com m only specified.

Based on this assum ption, his theory contains only tw o axiom s, eight corollaries and six teen theorem s.

We will exam ine only the axiom s here, since the corollaries and theorem s m ay be derived from them . The

first axiom is that the FRs o f a design problem should be independent o f each o ther (i.e. uncoupled). He

argues that coupled functional requirements indicate som e m isconception o f the design problem ; several

exam ples are provided to support this notion. The second axiom o f S uh’s theory is that the inform ation

content o f a design specification should be m inim ized. T he intention here is to ensure that there is no

duplicated inform ation o r inform ation arising from coupling betw een FRs. It is show n that, all e lse being

equal, a set o f uncoupled FRs leads to a “sim pler” design (i.e. having a m inim um requited inform ation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

25

content) than an equivalent set o f coupled FRs.

Su h 's theory does not formally define an exact procedure to be followed in an arbitrary case in order to

find an appropriate solution, but rather defines a collection o f rules (hat a designer can use to analyze

a design problem and guide evaluation and subsequent iterative redesign o f a solution until it becom es

satisfactory.

A lthough the theory is for the m ost part presented in English, a chapter is reserved near the end o f the

book fo r a restatem ent o f the theory in the language o f predicate logic. T his author notes that though

the statem ent o f S u h ’s theory is am enable to representation in predicate logic, a num ber o f important

concepts are defined as prim itive predicates only informally (such as feasib ility , m easure o f information

content, and coupling). Since logic is a field wherein an argument is only as strong as its weakest link,

such inform ality at the very outset o f the presentation can only be taken as a shortcom ing o f the theory.

N onetheless, the text is replete with exam ples ranging from the design o f a can opener to the rc-organizat ion

o f the E ngineering Directorate o f the National Science Foundation, and is an ideal vehicle for the

in troduction o f logical structured thinking processes into the field o f design, both as an educational tool

and as a general reference.

T he second principal c o n tr ib u to rs design theory is John Dixon (e ta l) w ho, in num erous papers and articles

(e.g. [9 ,1 3 ,2 9 ,3 5 ,3 6]) strongly advocates a more “scientific” approach to design and design research.

R ather than the generally philosophic approach taken by Suh, D ixon’s w ork centers on experim entation

w ith com puters to prove o r disprove general notions relevant to design. In [9], for exam ple, a taxonom y

fo r various kinds o f design problem s is described. The criterion for ascribing a particular problem to one

kind o r another is based on the nature o f the initial state o f knowledge when the problem is defined, and the

final state o f know ledge at the p roblem ’s solution. For exam ple, phenom enological design is characterized

by a function to be supplied and a physical phenom enon that will provide that function. Each kind o f

design problem thus recognized, argues Dixon, suggests a class o f solu tion m ethods. Thus the taxonom y

o f design problem s is seen as leading to a corresponding taxonom y o f design m ethodologies. As these

taxonom ies becom e m ore detailed, D ixon also reports on various softw are system s devised to satisfy

taxonom ic and o ther requirements. T he system s are then used to determ ine what advantages are provided,

i f any, by the approach. T he m ain contribution o f D ixon’s work is seen by this author as the explanation of

the nature o f various kinds o f design problem s and the classification o f know n and new ly devised solution

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

26

techniques based on experim entation using computers. Many o f D ixon 's classifications are quite coarse,

but since no o ther taxonom ic system s have yet been widely accepted, he has little alternative. Two other

classifications that he and his co-workers have advocated include: the separation o f design into (a) design

problem s, (b) the people who perform design and (c) the environm ent w ith in which design occurs [37];

and categorization o f design theories as prescriptive1 (tending to describe how design should be carried

out), cognitive-descriptive (describing what design seeks to achieve) and com putational (form alization

through com puterization) [38]. These system s all seek to provide flexible tools to guide researchers

tow ards a better understanding o f the nature o f design, rather than a series o f rigid, inflexible structures

defining exactly the nature o f design as a process.

Insofar as purely theoretic research is concerned, special com m ent should be also m ade o f three other

efforts:

T he first is the Extended General Design Theory proposed by Yoshikawa in [39], T he im portance o f this

w ork is three-fold: firstly, it was a fairly early attem pt to em ploy som e techniques o f logic to discuss

the nature o f design; secondly, it sought to place design in a m ore g lobal fram ew ork and discussed the

relationship betw een design and such fields as physics, philosophy, and technology, by representing the

universe as perceived by m an as divided into three distinct dom ains: log ica l, conceptual and physical-,

thirdly, Yoshikawa was one o f the first to advocate the distinction betw een what design is versus how

design is perform ed. From this starting point, Yoshikawa began investigating the nature o f design, thus

including from the very outset the notion that design m ust occur w ithin an environm ent, by w hich it is

affected and w hich it affects. T his view o f engineering as part o f the hum an experience has m ore recently

becom e qu ite relevant in nationally m andated efforts to improve design as an endeavor [10].

The second is the notion o f recursive design as proposed by Ward [40]. D esign is seen as recursive (rather

than iterative) in cases where the design problem m ay be broken dow n into sm alle r and sm aller com ponents

by the recursive application o f som e single methodology. This differs from the m ore conventional iterative

approach in that an iterative design process is applied m any tim es to a detailed design alternative, its goal

being convergence o f successive solutions when compared to an externally defined set o f criteria. The

advantage o f recursive design is its ability to im plicitly handle a w ide nu m b er o f design alternatives,

som ething that typical iterative techniques do not do well. However, i f the resulting tree structure o f all

'som etim es referred lo as normative.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

27

alternatives in a recursive design process is not carefully “pruned" to elim inate unacceptable designs as

early as possible, it can lead to an intractable num ber o f solutions. The notion o f recursive design is quite

new, but show s som e potential, especially in concurrent engineering environm ents.

The third and last no 'ab le theoretic effort is that o f Fauvcl (411. In his approach to m odeling design, no

em phasis is placed on any one aspect. Rather, two abstract notions, embodim ent and activity, tire used to

m odel any design entity. An activity is any procedure o r m ethodology used by a designer: an embodim ent

is the resulting effect o f that procedure o r m ethodology on a design. This essentially functional approach

is particularly flexible and capable o f providing an integrating framework for (he overall design endeavor.

It is also rem iniscent o f the model developed in this thesis (see Section 8.1).

Dixon is also a leading proponent o f so-called feature-based design (e.g. [42-45]). A feature is generally

considered to be a m odeling entity m ore im m ediately relevant to design and m anufacturing than a simple

solid o r o ther geom etric model. It is often used in connection with efforts to integrate design and

m anufacturing. However, even Dixon h im self states that the exact nature o f a feature has yet to be

defined [42], and o ther researchers (e.g. [46 ,47]) have dem onstrated that feature-based approaches arc

not com putationally feasible over large feature sets. Nonetheless, the im portance o f features as m odeling

structures m akes it w orthy o f note here. Unfortunately, researchers have alm ost invariably treated features

as the basis fo r the construction o f software system s rather than legitim ate conceptual structures to aid in

the generation o f design theories: nonetheless, since we are interested in design theory and not engineering

com putation, we discuss features in this survey only insofar as they represent a conceptual tool useful in

design theory. D ixon is one o f the few who have used the notion o f a feature to guide the developm ent

o f his design research. Features have found use in the study and generation o f taxonom ies o f design

entities [48 ,49], form al languages for the specification o f spatial relationships [50,51], and the integration

o f design and m anufacturing [52-54],

A nother area w herein a great deal o f work o f a design theoretic nature has been done is the area o f

constraints. A constraint is generally defined as som e kind o f relationship betw een variables o r parameters

that restricts the set o f acceptable values that the variables m ay have assigned to them . C onstraints capture

a restriction p laced on a design by the nature o f the design problem ; thus all constrain ts on a particular

design m ust be satisfied for the design to represent a possible solution. T he constrain t satisfaction

problem has been determ ined in the general case to be NP-com plete [55 ,56]; that is, all but trivial cases

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

28

are com putationally intractable [57], Constraints also affect design optim ization and sim ulation [58—62],

Thus, finding alternative strategies for dealing with constraints remains an active research area.

The first real attem pt to treat the notion o f "constraint” as a m odeling tool m athem atically appears to have

been by Friedman and Lcondes [63-65], wherein not only a general m athematical treatm ent o f constraint

theory was given, but various kinds o f constraints relevant to the engineering dom ain were exam ined.

Since then, work in the theory o f constraints has continued in two principal directions: com putation and

theory. The com putational aspects o f constraints will be discussed in the next Section. Insofar as the

theoretic aspects o f constraints as concerned, m any efforts have been directed in the use o f constraint

theory to optim ize design; notably, the work o f W ilde [66] who introduced the notion o f m onotonicity

and established several principles by which m onotonicity can be used to optim ize m athem atical m odels

o f design artifacts. All this work has been continued by m any others, including [2 ,2 2 ,5 8 ,6 7 -7 2] ,

A lso, various specific aspects o f constraint theory as applied to design have attracted the attention o f

researchers: the role o f constraints in discrete event system s for m odeling design processes [73 ,74];

the representation o f spatial constraints to model shape and physical structure [75 ,76]; categorization o f

constraints types [77]; and the use o f constraint netw orks as m odels o f design processes [78].

T here arc m any o ther research efforts that have contributed to the developm ent o f design theory; to even

m ention them all is an intractable proposition. However, a glim pse o f a few can indicate the dep th and

richness o f ongoing research o f potential relevance:

Various m athem atical and logical form s have found their way into design theory, w ith the goal o f advancing

the integration o f otherw ise d isjoint aspects o f design, including: probability and fuzzy logic applied to

the representation o f uncertainty in the design process, especially in top-down approaches [47 ,79];

predicate calculus [80] applied to the capture o f design knowledge [14]; and in tegration th rough the use

o f inform ation m anagem ent techniques and inform ation theory [81-83].

T he developm ent o f general m ethodologic frameworks fo r particular sub-dom ains o f the general design

process has attracted considerable attention, including Design for M anufacture (and A ssem bly) [84],

design for quality [85], generalized techniques to assist in the organization o f design know ledge for

the sake o f sim plifying its com plexity [86-88], and efforts to create viable taxonom ies o r classification

system s for design problem s, m ethods or entities [17,89,90].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

29

2.3 Computer-Aided Engineering

Into this category falls the m ajority o f the work (over 50%) o f w hich the author is aware, and consists o f

m odels and actual im plem entations o f computerized design aides. Efforts in computer-aided engineering

often have im plicitly defined w ithin them m odels o r portions o f m odels o f design in general. T h is has

been necessary because fom ial bases for design do not yet exist. Indeed, the need for form alism s for

design inform ation and processes is often regarded as an essential prerequisite for achieving integrated

com puterized design system s [91.92], Such conceptual models and form alism s guide the developm ent

o f softw are system s. The m otivation for the developm ent o f the conceptual model arises prim arily front

the requirem ents o f software design, rather than from the requirem ents o f design in general. In many

cases, this has resulted in confusion between the m odeling requirem ents o f design and the exigencies

o f com puter program m ing. We defer a detailed exam ination o f this issue to Section 4.3; here, we shall

exam ine the breadth and nature o f recent work by o ther researchers. As indicated in the introduction to

this Chapter, em phasis shall be placed on contributions to design theory rather than to com puter-aided

engineering.

T he m ost notew orthy effort is that o f Charles Eastm an et a l [93-98]. T his w ork presents a new conceptual

da ta m odel, called the Engineering Data M odel (EDM), that defines classes o f designed products called

product m odels. The content o f a product model corresponds to a design database schem a (i.e. the

organizational structure o f a design database, not necessarily the actual data w ithin it). O ne o f the m ajor

advantages o f ED M is that it is entirely independent o f both hardware and software considerations; this

separation greatly sim plifies the system , perm itting clearer definition o f im portant notions for design

w ithout the need fo r actual com putation. Additionally, notions o f formal logic are used as the base upon

w hich E D M is built; th is provides rigor to permit the “correctness" o f a particular product model to be

investigated. ED M product m odels are defined entirely in term s o f three prim itive constructs (dom ains,

aggregations and constraints) plus several higher level constructs built up from the prim itives.

T he im portant contribution o f E astm an’s work from the point o f view o f design theory is that EDM

provides a form al structure for design information, albeit for the express reason o f generating database

schem a. T h is structure could be used to exam ine the nature o f design inform ation itself. In this regard,

ED M is unique in all the work o f which this author is aware for its com pleteness and rigor.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

30

However, there are two shortcom ings in EDM that this author feels are significant. Firstly, ED M is a

descriptive (or declarative) form, as opposed to an axiom atic form. EDM is m eant to perm it, among

o ther things, reasoning about product m odels, but a descriptive form does not provide the apparatus

to perform this reasoning in a formal m anner [99]. As well, descriptive form s have been found to be

dom ain-dependent, which can lead to difficulties in com putability [100]. Axiom atic system s, on the other

hand, inherently provide all the apparatus needed to check for correctness (i.e. the notion o f “proof” o f a

m odel) and system atic model construction.

Secondly, although EDM remains quite detached from the exigencies o f computer programming, the

fact that it is a data m odel requires it to treat such issues as identity (i.e. nam ing, equality, etc.) from

a com putational point o f view. T his introduction o f com putational issues can unnecessarily com plicate

investigations geared to the study o f design inform ation in general.

A nother notable contribution is that o f Crawford and Anderson [78,101], in w hich a com puterized system

for general m odeling o f design is presented. The key advantage is that the system is capable o f m odeling

solu tion processes as well as design problem s themselves. In this way, a h igher level o f unification is

achieved than in o ther efforts, and different categories o f solution techniques can be established to assist

in so lv ing novel design problem s. However, as is typical in these efforts, the strictly descriptive attitude

taken in the w ork lim its the use o f the proposed system to the study and analysis o f designs. A lso, the

connection betw een the proposed system and formal bases (e.g. logic) are not exam ined, thus raising

questions as to w hether the validity o f the system can be demonstrated.

T he need to express structure as an essential property o f data in a com putational environm ent has

encouraged the developm ent o f various taxonom ies, including taxonom ies fo r design decisions [100],

for m echanical system s [17], for design tasks [102], and for sem antic operations on design knowledge

[29 ,103]. A s well, to capture the procedural aspects o f design, num erous m odels o f design have been

suggested, including m eta-m odel evolution [102], the m olecular data m odel [104], the state/transition

m odel [105], the structural data model [106], and m ulti-layered logic [107], T hese are notew orthy because

they all represent m odifications o r extensions o f existing data m odels (e.g. predicate calculus [80], the

relational model [108], the cntity-relationship model [109,110], sem antic data m odels [28, 111], etc.)

leading to the conclusion, supported by many, that conventional data m odeling techniques are insufficient

for design. T h is underscores the need for additional design theoretic research, since we cannot depend on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

31

existing schem es to provide the needed structure.

One data m odeling technique deserves special m ention because it was originally designed to provide

support especially for non-conventional applications such as engineering, and because it has becom e the

m ost popular approach to m anaging information: object-orientation. Though a detailed discussion o f the

nature o f object-orientation is unwarranted here, it is quite relevant to distinguish it as possibly the most

p rom ising approach to design information m anagem ent yet devised. In particular, the object-oriented

approach specifically addresses the short-com ings o f its predecessor, the relational data m odel 110K|. The

relational m odel was conceived to address the needs o f business and com m ercial applications, but as

m any design researchers have indicated, design’s data m odeling requirem ents arc quite different from

those o f o ther application dom ains [25 ,93,112-118], In particular, object-orientation is seen as providing

a far r icher set o f abstractions for the construction and organization o f design m odels, independence from

im plem entation issues, reflection (for autom atic analysis o f design m odels), unified language definition

for both program m ing and database applications, and so on. From a design theoretic point o f view,

object-orientation can perm it the com puter to becom e a m ore useful tool for investigative studies into the

nature o f design by h iding m any o f the m ore m undane and irrelevant issues o f com putation from the user.

It m ust be noted here that o f all aspects o f design, conceptual design, arguably the m ost im portant aspect

o f the design process, is the least well understood o f all. T his is m ade abundantly c lear by the failure o f all

a ttem pts to com puterize it [17 ,60,119,120]. One tool has been indicated, however, as a possible solution

to th is particular problem : param etric design. In param etric design, details o f various com ponents,

assem blies, etc. are ignored for the sake o f capturing in param eterized form the essential attributes o f

design entities. In th is sense, this author suggests the term schem atic design m ay be m ore appropriate as

it carries a m ore d irect connotation o f an abstract nature and o f the intention to capture only those aspects

that are essentially representative o f the entities being designed. Param etric design has been investigated

in detail by others, including [61 ,75 ,121 ,122]. We note, however, that two issues regarding parametric

design rem ain problem atic, especially from the point o f view o f design theory. First, param etric design

does n o t perm it cyclic relationships to exist between data; yet the existence o f such structures has been

indicated in constraint netw orks, especially in conceptual design [122]. Second, though param etric design

m ay solve the problem o f conceptual design, it has been dem onstrated to be too restrictive for use in

op tim ization [61]. W hether these problem s indicate a shortcom ing in param etric design, o r a deeper

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

32

inadequacy in o u r understanding o f conceptual design, has yet to be determ ined. One possible alternative

is variational design, which adopts a different m athematical formulation than does param etric design, and

which has been show n to m anage cyclic constraint networks well.

M any other com putational approaches have also led to insights into the nature o f design. Efforts m aking

use o f system s engineering [83.101] have demonstrated the usefulness o f m odular approaches to control

complexity. Various research projects involving the construction o f database system s fo r design have in­

troduced the notion o f abstraction m echanisms as techniques to organize and integrate o u r understanding

o f design in general; these include structural entities like features [2 ,123], task-specific view s o f inform a­

tion [56,112], and hierarchies, aggregations and other classification form s [106 ,124-126]. R esearch into

the practical aspects o f constraint m anagem ent have provided num erous approxim ations fo r the solution

o f the constraint satisfaction problem (see previous Section) [2 3 ,24 ,105 ,127-130].

2.4 Cognitive and Concurrent Design Research

T he third category o f research is distinguished by a concern for understanding, in w hole o r in part, the role

o f the hum an in design; that is, rather than being concerned directly w ith design itself, w orkers in this area

are concerned w ith the mental functions o f hum an designers when they perform design tasks. Similarly,

som e researchers (e.g. [39 ,120]) have distinguished between how design is perform ed (by hum ans) as

opposed to w hat design is. A lthough not com m only considered together, cognitive design research and

concurrent design do share an interest in the actions o f the designer.

Cognitive design research is concerned with what m ight be referred to as the p sychology o f design, and

seeks to explain, o r at least quantify in som e manner, the particular m ental processes a designer m ay

use. The author also includes expert (and other knowledge-based) system s research in this category, since

these system s m odel the designer's ability rather than design itself o r som e aspect o f it.

Concurrent engineering, on the o ther hand, is concerned w ith sociological issues. T he principal tenet

o f concurrent engineering is that the involvem ent o f all interested parties in a design process from the

outset can m arkedly im prove the decision-m aking abilities o f the group as a whole. T h is k ind o f design is

far m ore inform ation- and coordination-intensive than conventional, purely sequential design processes

and thus requires a m uch m ore refined strategy to assure efficient, accurate and tim ely com m unication

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

3.1

betw een team m em bers. T his requirement has led to great activity in the use o f com puter tools to help

docum ent design processes and com m unicate information between designers. T itus, again, the role o f the

h um an in the design process is the central concern.

2.4.1 Cognitive Design Research

T his au tho r has several reservations as to the relevance o f cognitive design research to design theory. This

issue w ill be dealt w ith in depth in Part II. For the current discussion, an abbreviated version is sufficient.

Very little is understood o f how the hum an m ind functions; additionally, the outw ard signs o f mental

function (speech, gestures, etc.) do not necessarily relate d irectly to underlying cognitive process. Indeed,

there is som e evidence to suggest that "thinking” as we norm ally consider it is a purely unconscious

p rocess that we m ay never directly observe or even experience [1311. T his detachm ent suggests that

too m uch m ay interfere w ith any attem pts to control the cognitive function so that it m ay be observed

in a scientific manner. One is therefore left doubtful o f efforts involving the use o f artificial intelligence

techniques to create expert system s and other knowledge-based system s for design which arc all moled

in the presum ption o f som e basic understanding o f the hum an cognitive function.

How ever, it m ust also be said that there have been notable contributions to design theory m ade not

necessarily from individual efforts in cognitive design research, but rather by the whole o f the endeavor.

Specifically, the various efforts o f which the author is aware in the recent literature [8 ,2 1 ,2 4 ,1 0 2 ,1 0 3 ,

132-136] are supportive o f the follow ing observations:

F irst, expert system s suffer from a phenom enon called com binatorial explosion when applied to very wide

app lication dom ains. T his m eans that the am ount o f inform ation that m ust be m anaged by these system s

becom es intractably large as m ore and m ore different kinds o f problem s are included. However, for

very specific dom ains, expert system s have been known to generate reasonably efficient solutions. This

suggests, as has been noted in [102,103], that though the original goal o f expert system s as the ultim ate

design tools m ay never be achieved, they m ay be very useful as sm aller com ponents o f large, integrated

design system s (e.g. the design o f cam s [21]). As well, a very significant dependence on the structures

used to represent inform ation is indicated.

Second, expert system s, like hum an designers, require a certain period during which they are “ traincd-up”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

34

for the kinds o f tasks they are to perform. During such training periods, the system will not perform

correctly since it is still learning. The resource drain that m ust necessarily occur during training o f

expert system s has not been addressed in any o f the efforts o f which this author is aware. As well,

the information base upon which expert systems draw during this period is often heuristic. Heuristic

knowledge is em pirical in nature, often unprovable and usually based on the knowledge o f particular

experts in a field. So, while expert system s may perform m ore rapidly than hum ans, and are less likely

to be the source o f sim ple mechanical errors, they will carry w ith them all the inaccuracies o f a hum an

designer.

Third, the notion o f know ledge is not precisely defined. The term has been associated w ith bo th the

act o f learning and its results2. This author is surprised that such a vaguely defined no tion has been

used to m otivate the creation o f so m any com puter software system s (i.e. know ledge-based system s). A

fundamental aspect o f these system s is that they can operate in various “ intelligent” w ays on inform ation;

one m ight suppose that knowledge is then tied to the process o f using inform ation. B ut again, we lack

understanding o f how the m ind acts on information; we m ust therefore suspect any effort to m im ic this

behavior com putationally as being based on rationalizations rather than real scientific understanding.

Fourth, as indicated in [24], m ost design “knowledge” imparted to expert and o th er such system s tends

to be routine knowledge. T his would seem to indicate, then, that expert system s w ould be unable to cope

with new kinds o f design problem s. This has been indicated not only in the existing design research, but

also in a more general sense in artificial intelligence [137-139],

2.4.2 Concurrent Engineering

C oncurrent engineering has enjoyed significantly m ore success than has cognitive design research. As

stated above, the goal o f concurrent engineering is to parallelize the design process, bringing upstream

various functions norm ally left until late in the design process (e.g. assem bly planning). Engineering

establishm ents that have adopted concurrent techniques have boasted m arked savings in tim e-to-m arket,

developm ent and production costs, and wastage [100 ,117 ,140 ,141], in som e cases exceeding 50% . The

degree o f savings has surprised many, and caused a num ber o f researchers to investigate concurrent

2 B a s e d o n W e b s t e r 's 7 t h D i c t i o n a r y .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

35

engineering with the aim o f identifying exactly how these savings arc achieved. This work is on-going

and very few results o f consequence have been reported. However, researchers have identified that

com m unication o f inform ation is likely the key to effective concurrent engineering.

Effective com m unication in a technical field such as design requires a formalized notation for the specifi­

cation o f inform ation (i.e. a language) and a flexible yet strict framework w ithin which iufom iatioii can

be arranged and organized [107]. This has led to the adoption o f hypertext (also called m ulti-m edia) as a

key com putational tool for concurrent engineering research 132,135,142-1441. In essence, hypertext is a

m odeling technique for infom iation upon which no organizational schem a is available a-priori. Thus users

o f hypertext system s not only supply the inform ation but also the various "hooks” by which the system

can organize the inform ation. T he im portant contribution o f such system s is that inform ation that would

otherw ise have been only im plicit (because no schem a exists to capture it) can be m ade explicit 18 11. Here

is one possible use o f expert system s to aid designers, though indirectly. A suitably (rained system could

exam ine a hypertext database and organize it according to various o ther schem a identified as significant

in a design environm ent. T h is idea has yet to be researched.

Finally, because concurrent engineering places great importance on die conceptual stages o f a design

process, a num ber o f cognitive researchers have investigated the nature o f com m unication betw een group

m em bers in concurrent engineering team s [7 ,4 7 ,1 3 5 ,1 4 5 ,1 4 6], and have identified various techniques

o f “negotia tion” and sharing o f know ledge whereby group decision-m aking can be assisted by various

form al techniques (e.g. case-based reasoning [145]). It is noted in closing that cognitive research has

had a m ore noticeable im pact on concurrent engineering, possibly because o f the increased availability o f

externalized evidence (com m unication between group m em bers) o f the design process.

2.5 Summary

T his C hapter has presented a survey o f recent literature on design theory and the associated fields o f

com puter-aided engineering, concurrent engineering and cognitive design research. On the whole, the

body o f work, though not particularly volum inous due to the relative youth o f the field, clearly indicates a

preoccupation w ith the integration o f the various aspects o f design. Som e research has dealt w ith specific

theoretical aspects o f design (such as constraint satisfaction), w hereas o ther efforts have been larger and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

36

less detailed in scape, seeking a general framework where particular efforts m ay be seam lessly com bined.

Som e successes have been dem onstrated as the results o f this research percolate from research institutions

into industry, but there is as yet no consensus as to the final form o f a fully integrated design endeavor.

Nonetheless, the successes achieved to date indicate that the principle o f an integrated view o f design is

w orthy o f further study.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Part II

THE ROLE OF LOGIC IN DESIGN

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 3

Introduction

T he approach used in this work is quite novel: though tools o f logic - such as se t theory and predicate

calculus - have often been invoked in supporting roles in design theory, there is no evidence o f any work

in design that takes logic as its sole foundation. The author finds that the uniqueness o f th is approach

w arrants som e explanation, and that the explanation itself can go a long way to clarify the nature o f

engineering design, and indicate ways in which m ore robust form alism s can be achieved.

T he purpose o f this Part is twofold. First, the general role o f logic in design theory w ill be discussed.

Som e o f the problem s confronting design theorists w ill be exam ined, and possible so lu tions based on the

application o f logic will be considered. A fairly wide range o f topics will be covered, b u t the underlying

notions are few and distinct. Second, a num ber o f term s and notions o f logic that are no t particularly

w ell-know n in design - but that will be used extensively in the Parts to follow - w ill be in troduced and

d iscussed in detail.

Som e im portant notions should be introduced before any o ther consideration, because o f th e ir im portance

in the sequel. First, we define logic as “ ...the study o f m ethods and principles used in d istinguishing

correct (good) from incorrect (bad) arguments [80].” Indeed, a definition o f logic that is bo th precise

and com pact is difficult to find since such a definition would to som e degree depend on logic itse lf for

correctness, and, as shall be show n, the validity o f such self-dependent definitions is suspect. Fortunately,

great effort has been expended by philosophers and o ther thinkers to resolve this problem ; the interested

reader is refereed to the introduction in [16], where the overall nature o f logic is d iscussed very clearly if

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

39

som ew hat verbosely.

T he no tion o f p ro o f is also important. In logic, a proposition is proved if a valid argument can be

constructed so as to dem onstrate that the proposition is true. T his is a wcll-acccplcd, conventional

definition o f the term for classical formal logic. Variants exist, depending on the form o f logic used. For

exam ple, in fuzzy logic [147,148], there are gradations o f truth; thus it is possible to have propositions

that are m ore o r less true than others. However, for the current work, classical two-valued (i.e. true and

fa ls e) logic is sufficient.

A nother im portant notion is that o f validity. Validity refers to the correctness o f an argum ent, but not to

the truth-hood o f its premises. T hus the classical exam ple “I f every m an is m orta l a n d Socrates is a man,

then Socra tes is m ortal" can be show n to be valid without m aking any statem ents about the premises

“...every m an is m ortal..." and “...Socrates is a man...”. The advantage is that we can d istinguish clearly

betw een the prem ises o f an argument and the procedures used to reach conclusions. A lso, logic provides

the m eans to check those procedures for incorrect interm ediary steps. A lthough logic m ay also assist

in determ ining the correctness o f the prem ises o f an argument, this is a separate consideration. Often,

prem ises o f argum ents are based on observed facts, which are by definition em pirical and which usually

cannot be proved in the technical sense o f the word. A lthough this restriction m ay appear to lim it the

applicability o f logic - especially w ith respect to a dom ain w ith such strong physical ties as design - the

notion o f valid ity lets us prove o r disprove arguments, which are the building blocks o f reasoning; and

reasoning is an essential com ponent in design.

T he issue o f validity o f particular form al system s is problem atic; this was established by Gfldel in his

w ork on incom pleteness. However, insofar as formal system s m ay be considered valid, they offer a far

m ore rigorous m eans o f treating phenom ena such as design than any o ther available technique. It thus

rem ains advantageous to em ploy form al techniques in design theory.

L ogic is considered to be independent o f the physical universe; it is for th is reason that truth o f statem ents

such as “ . . .Socra tes is a m a n .. . ” cannot be decided. Indeed, it is possible to generate formal system s

that are in no w ay related to any aspect o f physical existence. However, som e formal system s have been

found to be very useful in explaining and predicting the behavior o f physical (extralogical) phenom ena.

A s engineers, we are particularly interested in formal system s that do relate in som e way to the physical

universe. T hese form al system s are o u r logical models o f phenomena. T he success o r failure o f a particular

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

40

logical model depends on its perceived correspondence to the phenom enon being studied. Logicians call

the correspondence between a model and an observed part o f reality an isom orphism [149]. The more

accurate and com plete the isom orphism is betw een a model and a phenom enon, the better the m odel. The

notion o f isom orphism s will also play a role in determ ining the extent to w hich form al theories for design

can be considered valid; this will be explained in the follow ing Sections.

Furtherm ore, logic is, on the whole, objective. It is considered to be valid regardless o f hum an cognitive

function. It is interesting to note, however, that there does exist work in logic m eant to form alize such

naturally subjective dom ains as belief system s [150]; such work has found technological application (for

exam ple, in the treatm ent o f distributed system s such as com puter and com m unication netw orks). It

would appear, then, that if we are to m aintain a certain objectivity in design research, logic should be

considered a very im portant and useful tool.

To m otivate the discussions to follow, the presentation in this Part w ill begin w ith an exam ination o f

tcrm inologic and taxonom ic issues, and the inherent vagueness w ith w hich notions and concepts in design

are currently defined. T his view has been expressed by others in the field, especially D ixon, in [4], Next,

a d istinction is draw n betw een the conceptual m odels that we use to understand design phenom ena, and

the com putational m odels we use to im plem ent o u r conceptual m odels as design aides. T h is distinction

is im portant because it can significantly sim plify the com plexity o f design theories. We then exam ine the

concept o f “ self-reference” in the context o f design theory. Self-reference can prevent valid form alizations

in any dom ain; the author argues that it should be avoided in design theory i f valid form alizations are to

be found. Next, the notion o f design as an artificial science is introduced as a m eans o f discussing the role

(hat form al logic plays in the establishm ent o f useful fram eworks w ithin w hich design can be studied. The

conclusions o f these discussions m otivate the form ulation o f two conceptual design theoretic tools. The

first, a layered logical structure for design, outlines a technique w hereby different degrees o f abstraction

in design inform ation m ay be identified and classified. The second, called a design space, is m eant to

help study the relationships betw een various notions, m ethodologies and approaches to design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 4

Motivating Discussion

4.1 Terminologic Considerations

There is no rigorous term inology or nom enclature for im portant concepts and notions in engineering

design. Term s that designers and design researchers use are often defined in w hatever fashion is most

convenient to them (e.g. the various definitions attributed to the term fea ture in [1 3 ,5 1 -5 3]). T his is not

an indictm ent o f the abilities o f these persons o r the quality o f their work, but rather an indictm ent o f our

collective ability to define the nature o f design itself.

T he nearest convention we have in this regard is the engineering drawing. A lthough the graphical nature

o f engineering draw ings can capture som e inform ation efficiently, drawings alone, even i f computerized

(via CAD system s), cannot capture all the inform ation necessary to represent the nature o f a design in an

efficient and usable way [32,94],

A lack o f standardized nom enclature results in bad com m unication. Betw een designers, this can have

d isastrous consequences. In com puterized system s, it can lead to inefficient, incom patible software

system s that stym ie rather than stim ulate the abilities o f designers.

A t a deeper level, th is indicates a significant disagreem ent on the lim its o r boundaries o f various notions

and concepts. W hat is engineering design? W hat is a solid m odel? A t w hat point does a geom etric model

becom e a so lid m odel? Should a finite elem ent m esh be considered an analytic m odel parallel to a solid

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

42

m odel, a particular m anifestation o f a product model, o r an entirely separate kind o f m odel? To what

extent arc constraints a valid m odeling form? Is constraint theory a m odeling technique o r a technique

o f analysis? These questions indicate ju st how vaguely design is defined, a notion echoed in the work

o f m any researchers [2 9 ,3 1 ,3 9 ,1 5 1], They cannot be answered because there is consensus neither o f

nom enclature nor o f the associated underlying concepts and notions.

The im portance o f this problem is underscored by its im pact on our ability to teach design. In order

to teach, we m ust com m unicate effectively. W ithout effective com m unication, the im precision and

inconsistencies o f the teacher will tend to be passed on to the student. T hus, the problem perpetuates

itself. The relationship betw een design theory and teaching design is d iscussed in som e detail in [4,10,36].

Recognition o f key prim itive notions is essential to attain a m ore form al understanding o f design. The

establishm ent o f m ore precise conceptual definitions and their corresponding term inologies w ould assist

us to resolve m any difficulties now being experienced.

By sim ple analogy, consider the nom enclature o f chemical com pounds. F o r exam ple, a su lf/re is different

than a sulf/t/e, w hich is different than a sulfate. At once, these term s concisely and exactly capture

significant differences in com position and behavior o f these various classes o f distinct, yet related,

com pounds. T he im portance o f this nom enclature is not so m uch that it accurately d ifferentiates betw een

various classes o f com pounds, but that it represents a collection o f very precise definitions and notions

that are consistent w ith the rest o f the formal structure called chemistry.

T his kind o f precision is m issing in design and design research. As things stand today, it is difficult - if

at all possible - to generate a nom enclature o f design parallel in precision to that o f chem ical com pounds.

However, if this were possible, the benefits to be reaped w ould be great. O f prim ary im portance is the

increased efficiency and security o f inform ation transfer. A universally recognized nom enclature would

v irtually elim inate the subjective interpretation o f engineering inform ation and thus g reatly dim inish

the chances o f m isinterpretation o f that information. Designers will then be able to spend m ore tim e

d iscussing the nature o f their designs and less tim e arguing over how the designs are presented.

A lso, increased efficiency in com m unication can have im portant consequences to the developm ent o f

softw are system s m eant to assist the designer. Specifications for softw are system s w ill be m ore robust

because the m odels they im plem ent will be m ore precisely specified. Com puters are n o t yet able to deal

well - if at all - w ith vaguely defined data. Im plem entation details w ould be easie r to m anage if the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

43

com putational m odels o f the problem dom ains included precisely defined notions.

In searching for a nom enclature for design, it will be up to design theory researchers to provide the fonnal

system s and m ethods needed to assure the validity o f the nom enclature. T he tool they will use to provide

it will have to be logic. The au tho r’s propositions in this regard arc discussed in Sections 5 .1 and 6.2.

4.2 Taxonomic Considerations

A taxonom y is an orderly structured system o f classification based on presum ed or observed properties.

T axonom ies are used to classify entities and thus permit their study at h igher (i.e. m ore general o r abstract)

levels than that o f individual entities. Taxonom ies are also very useful in system s containing many

individuals and m any different kinds o f individuals; being able to classify individuals can be a great tool

to assist in the m anagem ent o f inform ation about the individuals and how they relate to each other.

T his problem is nicely stated by Chignell et ah in [143]:

“ O ne o f the m ost annoying th in g s . . . is the feeling that one cannot keep up w ith this hroad
literature o f things that one should know about. Drawing on psychological theory, it seems
that the task o f the researcher m ight be simplified som ewhat by providing a fram ework or
organizing schem a within w hich to understand and absorb the frightening am ount o f possibly
relevant m aterial that should be dealt with.”

O ne o f the im portant aspects o f taxonom ies is that they need not be com plete and entirely correct to

p rovide valuable assistance to researchers. The taxonom y used for the classification o f living organism s

is a good exam ple o f this. Though it is not perfect (some disputes still go on as to the nature o f certain

organism s), it is fo r the m ost p art a highly useful tool in such areas as the study o f evolution, anim al and

agricultural husbandry, teaching, and so on.

T axonom ies could help design theory in m any ways and at m any levels. At a practical level, they could

assist in standardizing parts and com ponents, leading to universally com patible part catalogs, annotated

libraries, etc. T hey could be used to classify design processes and so provide a fram ework w ithin which

designers can select appropriate m ethods for different kinds o f design problem s. Also, they could assist

in the classification o f m anufacturing techniques, prom ote m odular construction and thus help not only in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

44

product m anufacturing, but also in the design o f the plants and assem bly facilities used.

In design theory itself, taxonom ies could help us understand differences and sim ilarities in various

theoretical system s, which in turn provide a m eans to evaluate new ideas. We could also use this

knowledge to identify classes o f problem s that require more research, and criteria that can be used to

optim ize their solutions.

Taxonom ies for design and design research have not yet been developed, though there have been various

attem pts (77 ,87 ,152], In m any cases, the taxonom ies are derived in a generally ad-hoc m anner [52], A

good taxonom y m ust be based on formal reasoning, and the principal criterion used in the search m ust be

that o f validity. The prem ises o f taxonom ic arguments are those notions for w hich taxonom ies are sought:

these notions arc captured by a nom enclature. Dem onstrating validity o f the taxonom y does not include

dem onstrating validity o f the premises.

Insofar as taxonom ies are ordering m echanism s, we can look to logic to provide a num ber o f tools to

facilitate their generation. In Chapter 10, five specific m echanism s by w hich design inform ation can be

ordered will be discussed and dem onstrated to be sound with respect to their logical foundation. These

m echanism s can be taken as general principles with which taxonom ies o f design entities can be formed.

4.3 Computational Considerations

The au thor has noted that m any suggested m odels o f design inherently involve com putational aspects.

Exam ples o f this are: [117], where little distinction is m ade betw een the conceptual problem s o f classifying

design function in mechanical design and the com putational issues surrounding the im plem entation o f

their classifications in com puter system s; [126], wherein the factors affecting data flow in a design

activity arc suggested to arise both from design requirements and from the requirem ents o f com puterized

im plem entation o f their system; [77], wherein com putational m odels o f know ledge engineering are used

as a basis for formal design process models; [123], where integrity o f stored inform ation is seen as an

im portant aspect o f design; and [125], where a relationship is indicated betw een the “business process” o f

com puter-integrated m anufacturing and the m aintenance o f software. It is noted that all these efforts fall

at least nom inally w ithin the dom ain o f design theory, and thus indicate a possible relationship betw een

design theory and com puter science.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

45

T he au thor suggests that a distinction m ust be m ade between conceptual and com putational models. None

o f the above-noted m odels actually require im plem entations. Each presents a certain view o f design, and

contributes to o u r understanding o f it. regardless o f how the system s arc im plem ented. The distinction

betw een im plem entation o f a tool and the model upon which it is based is tenned by the author as the

distinction betw een computation and conceptualization. M odels can and do exist as formal theories,

independent o f their im plem entations.

In general, a conceptual model m ight provide formal descriptions o f the kinds o f inform ation that must

be present, the kinds o f operations that arc defined on the information, integrity and o ther constraints

that are to be satisfied, as well as the general philosophic background. A com putational model defines

the im plem entation o f the conceptual model, and m ight specify the kind o f scop ing1 to be used, atomic

data structures, type-checking sem antics, transaction control and so forth. An appropriate com putational

m odel is based in part on the requirements o f the conceptual model. Problem s arising from differences

betw een the tw o are often referred to as impedance m ism atches [27]; but the problem s them selves arc till

com putational problem s, and do not necessarily reflect the nature o f the conceptual m odel itself.

Issues o f im p lem en ta tio n - such as the selection o f a base program m ing language (e.g. C versus Sm alltalk)

- can g reatly affect the success o f a particular model o f design. Also, com putational theory can be a

useful tool in design theory for its ability to formalize actions and procedures that m anipulate information.

But in the purely theoretic arena, any m echanism could be used, albeit awkwardly. T h is is due to the

determ inistic nature o f the com puter itself. In o ther words, the im plem entation docs not affect the validity

o f the conceptual m odel itself.

The converse o f this is also true: given a particular im plem entation, any valid conceptual m odel can

be captured. To be sure, the efficiency o f a particular im plem entation docs depend on the relationship

betw een the m odel and im plem entation techniques. However, it is noted that the term '•efficiency” in this

case denotes efficiency o f the im plem entation and not o f the model.

T herefore, the evaluation o f im plem entations o f m odels does little to effectively com pare the underlying

conceptual m odels, w hich should be evaluated on logical grounds based on their ability to explain and

predict phenom ena o f interest. The inclusion o f issues pertaining to the im plem entation o f a formal

conceptual system in a com puterized environm ent can unnecessarily increase the system ’s com plexity by

'T he scope o f a data structure is the region of program code in which it is active or accessible.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

46

introducing a false coupling between the model and the im plem entation. T his does noth ing to increase

the robustness and secure validity o f the m odel, nor does it verify o r increase the efficiency o f the

im plem entation.

It is, in fact, possible to separate issues o f conceptualization from those o f com putation: [31 ,40 ,52] and the

work presented herein all achieve this separation at least to a degree, and still m ake m eaningful statem ents

about design. A lthough these and other related efforts can be used to develop design softw are system s,

the fact that they arc not directly tied to the developm ent o f software perm its them to be used for a variety

o f o ther reasons, such as teaching aides and research tools, in non-com puterized arenas.

T he author finds it curious that m odel generation for design should have becom e so tightly connected to the

developm ent o f software system s, but believes that the connection arose from the h istorical roots o f design

theory in the developm ent o f the first CAD system s. Com puters, being determ inistic m achines, cannot

deal well w ith the arbitrary nature o f the way design was once conducted. Hence, techniques w ere sought

that m ade design m ore am enable as an application for the then-em ergent com puter technologies. G raphic

rendering technology is a d irect progenitor o f today’s solid m odeling program s [121]; constructive solid

geom etry itse lf eventually led to features [5 ,51], Since then, o u r understanding o f bo th design and the

underlying logic o f com putation and information theory have led to the realization that form al m odels are

useful and im portant tools independent o f their use in com putational tasks.

4.4 Summary

In this Chapter, the author has presented a discussion intended to m otivate the pursuit o f a m ore com plete,

formal understanding o f design. In this regard, we have exam ined term inologic, taxonom ic and com pu­

tational considerations. There is currently no consensus regarding the definition o f im portant term s and

notions that are often used in design research and practice. W ithout such a consensus, m isinterpretation

o f design inform ation and incom patibilities between subsystem s cannot be avoided o r even controlled.

Furtherm ore, there exists little coordinated organizational structure for d esign inform ation (taxonom ies,

etc.) that can stream line the specification and com m unication o f inform ation vital to the design endeavor.

Finally, the coupling o f design w ith com putational considerations unnecessarily com plicates investiga­

tions o f design. In order to im prove the state o f o u r understanding o f design, all these issues m ust be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

47

addressed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 5

A New View of Design

5.1 The Notion of Self-Reference

Hofsladtcr, in [149], stales “It is very important when studying form al system s to d istingu ish w orking

within the system from m aking statem ents o r observations about the system .” H ofstad ter is w riting

about the concept o f self-reference ' , and though it m ay seem sim ple enough in this short quotation, the

concept is one o f the m ost com plex and consequential o f this century. It is a no tion fiindam ental to all

the argum ents present in the above-cited, Pulitzer Prize w inning work. T he problem o f self-reference is

defined form ally by G ddcl’s Incompleteness Theorem , w hich states that no system can reference itself

and be proved valid. A system w ithout self-reference will no t be able to prove som e statem ents that are

nonetheless valid; a self-referential system , on the o ther hand, will perm it the p roof o f all valid statem ents

plus certain invalid ones as well (i.e. a paradox). Put another way, no system that can be proved valid can

be com plete. No o ther notion o f logic has had m ore im portant consequences, and yet been so universally

accepted as necessary. For exam ple, in classical set theory [153], the existence o f the universal set cannot

be dem onstrated w ithout appealing to self-reference; yet set theory w ith self-reference a n d the universal

set is easily proved inconsistent (i.e. containing invalid parts). M oreover, it can be show n that any formal

system that corresponds to num ber theory through an isom orphism is incom plete; i.e. there are som e

'Self-reference is also known as reflection-, however, the author prefers the former term for its direct denotation o f systems
that are aware of. or act upon, themselves.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

49

truths th a t cannot be proved [149,154].

A lthough m athem atics and logic is lim ited in rigor due to incom pleteness, the fact rem ains that both

these discip lines have contributed inestim ably to our understanding o f the physical universe. There is no

a-priori reason to think that sim ilar contributions to our understanding o f design are not possible.

T he kind o f paradox that can occur in self-referential system s is exemplified by the sentence "T his sentence

is false.” In fact, self-reference abounds in the English language (e.g. “T his is an cnglish sentence."),

indicating that english cannot be proved valid. The fact that such self-referential cnglish sentences can lie

quite m eaningful to hum ans does not bode well for the validity o f the hum an m ind. In fact, the m ind itself

is self-referential: how else can we think about the mind? T he mental processes that we call "th inking"

are part o f an entity capable o f self-reference, and the concern w ith logic o f scholars through the ages

is an effort to justify o u r thinking processes and validate the rcsulls thereof. Indeed, sclf-rcfcrcncc. o r

self-aw areness, appears to be a property unique to the m ind am ong all natural phenom ena; it is difficult

to th ink o f gravity, DNA, o r a airplane as being self-aware. W hile the author is not suggesting that the

m ind w ill forever elude formal understanding, we do suggest that any formal understanding o f the mind

will be o f a different order than o u r understanding o f o ther natural phenom ena because o f the m ind 's

self-referential nature.

B ecause english, and other natural languages, are so often used in design to com m unicate inform ation,

self-reference can also appear in o u r ideas about design. A statem ent such as “Conceptual design is a

com ponent o f the design process’’ is self-referential; a design process that takes into account properties o f

itse lf is self-referential. Design itse lf tends to be self-referential, as is evidenced by existing research: “A

m ajor part o f the design activity is concerned with the developm ent o f the design process itself [1011.”

A ny self-referential system that seeks to form alize design will be logically inconsistent. Furtherm ore, it

is im possib le to determ ine the extend o f the inconsistency w orking w ithin the system itself. If we arc to

find a reliable, logical system wrth which to model design, we m ust ensure that it does not contain the

no tion o f self-reference.

T he issue o f self-reference is perhaps one o f the g re fe s t stum bling blocks facing design researchers, if

fo r no o ther reason than that it is hum an nature to treat ne universe in a “elf-referential way. However, it

does seem possib le to the au thor that beginning carefully from first principles, and striving to avoid the

desig n ers’ self-referential m ental processes (e.g. intuition, opinion, etc.), design can be at least partia lly

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

50

formalized into a system that is valid with respect to its logical foundation. In the Sections to follow, the

author will present the beginnings o f such a formal system for design.

The author has found the use o f the terms subjective and objective to provide a useful view point in this

regard. The term objective is defined as existing independent o f the m ind, belonging to the sensible world,

being observable o r verifiable especially by scientific m ethods2. Insofar as design is (at least in part) a

function o f the hum an m ind, there is obviously a subjective com ponent to it. T he subjective aspects o f

design are all prone to self-reference by their very nature. However, not all o f design is subjective. Any

objective com ponent o f design may be treated formally. Moreover, as research into design progresses, it

m ay be found that aspects o f design considered heretofore subjective can be treated quite objectively.

5.2 Design as an “Artificial” Science

5.2.1 The Scientific Approach

A num ber o f researchers have suggested recently that a m ore “scientific” approach should be em ployed

in the study o f engineering design. Two notew orthy exam ples o f this po in t o f view are [11] and [31], The

argum ent fo r pursuing such a scientific approach generally proceeds as follow s:

• T he objective o f science is to provide a precise and logical understanding o f natural phenom ena.

• D esign as an endeavor is currently not precisely defined, and tends to be highly subjective, m uch

as science was before the Renaissance.

• Therefore, those m echanism s that provide precision and structure fo r science m ay also be able to

do so for design.

T he relationship betw een science and design theory will be discussed in this Section. T he au thor postulates

that there is a part o f design that can benefit the m ost from an approach based o n logic ra ther than science.

W hereas logic is seen as a necessary progenitor o f both the “natural” sciences and design theory, science

and design theory them selves are seen as equals related through logic. B ecause o f the egalitarian nature

o f this relationship, the author introduces a new term , artificial science, w hich is intended to connote

P araphrased from Webster's 7th dictionary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

51

the form al nature o f design theory while distinguishing it from the natural sciences. T he essence o f this

relationship is depicted graphically in Figure 5.1.

th e study ofth e s tu d y of

D esign N a tu ra l
P h en o m en a

D esign
Theory

Science

Figure 5.1: Relationship between design theory and science.

T he techniques espoused by supporters o f a scientific approach to design research generally seek empirical

data about design (e.g. f 117 ,122 ,126 ,135]). T he scientific m ethod is used as the basic m ethodology in

such projects: observations are m ade o f designers at work; then, formal m odels are sought that can predict

(at least to a degree) the behavior o f designers when confronted with particular situations. Som e call litis

k ind o f research cognitive design research, and the procedure used is in essence the sam e as that used by

scientists to investigate natural phenomena.

A lthough the current literature indicates that cognitive design research has yielded m any useful results,

the au thor view s such research as being taigeted not at design p e r se, but rather at the m ental processes

o f the designer, and as such tends to the subjective. T his view has been espoused by at least one m ajor

p roponent o f new fundam ental research into design ([4]). T he distinction is im portant because statem ents

about h ow designers th ink do not necessarily relate to design itself. We have stated earlie r that mental

processes occur w ith in a self-referential system (the m ind) and thus are unprovable by conventional logic

techniques. How ever, these m ental processes can be rationalized as soon as they are externalized; that

is, as so o n as these m ental processes becom e m anifested outside the m ind - be it in the form o f a CAD

draw ing, an english sentence, o ra m athematical form ula - they leave the realm o f the sclf-rcfercntial m ind

and can be analyzed logically to a greater extent than i f the d esigner’s cognitive functions were included.

In this way, the au thor differentiates betw een those parts o f design that cannot (currently) be formalized,

nam ely the subjective m ental processes o f designers, and those that can (and should) be formalized,

nam ely all extem alizations o f those processes. We note that ou r intention is not to rem ove the creative,

cognitive com ponents from design, but rather to provide the m eans by which to analyze the results o f these

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

52

processes in a logical manner, thus helping the designer to channel h is/her im agination and creativity in

d irections that will m axim ize results. M any o f the best m athem aticians and scientists throughout history

have been very creative and intuitive people, and have used these characteristics in the ir w ork to great

advantage. T his should be the case in design as well. A lso, form alization o f the non-m ental segm ents

o f design can be beneficial to cognitive design researchers by providing them with a yard-stick against

which to m ake observations and compare theories.

5.2.2 Design Versus Natural Phenomena

T he scientific m ethod is a trial and error technique, the goal o f w hich is the creation o f m odels based on

observations that let us understand a given phenomenon. The logical and m athem atical m odels created by

scientists have provided excellent isom orphism s to various natural phenom ena. B ased on these successes,

it could be argued that logic in som e way reflects an essential property o f the universe. How ever, this

proposal begs the question o f w hether the universe is determ inistic [16]. In o rder to avoid th is contentious

and ra ther philosophical issue here, the author adopts a som ew hat less aggressive position: that form al

m odels approxim ate som e underlying structure o f the observed phenom enon.

An im portant assum ption is built into the scientific approach to design theory; nam ely, that there is a

correspondence betw een design and natural phenom ena, and that this correspondence allow s researchers

to treat design as a natural phenom enon. In o ther words, the sam e isom orphism s are relevant to both

design and natural phenom ena. The author contends that this assum ption is m isleading; w e m ake o u r case

w ith the follow ing argument:

D esign, unlike natural phenom ena, is “contrived" in that it is a purely hum an invention. W hile nature m ay

be considered as existing w ithout any action on the part o f hum ans, design is not independent o f hum an

beings; in fact, the designer is the only agent by which design is m anifested at all [14].

A lso, the evolution o f design has proceeded over the years in a m ore o r less ad-hoc m anner, responding not

only to the em ergence o f new scientific and technological understanding, but also to various sociological,

econom ic and governm ental pressures, none o f which can be said to be particularly natural (in the scientific

sense o f the word).

It m ay be argued that since the hum an m ind is a natural phenom enon, processes that occu r w ith in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

53

m ind (such as design) should be considered likewise. The author argues against this position. There is no

dependence o f natural phenom ena on hum an beings. However, design requires the existence o f the mind.

T h is distinguishes design from natural phenomena.

Science has had little success in understanding the hum an mind so far [155-1571. m uch less success than

it has had in understanding natural phenom ena such as gravity, nuclear reactions, and DN A. One possible

explanation is that the isom orphism s that have successfully been applied to natural phenom ena arc not

accurate w ith respect to the hum an m ind, and because design is a construct o f the m ind, we may say

the sam e about design. If we cannot understand the mind, how can we understand design, which is tut

invention o f the m ind? The author is forced to conclude, then, that it is inappropriate to treat design as a

natural phenom enon that can be studied scientifically, because it is a m ental process.

5.2.3 The Role of Design Theory

H aving apparently cornered ourselves in this way, we are left asking w hether any form alization o f design is

possib le at all. T he solution to this quandary lies in recognizing that we do no t need the sam e isom orphism s

to app ly to design as apply to natural phenom ena. Because design is a m ental process, it can benefit from

the sam e logical thinking that perm its scientists, m athem aticians and logicians to solve problem s m ore

com plex than they could i f they had only their intuition and creativity to guide them . But because design

is not bound by the structure o f nature, we are free to make o f it w hatever w e choose.

T hough relatively unconstrained by nature, design theorists should nonetheless seek as formal and objec­

tive a definition o f design as possible. We are free to do so w ithout being constrained by the influence o f

science because design is not a natural phenom enon. No formal system is related de-facto to reality; it is

the d iscovery o f isom orphism s betw een the formal system and reality that m akes it relevant. Any system

fo r w hich an isom orphism to a phenom enon can be found becom es a candidate m odel that can be used

w ith in the scientific m ethod. The use o f logic is required because it is the only tool m ankind has devised

so far to reason in a reliable and repeatable way. Design theory should thus depend on logic, but not on

science, fo r rigor. Hence, the author view s design theory as a sibling, o r equal, o f the natural sciences,

sharing w ith them a dependency on logic (see Figure 5.1).

T h is is not to say that design is not related to nature at all. Usually, the ultim ate result o f design is an

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

54

artifact having som e physical existence; thus it m ust relate to nature in som e way. But this is w hat design

does', here we arc concerned with what it is.

In sum m ary, the author contends that design theory should be concerned w ith finding logical systems

that can form alize design without necessarily relying on the isom orphism s o f the natural sciences. In an

effort to em phasize this notion, the author introduces the term artificial sc ience to describe design theory.

This term has been chosen to distinguish clearly between design theory and the natural sciences while

preserving the idea o f som e com m onality between design and natural phenom ena.

The author notes that there is already a tendency to consider design in som e w ay artificial; fo r exam ple, the

tcm t synthesis is often used to describe the methodical generation o f a design artifact, even in conventional

design contexts (e.g. [34]). W hile synthesis is often taken roughly to m ean creation, it has a connotation

o f artificiality that is generally m issing in contexts where creation is used3.

Since design is som ething that begins in the hum an m ind but ends in the real w orld, there are som e aspects

o f design that logic cannot be expected to capture on empirical grounds. In addition to creativity, intuition

and opinion, "facts” from the real world cannot be dealt w ith using logic alone, in the sam e way as the

atom ic prem ises o f the syllogism about Socrates in Chapter 3 cannot be dealt w ith using logic alone;

here is ano ther region where natural phenom ena influence design, and w here the conventional scientific

m ethod m ay be used. Still, there remain m any aspects o f design that are candidates for form alization

through logic.

To this end, the author postulates that a logical system to m odel engineering d esign can be achieved. The

system w ould be used to represent facts and to reason about design. T heories about design and design

inform ation m ay be derived w ithin the model and eventually supported o r d isproved by logical analysis,

experim entation (i.e. application o f the theory to test situations), and observation o f the resulting systems.

The derivation o f a logical system for design as an artificial science is the principal goal o f the au tho r’s

work. T he first concern is to identify tools o f logic that provide good isom orphism s. In seeking such a

system , a return to first principles has been found necessary to lim it em piricism , self-reference and the

influence o f the designer's mental processes. T he result o f the au tho r’s efforts in th is regard is presented

in Part III.

'Based on definitions for synthesis and creation in the Oxford English Dictionary.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.3 Summary

T his C hapter has d iscussed the advantages and problem s associated with the use o f fonnal system s in design

theory. W hile they represent the best understanding m ankind has o f logical, structured argumentation,

form al system s are inherently limited by G bdcl’s Incom pleteness Theorem. N onetheless, no superior

approach to system atic, formal reasoning exists, so in order to m aximize the degree o f rigor in tiny

attem pted form alization o f design information, formal system s should be considered an essential tool.

Furtherm ore, the author introduces the tem i artificial science to describe design theory as a sibling of

the natural sciences, sharing w ith them a dependence on logic for formal rigor. It is unreasonable to

expect o u r understanding o f natural phenom ena (the dom ain o f the natural sciences) to contribute to

ou r understanding o f design, because design is m anifested as a construct o f the hum an m ind rather than

being a natural phenom enon independent o f hum an cognition. A lthough we lack a good understanding

o f the hum an m ind, the externalizations o f our thought processes can, and should, be subjected to logical

analysis. Such analysis can identify inconsistencies that m ight otherw ise escape detection. Furthermore,

the form al techniques o f logic can help a designer channel his/her creative and intuitive energies in

d irections m ore likely to lead to successful design solutions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 6

Logical Solutions

6.1 Limiting Self-Reference in Design

In preceding Sections, it has been suggested that it is possible to construct a valid form al system for those

parts o f design that are independent o f hum an mental function. Such a system should be able to deal

not only w ith specific inform ation regarding a particular design artifact, but also w ith various degrees o f

abstract inform ation that are equally essential to the design endeavor. However, we m ust im pose a certain

structure upon the system to avoid self-reference. The structure is such that the total system is com posed

o f logical sub-system s o f increasing degree o f abstraction. Each sub-system is capable o f referring to

other, lower layers, but not to itself, o r to higher (m ore abstract) layers. T h is is in essence the solution

suggested by Bertrand Russell to a large class o f paradoxes i r the original derivations o f classical set

theory [153] that arose due to self-reference. T he resulting layered structure consists o f one layer for

each degree o f abstraction. In the general case, where the dom ain o f a logical system includes the entire

universe, an infinite num ber o f layers would be needed to capture all possible abstractions. Fortunately,

due to the relatively restricted dom ain o f design (w ith respect to the general case), and because each

layer would have a d istinct m eaning in design (via the isom orphism), a layered system o f logic should be

tractable.

In this Section, the author presents the beginnings o f such a layered system . The presentation is necessarily

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

57

quite general, but it does suggest the overall structure o f the system , and indicates how the various degrees

o f abstraction are delim ited based on the notion o f avoiding self-reference1. The structure is depicted

graphically in Figure 6.1. The relationship between the Hybrid Model (HM) and the rest o f the layered

structure is also show n in the figure. HM is presented in Part III.

L ay e r 3

L ay e r 2

L ay e r 1

FU N C T IO N A LSTRU CTU RA L

H ybrid
Model

Design
A rtifac t

S ta te m e n ts
ab o u t A rtifac t

F u n c tio n a l
B reakdow n

S ta te m e n ts
ab o u t

S ta te m e n ts

A b s tra c t
F u n c tio n a l

In fo rm atio n

Figure 6.1: Logical structure for removal o f self-rcfercncc

A t the low est (least abstract) level o f the system , is the design artifact itself; this is the actual part/object

that is the goal o f a design process, an actual physical entity. We im m ediately divide the system into two

different bu t com plem entary branches. On the one hand, there are all the statem ents that can be m ade

about the artifact at any instant in its existence (o r even before o r during its creation); on the o ther hand,

there are all the actions that are required to create the artifact, to use it, to m aintain it, etc. T he separation

is essentially one o f structure (description) versus function (procedure). The branches are com plem entary

in that they both relate to the design artifact. The structural branch is static, tim e-independent and

prescriptive, w hile the functional branch is dynamic, tim e-dependent and descriptive. Furtherm ore, the

'I t is interesting to note that though the system described in this Section is not self-referential, the description itself presented
herein depends on self-reference to achieve its end.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

58

.structural branch addresses the issue o f what design is, whereas the functional branch deals w ith the how

o f d esign ’s occurrence and procedure.

At h igher levels o f abstraction, the functional branch captures the design process used to create the artifact

and issues o f cognition by the designer. Thus, the functional branch m ay exhibit self-reference. The

structural branch exhibits no self-reference because it does not consider the role o f the designer. Thus in

this fram ework, we can identify and lim it the effects o f self-reference.

The structural branch captures the state o f information pertaining to a description o f the artifact at various

degrees o f abstraction. Since this description is independent o f the actions that caused the inform ation

to be discovered o r generated, it is applicable uniform ly throughout the design process. A lso, since the

description is independent o f the agents responsible for those actions (the designers), it is also applicable

to any design process; that is, the inform ation description is independent o f the design process. T hus, it

is possible to control self-reference in the structural branch. HM, which is the heart o f the au th o r’s work,

is contained entirely in the structural branch.

Each layer in the proposed system m akes statem ents about the preceding layer, this is the case in both

branches. T hus, the first layer beyond the design artifact in the structural branch contains statem ents

about the artifact, capturing concrete facts about it. The second layer contains statem ents regarding the

classification o f these facts, and by extension, the classification o f different artifacts. T he next layer (not

show n in the figure) contains statem ents about different classification schem es and m echanism s.

Sim ilarly, in the functional branch, the first layer beyond the design artifact contains functions provided

by the artifact and a functional breakdown o f the artifact. The second layer contains actions taken to create

(design or m anufacture) the artifact. These actions m ay be affected by the cognitive processes o f the

designer. T he next higher level (not shown) contains more abstract inform ation about those instructions.

C lassification o f actions would also occur in this layer, and can include judgm ental and intuitive rem arks

about the relative m erit o f those instructions. The next level (also not show n) w ould include statem ents

used to reason about the classifications and would include issues o f decision m aking and negotiation

betw een designers. T his inform ation would be used in the generation o f different design m ethodologies,

their analysis and comparison.

The process o f abstraction is used in both branches to m ove from one layer to the next. Clearly, the

abstraction could continue a d infinitum, generating innumerable layers. However, the kinds o f statem ents

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

59

captured by these layers would quickly become so abstract as to be entirely m eaningless. At this time,

the au thor believes that three o r four layers should be sufficient to capture all relevant inform ation. It is

also noted that this layered structure can be useful in the generation o f design taxonom ies by pm viding a

criterion for separating statem ents (i.e. information) based on the degree o f abstraction used.

6.2 Categorization of Design Aspects

In response to the lack o f formal term inology and taxonom y for design and design theory, the author

proposes a m echanism that can assist in the organization o f relevant notions and their corresponding

term s. T he m echanism proposed herein arose front the au tho r’s consideration o f m any aspects o f design,

only one o f w hich is m entioned here, by way o f an example.

K eirouz e t al [122] discuss the differences betw een variational and param etric m odeling from the point o f

view o f constraint satisfaction in conceptual design. T he current author considered how best to categorize

the cited work: it d id not belong strictly in any one o f the three areas m entioned (m odeling, constraint

theory and conceptual design) but seemed to relate to the three together.

T his k ind o f tightly interwoven dependency betw een various aspects o f design is indicative o f the high

degree o f com plexity required to accurately model it. C onsideration o f each o f the aspects alone is not

sufficient because a large part o f the com plexity arises from the relationships that exist betw een them . The

au thor therefore sought som e m echanism that could represent the various aspects o f design as individual

com ponents w hile also capturing the relationships that exist between them . T he m echanism is intended

prim arily as a conceptual tool, an aid to stim ulate clear thinking about a potentially confusing problem.

T he au th o r’s research suggested that in a real design process, there are a num ber o f different, fairly

independent aspects that interrelate. Due to the richness and com plexity o f these relationships, a m ulti­

dim ensional approach seem ed appropriate.

The au thor thus proposes the use o f a design space com posed o f orthogonal axes. Each axis represents

an independent aspect o f design. In this system , different relationships, approaches and techniques can

be classified and com pared. A particular relationship can be represented as a point, line o r region in the

design space. T he author has identified four orthogonal aspects o f design: artifact m odeling (the A-axis),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

60

behavioral m odeling (the B-axis), meta-m odeling (the M-axis), and model im plem entations (the I-ax is).

Each aspect is assigned to an axis in the space, each o f which is discussed briefly below. Figure 6.2

represents the lour dim ensions o f the design space as two three-dim ensional spaces sharing tw o axes, and

includes a shaded area representative o f the “locus" o f the work described in (122],

6.2.1 Artifact Modeling

The ultim ate goal o f a design process is the production o f an artifact o r product. T hus, one aspect o f

design is the ability to state in precise terms the nature o f the artifact, that is, the generation o f a m odel

o f the artifact itself. Inform ation from this model is eventually used in a num ber o f o ther areas (analysis,

m anufacturing, etc.).

For this reason, one axis in the design space is allocated for design artifact m odeling techniques, including

the physical aspects and the physical relationships between com ponents in the artifact. Variational and

param etric m odeling, as well as various solid m odeling techniques, would all be represented on this axis.

In Figure 6.2, artifact m odeling is represented by the A-axis.

It is interesting to consider the role o f constraints in artifact m odeling. Are constraints, vis-a-vis constraint

satisfaction, a necessary part o f artifact m odeling? O r are they essentially orthogonal to artifact m odeling?

There are ongoing efforts in the field to investigate “constraint-based design” from points o f v iew ranging

from knowledge-based system s [23,55] to alternate param eterization schem es [72 ,158] and constraint-

based design [67]. These efforts have all had at least som e success in em bedding constrain ts into o ther

design aspects. However, constraint theory is in the m ost pragm atic sense an analytic technique and not a

m odeling technique: it perm its the m athematical study o f the capability o f an artifact to prov ide a given

functionality [63] (this notion is discussed in m ore detail in the next Section). The au thor recognizes that

constraints can also be used to analyze and study m odeling techniques; but in such cases, the constraints

apply to the m odel, not to the artifact being m odeled, and so m ust be regarded separately. T h e design

space being discussed in this Section is meant to study design; hence, constraints are not involved in the

artifact m odeling axis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

61

c o n s tra in ts

co n cep tu a l
d esign

constraints

A B I-space

Figure 6.2: Graphical representation o f the 4D Design Space as tw o 3D spaces

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

variational

www.manaraa.com

62

6.2.2 Behavioral Modeling

Behavioral m odeling captures the other side o f the artifact m odeling coin. T his aspect o f design is con­

cerned with m odeling the response o f the artifact to stim uli provided to it from its operating environm ent.

C onstraint satisfaction is a prim ary technique with which to model system behavior. In m any cases, a

design problem begins with the specification o f som e objective function to be m et by a design. This

objective function is derived from issues concerning the environm ent w ithin w hich the design is to

function, and takes the form o f a constraint. O ther constraints, including those internal to the artifact

itself, arc usually derived in som e fashion from the objective function.

C onstraints permit the creation o f m athematical models o f artifact behavior. M athem atical m odeling o f

system s (e.g. finite clem ent o r kinem atic analysis) is therefore also included in this aspect o f design.

O ptim ization and sim ulation based o r the m athematical representation o f behavior are also included.

C onstraints capture the relationships between form and function, and also betw een the artifact and the

environm ent w ithin which the artifact is to function. They thus represent the link betw een an artifact’s

structural m odel, which is usually represented as being isolated from its environm ent, and the rest o f the

world in which it is intended to function.

A second axis o f the design space is used to represent behavioral m odeling, and is labelled the B-axis in

Figure 6.2.

6.2.3 Design Evolution, or Meta-Modeling

Such notions as conceptual design, detailed design, concurrent desi^,., etc. do no t relate directly to the

artifact itself, but rather to the system by which the artifact is produced. As discussed in S ection 5.1, such

notions exist at a different level o f abstraction than those o f artifact and behavior m odeling. By treating

r ‘o re abstract notions separately, we can elim inate a possible source o f self-reference in o u r fram ework.

C onceptual, detailed, strategic, and o ther “kinds" o f design are m ew -m odeling techniques that perm it the

study o f the m odels them selves, rather than o f the thing that is m odeled (the design artifact).

T hus, a third axis is needed to represent these meta- m odeling notions o f design theory. In Figure 6.2,

m cta-m odcling inform ation : s represented by the M-axis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

63

6.2.4 Implementations

In Section 4.3, we indicated that a distinct separation should exist betw een m odels o f designs and design

processes, and how we implement those m odels. It is appropriate then to propose a fourth axis in the

design space to represent the im plem entations o f the aspects o f design represented by the other axes.

C om puter im plem entations o f formal m odels is one com ponent o f this axis, but im plem entations need not

be dependent on the use o f com puters. W henever an idea, formalized o r not. is im plem ented in any way,

a num ber o f other issues that are implementation-specific - issues that arc not important at the m odeling

level - m ust be considered. All these im plem entation issues and the techniques we use to handle them

are represented along the fourth axis o f the design space. We have labelled the last axis as the l-ax is in

Figure 6.2.

Insofar as com puters are concerned, all issues regarding software design, testing and usage would be

represented on the im plem entation axis; these include m atters regarding databases, com puter languages,

graphics, etc.

6.2.5 The Example, Revisited

By w ay o f exam ple. Figure 6.2 show s the regions occupied by the work in [122], m entioned at the

beginn ing o f this Section. We m ay quantify the cited work as a volum e in the design space bounded by the

design aspects m arked o n the axes: param etric and variational m odeling, conceptual design, and constraint

satisfaction (also labelled in Figure 6.2); and since the work does not d iscuss issues o f im plem entation, it

appears as a tw o-dim ensional region in the ABI-space.

T he quantification that is possib le through the use o f the design space can perm it a new degree o f

organization in the work o f design researchers. Its graphical representation pem iits easy visualization o f the

re lationships that exist betw een different research efforts. It could be used to organize individual research

projects w ith in large groups and indicate regions where m ore work is needed o r where different projects

overlap. It m ay also find use in the organization o f engineering corporations and controlling/regulatory

bodies by clearly m arking the boundaries o f the areas o f influence o f each body. T he design space can even

be used to organize conferences and other m eetings by perm itting visual identification o f areas covered

by each presented work or representative group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

64

6.2.6 Relationship to the Layered Structure

There is a relaiionship between the layered structure in Figure 6.1 and the design space in Figure 6.2.

The layered structure separates degrees o f abstraction in design, whereas the design space separates

orthogonal aspects o f design. The A (artifact m odeling) and B (behavioral m odeling) axes o f the design

space represent the structural and functional branches o f the layered structure respectively. A lso, the M-axis

(m cla-m odcling) captures the increasing degree o f abstraction that occurs through the layered structure.

Since the layered structure docs not deal with im plem entation issues, there is no correspondence w ith the

I-ax is.

Therefore, both the layered structure and the design space capture the sam e basic philosophical notions,

albeit from different points o f view.

6.3 Summary

The author has suggested two possible solutions fo r addressing problem s in design and design theory

caused by logical inconsistency. The first is a logical layered structure that perm its the c lear distinction

o f different degrees o f abstraction (Section 6.1). Being able to classify statem ents m ade about design

according to their degree o f abstraction, we m ay better avoid circular and self-referential argum ents that

cannot be validated. In other words, it contributes to clearer thinking about design.

Secondly, the design space described in Section 6.2 pem iits the v isualization o f the relationships offered

by various approaches and techniques in design and design theory along four orthogonal (independent)

metrics: artifact m odeling, behavioral m odeling, m eta-m odeling, and m odel im plem entation. Again, the

principal goal is to clarify the relationships inherent in o u r understanding o f design so that we m ay study

and im prove that understanding.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 7

Discussion

T his Part o f the au tho r’s w ork has covered a fairly wide range o f topics, but the underlying philosophic

no tions are few and distinct. The goal o f this sum m ary is to consolidate the m atters presented above.

T he au thor has identified som e problem s in design and design theory that arise from the lack o f a formal base

upon w hich rigorous understanding can be developed. T he changing, grow ing nature o f design is in part

responsible for the lack o f accurate taxonom ies o f design com ponents, notions, m ethodologies, etc. The

fluid nature o f d esign ’s developm ent m akes finding a correct and m eaningful taxonom y quite like hitting

a m oving taiget. T he non-logical ad-hoc nature o f the evolution o f design is also to blam e. Its relatively

arbitrary developm ent has led to the introduction into com m on usage o f vaguely and /or inconsistently

defined concepts and term s. Ill-defined classification system s for design artifacts, com ponents, systems,

etc. have ham pered the generation o f appropriate tools with which design can be studied in an abstract

sense. Subjectivity introduced by considerations o f the d esigner’s role in design has introduced self-

reference, w hich in turn leads to inconsistent design theories. T hese shortcom ings have harm ed o ur ability

to com m unicate and have spawned incom patibilities betw een the various aspects o f design, leading to

so-called “ islands o f autom ation”. The inability to com m unicate properly has also affected our ability to

teach design, and thus perpetuates the inconsistencies.

E m pirical studies are unlikely to lead to a m ore scientific understanding o f design because the influence

o f self-reference w ithin such fram eworks cannot be dealt with. O f course, existing design theories and

m ethodologies can be valuable in guiding our search for a logical design theory, but we should not be

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

66

surprised when inconsistencies in our current understanding are found.

Self-reference can be m inim ized only by forming logical system s for design that do no t include the

subjective, cognitive functions o f the designer. Logic offers us m any techniques that can be used in this

regard. These techniques m ust be diligently applied throughout o u r efforts, m uch as they have been in

the form alization o f science.

T heories o f design can be regarded as being either functional o r structural in nature. Functional theories

describe artifacts from the point o f view o f the functions they provide and the actions needed to create

them . These seem m ost prone to self-reference because the actions can be traced to the cognitive functions

o f the designer. Structural approaches can result in formal theories w ithout self-reference; such theories

take the form o f prescriptive inform ative descriptions o f design artifacts at various degrees o f abstraction.

Som e m ay argue that the intensive use o f logic in design can stifle such intangible and qualitative things as

creativity, opinion, intuition and judgm ent. The author m aintains that this is not the case. L ogic does not

squelch creativity and intuition, but rather channels it, helping to keep the designer from m aking errors

that would adversely affect productivity and efficiency. It helps a person have m ore inform ed opinions

and m ake m ore educated judgm ents.

T hree informal, conceptual tools have been introduced. These tools are m eant to clarify and study the

postulated logical structure o f design. The notion o f design as an artificial science is presented to reconcile

the di fferenccs betw een the “natural” sciences and design theory, and to present a poin t o f v iew that perm its

design researchers to take advantage o f the formal tools o f logic m ore fully. The layered logical structure

presented in Section 6.1 perm its the m odularization o f design by degrees o f abstraction. It allow s fo r the

identification and subsequent e lim ination o f som e occurrences o f self-reference from design theory, and

m ay be useful in the generation o f design taxonom ies. Finally, the notion o f a design space perm its the

classification o f the various techniques available to designers, and assists in the organization o f the efforts

o f design researchers and theorists.

T he intention in this Part has been to introduce in a relatively inform al but detailed w ay the dom ain

o f the au th o r’s work. Having established this definitional fram ework, we m ay now proceed to detailed

considerations regarding the structuring o f design information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Part III

FORMALIZING DESIGN

INFORMATION

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 8

Introduction

This Part o f the au tho r’s work is devoted to an exam ination o f design inform ation w ith the aim o f

form alizing its structure. This is done by proposing a formal system that relies on axiom atic set theory for

internal consistency. T he author calls the resulting model the H ybrid M odel (HM) o f design information.

The origin o f the nam e “ Hybrid m odel" is in the au thor’s original research in com bining object-oriented

data m odels [159] w ith hypertext [160], hence the use o f “hybrid". Since then, H M has evolved into an

entirely different kind o f model.

In keeping w ith the observations m ade in Section 6.1 regarding the lim iting o f self-reference through the

use o f logical layers o f increasing abstraction, we will present HM in tw o Chapters. First, m atters relating

to actual design inform ation will be dealt w ith in C hapter 9; then, the organization o f that inform ation will

be dealt w ith in C hapter 10.

As well, it was indicated in Section 6.1 that a d istinct separation betw een structural and functional

descriptions o f design artifacts lends itself well to the control o f self-reference, an instinctively hum an

action w hich has been argued to be detrim ental to the developm ent o f rigorous design theories. T his im plies

a separation betw een design infom iation and processes that m anipulate o r otherw ise use that information.

It has already been suggested [7 ,161 ,162] that design inform ation can be considered separate from the

engineering design process.

Finally, the author contends that a good understanding o f design infom iation m ust precede any real

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

69

understanding o f the design process itself. T his issue will he discussed in Section S. I. and m otivates the

central thesis o f this work: the search for a formal theory o f design infomiation.

8.1 Modeling the Design Process

In this Section, the author presents a model o f the design process with the intention o f supporting the

hypothesis regarding the separation o f design infom iation and processes. It is presented only to the extent

that it p rovides a reference point for the developm ent o f HM, and brings to light several im portant aspects

o f the design process that have affected the developm ent o f HM. The model regards the design process

from a functional point o f view, and we refer to it sim ply as the functional m odel (not to be confused with

the functional branch in figure 6,1).

We begin by m aking the relatively trivial statem ent o f a generic m athematical function, namely:

y = / (*) •

Here, / is som e function that m aps an input value represented by the variable x to son ic output value

represented by the variable y ; indeed, y and f (x) arc identical. Now, from the point o f view o f design,

we rewrite this equation as:

.S' = d(P) .

P represents a design problem , S its solution and d the design process. We m ay state this in words as:

“There is a design process that operates on a particu lar design problem and results in a corresponding

design as a so lu tion” . T his is not an unreasonable statem ent to make, and though it m ay still appear

trivial, it does c a n y som e im portant implications:

Clearly, the so lu tion depends on the problem (the output is the dependent variable). A lso, as stated above,

5 and d (P) are identical.

From a purely m athem atical point o f view, one m ay be inclined to stop here. But there is m ore than one

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

70

way to design a certain entity. That is, given a particular design problem , there m ay be m ore than one

design process d that can provide equally acceptable solutions. Selection o f a design process depends at

least in part on the kinds o f infom iation about the problem that are available to the designer. (It would

also depend on optim ization considerations, as well as on the m ore subjective preferences and judgm ents

o f the designer.)

If the input is badly o r incorrectly defined or specified, then selection o f an appropriate so lu tion function

may be difficult o r im possible. That is, if the design problem is badly stated, o r is based on faulty vaguely

o r verbosely presented inform ation, then the selection o f a design process is prone to erro r (since, as is

indicated above, the design process is dependent on the problem), and thus reduces confidence in the

solution. Therefore, the problem m ust be clearly understood and precisely defined before a solution

process can be selected and applied.

There is another issue that is an essential component o f alm ost every non-trivial design task: iteration.

That is, a (possibly dynam ically changing) design process w ill be applied iteratively to a design problem

in o rder to reach a final solution. We can represent this in o u r m athem atical notation by:

Si+i = d{Si + P).

For each iteration i + 1, the design process d is applied to the problem p lus the solution, such as it exists,

at iteration i. Put another way, the solution at iteration i + 1 is based on both the problem an d the ith

solution. W ithout including the solution at iteration i in the argum ent to the design function, convergence

would never occur. So, at each iteration in a design cycle, the existing - though possib ly incom plete

and/or incorrect - solu tion is used to drive the next iteration o f the design cycle. T he essential observation

here is the "superposition” o f the problem with the ith solution: correspondingly, the problem and the

so lu tion m ust be representable in a com patible way o r the iteration process cannot proceed.

In sum m ary, the functional model provides two im portant insights into the requirem ents that m ust be m et

by a form al system for design information:

• a formal understanding o f design state inform ation is necessary before the design process can be

successfully form alized to any significant degree (i.e. design state inform ation is independent o f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

71

design process);

• the organization o f inform ation is relevant both for the problem definition and the solution, ;uid any

theory o f this infom iation m ust be unified over both problem and solution domains.

T his approach differs from that taken by other researchers. Suh [31] states design problem s in tenns o f

functional requirem ents to be m et by successful candidate designs, and solutions arc stated in tenns o f

param etric representations o f variables. Another approach is taken in by Yoshikawa |3 9 |, who defines two

separate spaces - a function space and an attribute space - and each o f the design problem and solution

are defined in term s o f one o f these spaces only. These approaches, am ong others, arc sim ilar in that both

consider a design artifact (as represented by S uh’s design param eters o r Yoshikawa's attribute space) as a

separate entity from the problem that caused it to be designed (the functional requirem ents o r space).

T h is dual representation o f design inform ation by functions on the one hand and param eters on the

o ther m akes unified representation o f design problem s and solutions m uch m ore difficult. As well, it

in troduces coupling betw een the form o f the representation o f infom iation and the design processes that

use th is inform ation. In its favor, such a separation o f the dom ains o f functional requirem ents and physical

param eters is beneficial from a conceptual point o f view, perm itting m odularization o f the task into sm aller

segm ents that can be studied individually. However, it can also lead to a divergence at the theoretic level

that w ill prevent final integration o f these dom ains into a single, global theory. Also, it docs not address

the dependence o f iteration on the successful com bination o f inform ation regarding both problem s and

partial solutions.

T he approach presented herein by the functional model is superior because it sim plifies the m anagem ent

and organization o f design as an endeavor. In an iterative process such as design, the cumulative

inform ation generated from the iteration is an essential com ponent o f finding a correct solution. In order

to m erge the accumulated inform ation with the design problem for the iteration to continue, a unified

representation o f both problem and solution m ust exist. T he functional m odel o f design m aintains the

in tegrity o f problem and solution specification while d ividing the problem along a different and more

im p o u an t boundary betw een static, passive inform ation and dynam ic, active functions that transform the

inform ation.

T h e au tho r also notes that a num ber o f other researchers have supported the notion o f separating rcp-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

72

rcscntation o f inform ation from processes affecting that information, including [1 4 ,4 1 ,4 2 ,8 7 ,1 6 3], Of

particular interest is Fauvcl’s work [41], which suggests that the relation

(A c t i v i t y (n) , E m b o d i m e n t (n)) — A c t i v i t y (n + 1)

is representative o f the design process. An A c t i v i t y (i) is som e com ponent process o f the overall

design process and an E m b o d i m e n t (i) is the physical m anifestation o f the result o f the com pletion o f

an activity. It is interesting to note the shift in point o f view between the au th o r’s m odel and that o f Fauvel.

The latter is based on the notion that given som e initial design activity, the results o f that activity drive the

selection and execution o f other activities. The form er is based on the notion that an initial em bodim ent

(in Fauvcl’s tcm ts) drives the selection and execution o f activities that lead to o ther em bodim ents.

The au thor m aintains the functional model as presented above because o f the observation that reliable,

accurate and usable infom iation m ust exist p rior to the selection o f any processes m eant to act on this

infom iation; Uiat is, the em phasis should be placed on information as the driving force behind a design

enterprise.

Fauvel reasons in detail on the role o f various kinds o f activities that are relevant to design, w ithout

dw elling on the nature o f the em bodim ents. His results are quite clean and elegant; th is encourages the

au thor to believe that the separation o f design inform ation from design actions is n o t on ly appropriate, but

necessary i f design theory is ever to m eet w ith success.

8.2 Basic Structures and Concepts

8.2.1 Basic Aim of HM

8.2.1.1 A Prescriptive, Axiomatic Approach

T he aim o f HM is to provide a prescriptive, axiom atic theory o f the inform ation present during the course

o f a design. Naturally, only infom iation relevant to a particular design task is considered, thus restricting

the application dom ain significantly. T his restriction plays an im portant role in the developm ent o f HM;

this is d iscussed below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

73

HM is prescriptive in that it prescribes a language for the specification o f infom iation for a design task.

The term is not used to prescribe m ethodologies that should be considered norm s (som etim es called a

norm ar/ve approach). G iven the role o f hum an cognition in design, the author believes that the best results

can be achieved by a sym biotic relationship between the designer’s innate capabilities (including such

intangibles as judgm ent, creativity and intuition) and som e more formal logical system.

The term prescriptive is used to indicate that HM is a system that lies outside the actual thought processes

o f the designer, that is, it lies w ithin an objective, logical dom ain. The author considers this a more

reasonable objective than that o f the descriptive school [111. which seeks to quantify ;uid formalize the

actual cognitive functions (i.e. mental content and processes) o f the designer.

HM is axiom atic in that it relies on axiom atic set theory as its foundation. The au th o r’s initial attempts

sought a form alization based on existing infom iation m anagem ent paradigm s (object orientation and

hypertext in particular), but the lack o f existing form alization in these fields was found to be insurm ount­

able. O bject orientation is often referred to more as a philosophy or point o f view than tui actual i'omial

paradigm [27,164]; the status o f hypertext is even m ore tenuous [143,1601. It becam e necessary to return

to m ore basic first principles, and it was during the au th o r’s study o f sym bolic logic that axiom atic set

theory presented the necessary isom orphism s upon which to base HM.

A xiom atic se t theory has taken on various form s [1 ,16 ,153], but every form is based on the classical

theory developed by Z erm elo and Fraenke! [80] and which is generally referred to as Z F set theory, o r just

ZF. T his convention is adopted in the sequel, for brevity’s sake. ZF requires only the predicate calculus

and is thus derived purely from logic, w ithout any extra-logical o r other em pirical influences.

ZF deals w ith groups o f com pletely general entities; a group o f entities is called a set. T he theory

form alizes the nature o f sets to such a degree as to perm it the derivation o f alm ost ail the classical

branches o f m athem atics and logic, including arithm etic, algebra and calculus [153]. T he m ost interesting

im plication o f set theory as far as the author is concerned regards consistency o f theories that arc supersets

o f classical axiom atic set theory. In [80], it is proved that any axiom system that can be rewritten in terms

o f Z F w ithout introducing any new atomic statem ents, quantifiers o r connectives, is consistent (insofar as

Z F is consistent). In ZF, the prim itives are = and 6; connectives are binary operators such as n and u;

and the quantifiers are V and 3. As will be seen, this consistency criterion is satisfied by HM . T his m eans

that we know at once that HM is no less consistent than ZF.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

74

8.2.1.2 U niverse o f D iscourse and Design E ntities

The term universe o f discourse denotes the overall dom ain w ithin which all interesting argum ents are

made. The entities contained within the universe o f discourse com prise a com plete vocabulary.

In this work, the universe o f discourse is that o f design inform ation ; that is, the specification o f -

o r statem ent o f facts about - a design problem and the various com ponents and aspects o f its solution,

without consideration to any processes required to generate that solution. W ithin th is universe o f discourse,

the entities o f relevance arc whatever design entities are available to the designer in order that he/she may

fulfill the task at hand. T his greatly restricts the space o f possible entities (as com pared to . for exam ple,

ZF, where any item at all may be considered to fall w ithin the universe o f discourse). It is exactly because

o f the specific nature o f the entities involved that m uch m ore can be said about them than is norm ally

possible (as, again fo r exam ple, in ZF). The notion o f a restricted universe o f d iscourse is essen tia l in

order to he able to derive H M at all.

The author inform ally defines a design entity in HM as som e real-world structure that is m eaningful from

a design point o f view. T his unit need not be physically realizable p e r se: it can be a purely conceptual

item , such as a run o f a finite elem ent program o r a m anufacturing process plan. It can a lso be a fea ture,

in that threads, holes, fillets, etc. are also design entities. HM deais, then, w ith the form alization o f design

entities. In the Sections follow ing, the exact form alization is stated and discussed.

8.2.2 Theory of Logical Types and Set Theory

In ZF, if a universe o f discourse consisting o f all the possible sets is considered, it is very easy to generate

a num ber o f paradoxes that cause the theory to become inconsistent [80 ,153]. A num ber o f schem es

have been suggested over the years to avoid these paradoxes. Two o f the classical approaches are the

type-theoretic approach, and the approach o f class-inclusion.

C lass inclusion assum es a universe o f discourse containing both sets and “classes”, the latter being

collections o f sets (not sets o f sets). The resulting theories are quite powerful, but tend to hide som e o f

the features o f set theory that the author considers im portant for design. T he type-theoretic approach, on

the o ther hand, tends to be more explicit, but m ore com plicated to m anage as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

75

In a type-theoretic set theory, logical paradoxes arc avoided by restricting the kinds o f individuals that

can ex ist in various sets. At the lowest level in the typc-thcorctic approach exist the individuals in the

universe o f d iscourse and the attributes that can be predicated on them (i.e. acted on by functions). At

the next higher level exist sets (collections o f individuals) and the attributes that c;ui act on these sets ;utd

on individuals. At the 3rd level exist sets o f sets and the attributes that arc prcdicablc on sets o f sets and

entities at low er levels; and so forth. There arc an infinite num ber o f levels.

Furtherm ore, equations in a type-theoretic system cannot mix predicates from different levels ad-hoc, but

only according to the follow ing rules:

x ' = <j (8.1)

x 1' 6 y i+l (8.2)

w here i represents the level o f an entity. T he first rule states that entities that are equal m ust exist at the

sam e logical level; i.e. they m ust be, for exam ple, both sets, o r both sets o f sets. T he second rule states

that i f one item (x) is a m em ber o f another (y), then the form er m ust be one logical level low er than the

latter. T hus, if we consider that (a) x is a set, and (b) that x g y, then the rules o f type theory tell us that

y m ust belong to the level containing sets o f sets (since x is itself a set).

T he problem w ith the type-theoretic approach is that the bookkeeping required to d istinguish betw een the

various levels com plicates the notation. Fraenkel’s solution is to add an axiom (the axiom o f replacem ent)

that em beds the concept o f logical types, leaving the axiom which defines sets (the axiom o f separation)

untouched. Z erm elo ’s (and Suppes’) solution em beds the concept o f logical types into the axiom o f

separation. O f all the choices, the author prefers Zerm elo’s for the follow ing reasons. Firstly, it em beds

all necessary inform ation w ithout unnecessary additions to the num ber o f axiom s or to the notation.

Secondly, in the universe o f discourse o f design information, as will be seen, only a very few levels o f

logical types are needed, and distinguishing between theirelem ents is relatively easy; it seem s unnecessary

to include all o f the theory o f logical types, which is, after all, intended to distinguish betw een entities

that w ould be difficult to differentiate otherwise. Thirdly, and m ost im portantly from o ur point o f view,

the Zerm elo solution, flows quite naturally from design considerations and is a natural form o f expression

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

76

o f types o f inform ation relevant to design.

8.2.3 Fundamental Structures and Isomorphisms

The fundam ental logical structure in HM is an object. An object captures a unit o f inform ation that is

m eaningful to a designer. Thus, an object is the formal representation in H M o f the inform al notion o f a

design entity. Sets will be used to represent objects. The fimdam ental isom orphism o f HM , then, is that a

design entity corresponds to an object (or set). The isom orphism is not part o f HM itse lf (o r Z F for that

m atter), but is an extralogical relationship discerned by the author betw een design and form al logic, and

w hich g ives m eaning to the form al system (HM) from the point o f view o f design.

A bolt, a truss, an airplane, a hole and a run o f a finite elem ent program w ould all be represented by

objects. O bjects m ay “contain” other objects (this is discussed below). T he entity represented by an

object need not be physically realizable (for exam ple, a hole o r a fillet), thus it includes fea tu re s [42,53].

O bjects m ay represent m achining and o ther m anufacturing processes.

T he use o f objects is im portant because it perm its encapsulation o f inform ation, i.e., the discretization

o f a quantity o f inform ation into m eaningful structures that can be treated as single units. Encapsulation

leads to the construction o f ordered collections o f inform ation. T his can greatly sim plify m anipulation

o f the inform ation. For exam ple, the alphabet is a structure containing the ordered sequence o f written

expressions o f the phonem es that com pose the English language. Sim ilarly, a screw is an ordered collection

o f inform ation that m odels a device used in the real world as a k ind o f fastener.

Let the set o f all objects be denoted by 0 , and let X , Y , Z be m em bers o f th is set (i.e. individual objects).

A xiom I (U n ifo rm ity o f S tru c tu re) A ll design entities are represented b y objects.

A xiom 2 (U n iqueness o f O b jec t Iden tifiers) A unique object has a unique identifier.

A lthough the relevance o f axiom 2 m ay seem at first glance to be triv ial, there is also a m ore basic,

philosophical concern. We m ust be able to identify any design entity if w e are to use it. T he process o f

identification is essential in distinguishing betw een entities in the universe o f discourse. T he m anifestation

o f the process o f identification is the attachm ent o f an identifier to an entity. Since objects m odel design

entities directly, we m ust also be able to identify objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

77

At a m ore practical level, an object is a conceptual tool that perm its us to abstract, infer, ;uid deduce

inform ation about design entities, and to classify them by their conceptual definitions.

One o f the principal concerns in any theory o f information is that o f ordering or organizing the infomiation.

T hat is, the definition o f relationships between entities is o f prim ary im portance. It is a m eans o f making

explicit inform ation that would be otherw ise only implicit w ithin a collection o f data. In HM, this is done

w ith relations and fun c tio n s as defined in ZF.

A relation is a statem ent that defines a relationship betw een entities. G iven a collection o f sets

(A , B , C , . . .) , a relation R applied to the collection yields a set o f ordered sequences {«, 6 , < •,...) such

that a € A, 6 S B and so on. The ordered sequence is often used as a representative notation for the

relation itself. T hat is, (x , y) (where x € A and y e B) represents all ordered pairs arising from the

application o f som e relation R on two sets A and B.

A function is defined the sam e as a relation, with the added restriction that the relation R can m ap a single

value o f x e A to exactly one m em ber o f y e B. Functions are often written f : X — Y and arc read " /

is a function that m aps the m em bers o f set A' to the m em bers o f set Y " [80].

It is noted that functions and relations as defined w ithin Z F provide the formal grounds not only for

m athem atical functions and relations as they are understood outside the field, but also for relations

in relational databases, m ethods in object oriented system s, procedures and routines in conventional

program m ing languages and links in hypertext. They are also essential to the developm ent o f data

m odeling languages such as “ Z” [165] and EXPRESS, w hich is the base language for the PD ES/STEP1

project.

Functions and relations are used to o rder m em bers o f sets, and their form alization is a key part o f the

au th o r’s work. T his further extends the isom orphism betw een set theory and design inform ation. HM

currently supports five ordering m echanism s for design inform ation based on functions and relations.

T hey are d iscussed in C hapter 10.

1PDES is the American Product Description Exchange Standard project; STEP (Standard for the Exchange o f Product Model
Data) is its European equivalent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

78

8.3 Summary

T his C hapter has introduced the fundamentals upon which HM is constructed. An exam ination o f the

design process (Section 8.1) indicates that the separate treatment o f design inform ation and the processes

that act on that inform ation is possible and desirable. Furthermore, an understanding o f relevant design

inform ation is a necessary prerequisite before an analysis o f the design process itse lf can be attempted.

Conceptual notions o f logic, particularly than o f logical types from set theory, are introduced as relevant

building blocks from which HM is developed. The fundamental structures and isom orphism s o f HM

arc introduced. In particular, the notions o f a design entity and an object are introduced as the atomic

inform ation units from which design m odels are constructed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 9

The Structure of Objects

9.1 Introduction

In this C hapter the nature o f individual objects and their internal structure is explored and defined. The

treatm ent is analogous to the basic definitions o f sets in ZF. Only a few new term s and special sets are

introduced to m ake the resulting theory specific to engineering design. T his too is acceptable from a set

theoretic po in t o f view. No new prim itives, quantifiers o r connectives are introduced, thus m aintaining

logical validity. T he special sets - A, D, 0 and R - are needed only to distinguish betw een the various

base entities in HM , they will be defined as they are introduced in the text.

9.2 Definition of Objects

A design entity is defined by its observable, o r otherw ise known, attributes. A ttributes define the structure

of, and function provided by, the entity. For exam ple, a tree is defined by its shape, size, strength o f the

w ood, etc. In fact, the concept “tree” is really nothing bu t a label attached to a set o f observed attributes

that are shared by all trees [131,166]. A ttributes are im portant in design because they m odel identically

the properties o f entities in the real world (as opposed to the perceived, conceptual o r o ther worlds).

L et the se t o f all attributes be denoted by A, and let a, 6, c denote m em bers o f that set.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

80

D efinition 1 (D efinition o f an O b ject by its S tru c tu re) An object is a set o f unique, identifiable, m ea­

surable attributes.

T he set o f all attributes A can be regarded as the set o f all design variables (like S uh’s design param eters

[31]). Objects m ay then be seen as a natural form o f grouping and treating these param eters.

A unique design entity is one whose attributes differ in som e way from the attributes o f all o ther design

entities. If tw o attributes (from tw o different design entities) are the sam e, then any operation that can

be perform ed on the attributes will yield the sam e results. Since a design entity is a se t o f a ttributes, an

operation applied to a design entity will yield unique results only i f there is at least one attribute w ith

a unique value in that entity. Therefore, design entities m ay be equated by exam ining the results o f the

application o f operations to them , rather than exam ining their internal structure directly. Since objects in

HM m odel design entities, we have the follow ing axiom:

A xiom 3 (Id en tity o f O b jects) I f the sets o f a ll attributes o f any tw o objects have identical m em bers,

a n d i f corresponding a ttributes in each object have equal values, then the tw o objects are identical.

V (A) [(X e O) => (S E T (A)) . (V(a) [(a 6 X) => (a 6 A)])] . (9 .1)

Since A is the se t o f a ll a ttributes, we can also write this as:

V(A') [(A € O) => (X C A)] • (9 .2)

V (A) [V (y) [(A = Y) = M P) i P (X) = P (K)))]J (9 .3)

where P is any unary predicate.

We note that axiom 3 is the sam e as the Axiom o f Extensionality in Z F [80], i.e.:

(.A = B) = d} V (x)((* € A) = (x e B))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

SI

but is derived from design considerations rather than purely m athematical considerations.

9.3 Views of Objects

A num ber o f properties o f objects are very important front the point o f view o f design; these properties

reinforce the isom orphism between set theory and design infom iation. In this Section and those to follow,

these properties will be introduced and examined.

T he first property is term ed relevance by the author, and it is m anifested as views o f objects.

One o f the m ost useful innate hum an intellectual abilities is to m ask out certain aspects o f an object

in favor o f other aspects o f the object that are o f importance to us. For exam ple, a person could very

easily sort a collection o f books by their size, though, if asked shortly thereafter, be com pletely unable to

describe the colors o f the books’ covers. Being able to selectively ignore o r recognize inform ation lets us

isolate and focus o u r attention only on areas o f interest. The im portance o f filtering inform ation in design

environm ents has been recognized in the literature [17,31].

A view o f an object partitions its attributes, m aking only som e visible and m anipulablc. Views do not affect

the ob ject itself, but establish a projection o f the object wherein only certain attributes are accessible. A

view partitions the attributes o f an object according to criteria explicit in the view itself. A fter partitioning,

the rem aining attributes form a subset o f the attributes o f the object being view ed, that is, a view object.

An attribute m ay be act’ ve in a num ber o f view s but need not be active in all views.

E pistem ologicaJ’.y, we can also m ake the follow ing aigum ent to support this approach.

A n “ ideal” object is or.e that m odels a design entity in every detail, property, behavior, etc. Such a detailed

m odel o f reality is unlikely to be possible to construct, yet we can im agine it from a theoretical standpoint.

In fact, w e can likely not even form such a m odel mentally, but we can im agine that such m odels m ight

exist. From a design point o f view, not only is it likely im possible to construct such ideal m odels, but it

is also unw arranted. In design, we are specifically concerned w ith only subsets o f all the attributes o f a

design entity. T hus, the logical notion o f a view perm its us to project an ideal m odel o f a design entity

onto a relevant design m odel o f that entity.

We see, then, that the isom orphism betw een set theory and design form s a connection that extends from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

82

the very notion o f existence to a specifiable formal model o f existence.

If we consider a particular object to be a “com plete” model o f some design entity, then any proper subset

o f the m em bers o f the object can be considered a specific view o f the object w ith respect to the selected

m em bers.

Using the definition o f subsets in [80], we can write in the notation o f HM:

V(.Y)(V(K) [(A’ C Y) = d/ V(x) [(* 6 X) => (x € V)]]).

If (A' c Y) but (A ' ^ K), the subset is a proper subset. The n u m b ero f possible view s o f an object is the

cardinality o f the pow er set V (X) o f the ob ject1.

M any o f these view s would be trivially unim portant to a designer. But there is no w ay to define a-priori

only the view s that are relevant. Yet, we can restrict our definition o f a view in a m anner sim ilar to the

way that the definition o f a subset is restricted in ZF. This kind o f restriction also happily prevents certain

k inds o f logical paradoxes that would render the theory as a whole invalid.

We begin w ith w hat is generally called the Axiom o f Separation.

3 (5) [V (x)((x 6 5) = ((x € A) • ¥>(*)))]

where there are no free occurrences o f 5 in 9 . T his says that for any set A , and any propositional function

(i.e. predicate) 9 . there is a set 5 that is a subset o f A and that contains only m em bers o f A that satisfy <p.

W hen we say that there can be no free occurrences o f 5 in ip, we m ean only that <p m ust no t contain

occurrences o f 3 (5) o r V (5) since this would im ply that 5 is defined in term s o f itse lf and w ould lead

to paradoxes. T his is not a real problem in HM itself, because it would be m eaningless to define a view

with respect to itself, so a designer would likely never attem pt it. However, it is enforced in HM for

com pleteness and consistency.

We refer to the Axiom o f Separation as an axiom -schem a because the sym bol p represents a group o f

'T he power set is a well-defined entity in classical set theory [80]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

S3

predicates. We m ay write the set o f all predicates y? as <t>. The equation above therefore actually represents

a group o f axiom s, each having a different predicate substituted for y> 6 <l>. In Section X.2.1.2, it was

explained that the restricted nature o f the universe o f discourse o f HM lets us investigate the nature o f

entities w ithin that universe m uch more closely than is possible in ZF. Here is one exam ple o f the degree

o f detail that is possible: in ZF, little can be said about the actual predicates that can be substituted for yr

in the Axiom o f Separation: but, as we shall sec h low, in HM we can investigate a num ber o f important

groups o f predicates that apply to design. Views arc the lirst such case.

We interpret the A xiom c f Separation for HM view s as follows: For an object X tmd any predicate <p.

there is another object Y whose set o f attributes is a subset o f the attributes o f .V, all the m em bers o f

which satisfy <p.

T he A xiom o f Separation is an axiom schema, in HM the axiom o f views is in fact a subset o f that o f the

A xiom o f Separation. It can be written as follows:

A xiom 4 (A xiom (Schem a) o f Views)

3 (F) [V (a)((a e Y) = [(a 6 X) . 7 (a)])] (9 .4)

where 7 contains no fre e occurrences o f Y .

7 is a new sym bol, and is used to represent a subset o f all possible predicates that satisfy the Axiom

o f Separation. In particular, 7 represents a predicate that “defines" a view; different 7 predicates will

produce different view s. 7 , then, is the criterion by which a specific view is defined. These criteria

are attribute-specific. For exam ple, if 7 were such that only attributes that m odeled spatial dim ensions

satisfied it, the resulting view o f an object would be its 3D geom etric representation.

Let the se t o f all v iew s be denoted by T, and let 7 be a m em ber o f that set.

The no tion o f a view being a subset o f an object is captured by the follow ing definition.

D efin ition 2 (V iews) V IE W () is a binary fu n ction whose param eters are an object a n d a view criterion

specification, and whose result is another object called a v iew object whose a ttributes are a subset o f the

attribu tes o f the input object selected according to the given criterion.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

84

V(X) [V(7)(3(Y) [(Y = VIEW (X , 7)) • (Y C A ')])] . (9.5)

Wc can write this in a functional notation as

VIEW : 0 - V (0) .

Objects that are the sam e in every regard are identical. T h is applies to view objects as w ell. However,

this notion also suggests a relationship between the objects from which the view s were generated. I f there

exists a view object that can be derived from two non-identical objects through the use o f a single view

criterion 7 , then we define the two non-identical objects as being sim ilar objects.

T he inclusion o f sim ilar objects in HM is m otivated by the observation that for m any design tasks, only

a certain view o f an object is sufficient to perm it com pletion o f the task. Since view s are projections o f

objects, it becom es im portant to be able to m ake statem ents about the objects that g ive rise to such view

objects.

Theorem 1 (Similarity o f Objects) Two objects are sim ilar i f the application o f a given view criterion 7

to the objects produces identical view objects.

V(.Y) [V(7) [V (1')((A ' ~ Y) = (VIEW (JY,7) = V E W (y ,7)))]] . (9.6)

T he sym bol ~ is used to denote sim ilarity o f objects.

The au thor's m otivation to have view s o f design inform ationis five-fold. First, we have the epistem ological

argum ent presented earlier. Secona. completeness requires that HM extend to cover the entire universe

o f discourse; and in a design environm ent, the universe o f d iscourse includes view s as relevant design

entities. Third, from the standpoint o f conciseness, view s perm it a structure to exist in the sim plest form

that m aintains its sem antics. Fourth, from an organizational standpoint, view s perm it inform ation to be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

85

ordered by its relevance to a task. Fifth, and lastly, views im plem ent infom iation hiding, which is desirable

practically for a num ber o f reasons. The designer will have a sim pler task if only relevant infom iation

is visible. Infom iation selected by view can be presented to the user in a m ore understandable fomi.

Superfluous inform ation can be excluded to increase efficiency and robustness. More practically, views

can provide uniform interfaces to parts o. database even though the internal structure o f the objects in

the database m ay change.

Views are an especially powerful tool when defined as com ponents o f attributes. For exam ple, an attribute

occurring in tw o different view s m ay indicate coupling between the views. Alternatively, the sets o f views

o f tw o objects can be intersected, whereupon the cardinality o f the intersection set can be used to measure

functional o r o ther coupling. Similarly, sm all sets o f views can be used in order to study how different

types o f attributes affect the coupling o f two objects.

9.4 Domains and Ranges of Attributes

9.4.1 Set Theoretic Foundations

T he second im portant property o f objects has to do with the structure o f the attributes that com pose them.

Here, we introduce the necessary set theoretic background to form alize object attributes in HM. We begin

by considering the formal definition o f a relation on sets.

V (s) [(x € R) => (3 (u) [3 (v) (x = (u , «))])]

w here x is an ordered pair, u £ U and v £ V (U and V are sets) and II is a relation.

T h is is the definition o f the cartesian product U x V = R . The dom ain and range o f II are given by:

dom (A) =dj {z : 3 (y) ({ x , y) £ R) }

ran(U) =«/; {y : 3 (x) { (x , y) £ R) } .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

86

Lei D be the set o f all possible attribute dom ains and R be the set o f all possible attribute ranges. We may

now write:

A = D x R (9 .7)

and dom (A) = D and ran(A) = R. Also, because o f definition 1, we can w rite for an object X :

<i om(X) C D (9.8)

ra n (X) C R . (9.9)

9.4.2 Domains and Ranges in HM

An attribute representing a property o r b eh av io ro f a design entity is specified by tw o pieces o f inform ation.

First, the concept that typifies the attribute is needed: its domain. In the m ost general sense, dom ains

o f attributes can include integers, real num bers, text, arrays, etc. The dom ains o f attributes relevant to

engineering design are discussed below. Second, a specification o f how the property is exhibited by a

particular entity is required. The set o f possible values that an attribute can have is called the range o f the

attribute.

D efinition 3 (D o m ain o f A ttrib u te s) The dom ain o f an attribute is the abstracted, observable, quantifi­

ab le property o f a design entity that the attribute represents. The dom ain o f an attribute includes an

associated d im ensional unit.

D efinition 4 (R ange o f A ttrib u te s) The range o f an attribute is the set o f a ll values that are m eaningful

within the dom ain o f the attribute, and any one o f which m ay be the actual value w ithin an arbitrary object

containing that attribute. The se t o f values can be discrete or continuous, single-valued or multiple-valued.

T he d im ensional units m entioned in these definitions are discussed below.

Let D be restricted to the set o f all attribute dom ains in HM only, and let R be the set o f all attribute ranges

in HM only.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

87

D efin ition 5 (A ttrib u te s) Attributes are ordered pa irs (d , r) where d € D and r 6 R, a nd the set o f all

attr ibu tes is the cartesian product D x R.

The definition o f the cartesian product and its relationship to ordered pairs is defined w ithin ZF. We use

Z F here to provide a form al definition o f attributes.

T h eo rem 2 (Id en tity o f A ttrib u tes) Two attributes are identical i f their dom ains are identical and their

ranges are equal.

9.5 Dimensions of Measurement

There is an im portant observation that m ust be m ade at this point regarding attributes for engineering

design. To be m eaningful, attributes m ust not only be observable; they m ust also be m easurable If an

attribute is n o t m easurable, its value cannot be compared to o ther values o r used in com putation, and would

hence be com paratively m eaningless. Therefore, the dom ains o f attributes m ust include dim ensions o f

m easurem ent against w hich the attribute can be compared. T h is is another im portant property o f objects

in HM .

In o rder to satisfy the condition o f m easurability o f attributes given above, the au thor has defined the

m em bers o f the set o f attribute dom ains D to contain dim ensional properties. T he m em bers o f D in

H M are: length, m ass, tim e, cost, quantity (o r enum eration), NDU (non-dim ensional units, for ratios,

etc.) o r any com bination o f these (e.g. velocity, energy, and so on). A lthough only length, m ass and

tim e are com m only considered, the author has elected to add other d im ensions because o f their relative

im portance in engineering environm ents. T his approach is far m ore powerful than schem es that only

represent num eric quantities because it is a natural form o f expression that is physically meaningful,

and because it captures all the necessary sem antics o f dim ensional standards at the axiom atic level. For

exam ple, correct dim ensional analysis becom es an inherent property o f HM. D im ensional information

has a lso been found to be o f great assistance in dealing with spatial constraints [167 J.

T he m em bers o f R, the set o f ranges, in HM are: integers (I) , real num bers (7Z), boolean values (3) and

text (7 1 . T he author is undecided as to w hether com plex num bers should also be included as possible

Reproduced with permission o f th e copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

range values: though they are o f use in m any design m ethodologies (particularly in the area o f analysis),

they can also be considered as com posites made up o f two real num bers.

T he author believes this approach to be superior because it is a very natural form o f expression that

is physically m eaningful, and it captures all the necessary sem antics o f dim ensional standards at the

axiom atic level.

9.6 Constraints and Attributes

Constraints are the principal driving force o f the engineering design process. T hey are m anifested as

relationships betw een inform ation regarding design entities. Insofar as constraints are vital to design

inform ation specification, they m ust be represented by HM.

A s w ith view s (Section 9.3), constraints operate at the attribute level w ithin HM . B oth attribute dom ains

and ranges m ay be constrained. A ttribute dom ains m ay be constrained to be o f specific types (e.g. m odular

assem bly com ponents m ight have a constrained kind o f shape o r m aterial), and attribute values m ay be

constrained to be constant-valued, single-valued o r m ultiple-valued, continuous o r discontinuous, and so

on.

T he issue o f constraints in design is far m ore com plex than m ay be im plied here. In general, the co ru u tfn t

satisfaction problem is characterized as NP-com plete [55-57], w hich m eans the tim e required to solve the

problem varies exponentially w ith the size o f the problem . F or even sm all design problem s, the required

com putation can be intractable. However, the process o f constraint satisfaction is a com ponent o f the

design process itself, and therefore falls outside the bounds o f the im m ediate concent o f the au thor in

this work. W hile th is sim plifies o u r task, we recognize that m ore w ork is needed before HM can support

constraints appropriately. However, it should be clear that the specification o f constraints, in the form o f

functions and relations that define subsets o f attributes and objects, is inherent to HM .

It is noted that the set D x R (discussed above) contains attributes that are m eaningless in a design

environm ent. For exam ple, an attribute with the dom ain o f quantity cannot have a range w ith in the set o f

real num bers. Clearly, som e constraints will be necessary ju s t to keep a m odel consistent w ith respect to

attribute definition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

89

9.7 Summary

In th is Chapter, the basic structure o f individual objects and their internal structure has been presented

formally. A n object m odels a design entity, and is defined as a set the m em bers o f which arc attributes.

Each a ttribute has a dom ain, a range, and an associated dim ension o f m easurem ent. A view o f an object

is a subset com posed o f attributes o f the object that satisfy som e predicate. Views permit the isolation o f

relevant attributes based on externally supplied criteria. Various p-.niiitivc relationships between objects

(e.g. identity, sim ilarity) are also form ailized. Three which issues rem ain for which further research

is indicated. First, the iole o f view s has been identified as key to a num ber o f application dom ains,

especially that o f database design for engineering environm ents [94,168,1691; a detailed study o f views

could be h ighly beneficial to such efforts. Second, the unique approach taken w ith rcgaids to dim ensions

o f m easurem ent should be investigated m ore hilly. Third, the pivotal role played by constraints in the

design endeavor m akes their further study relevant and important.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 10

Ordering Mechanisms for Design

Information

10.1 Introduction

In th is Chapter, the author identifies various ordering schem es (abstraction m echanism s) that can be

im posed on engineering infom iation to m ake sem antic content explicit. T hese m echanism s are derived

from considerations o f the types o f infom iation available to a designer and are defined w ithin a se t theoretic

fram ew ork (i.e. HM). T hey represent prim itive ontological notions based on how designers regard the

universe. T hese notions cover the classification o f design entities according to various criteria; though

extralogical in and o f them selves, these notions are well founded in em pirical research in philosophy,

psychology, and artificial intelligence [28,131,166].

T he m atter dealt w ith in this and the following Sections occupies a higher level o f abstraction than the

m atte r o f C hapter 9: we discuss statem ents about collections o f objects, rather than ju s t individual objects.

These collections are (classical) sets o f objects, and they obey all the notions and axiom s o f Z F set theory.

O bjects are organized by establishing relationships betw een them . T he kinds o f re lationships are inde­

pendent o f the objects that take part. Consider, for exam ple, X = f (Y) , where X and Y are objects. The

function / m ay be applied to m any objects, and yield m any objects. It thus defines sets o f objects C\ and

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

91

Cj such that X € 6 ', and Y € Cj . The organization o f objects, then, proceeds by defining the relations

that in turn deline sets o f objects.

We recognize now that the set 0 . the set o f all objects, is one o f these collections. T he relationship

between the m em bers o f this set is that every m em ber is an object. S im ilar argum ents m ay be m ade for

each o f ihc sets introduced in C hapter 9.

10.2 Types of Objects

One o f the m ost natural and useful abstraction m echanism s for ordering (or classifying) entities is by

structural (as opposed to behavioral) sim ilarities o f the entities. Som etim es called “classification" o r

“typ ing”, this m echanism is also a basis o f hum an cognitive function in general. O rdering schem es o f this

type are only partial because m any such schemes m ay be im posed on the sam e collection o f entities, each

yielding a differently ordered collection. The hum an m ind thinks about en tities so grouped by thinking

about an abstracted (or generalized) entity that captures only that w hich is com m on to the m em bers o f the

collection and leaving indeterm inate (or at least variable) o ther aspects o f the m em bers o f the collection.

In HM , the generalized, conceptual entity m eant to represent a partially ordered collection o f design

entities is called a type. T he partial orders that types impose on collections o f entities define relationships

shared by the m em bers o f the collections, thus m aking infom iation regarding the m em bers explicit. Since

objects in HM model real world entities, and since objects are defined in term s o f attributes, types in HM

m ust model relationships betw een objects by m odeling relationships betw een attributes o f objects.

T he d istinction betw een a type and the collection o f objects that the type m odels m ust be kep t clear. A

collection o f partially ordered objects is, essentially, a set o f sets, and hence exists at a d ifferent degree o f

abstraction (or logical level) than do objects. A type, on the other hand, m odels a collection o f objects, and

therefore exists at the sam e logical level as do objects. T his distinction becom es crucial i f we are to insure

that HM is consistent. The notion o f logical levels descends from R ussell’s T heory o f Logical Types [153]

and is a generalized m echanism to distinguish between sets, based on the degree o f abstraction required

to create the sets. The A xiom -Schem a o f Separation, as it is used in [1 ,80 ,15 3] and by the author, im plies

this sam e d istinction betw een logical levels. Thus, Z F supports the d istinction o f logical levels according

to R ussell’s theory. The distinction is also im portant to HM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

92

T he key to providing a consistent theory o f design inform ation lies w ith the Axiom o f Separation, which

we have already seen in Section 9.3. Again, our approach is to interpret the Axiom o f Separation in tenns

o f design considerations and eventually draw forth a group o f predicates that can he substituted for in

the Axiom w hich has m eaning from a design standpoint.

F o r a g iven object, we m ight expect predicates such as "This entity has a threaded sha ft" o r “This entity is

m ade o f cold-rolled steel’’. For a type collection, we might expect predicates such as “This entity is a holt”

o r “This entity occupies space and is m ade o f metal". In considering type collections, we disregard ;uty

predicates that depend on the values o f attributes o f objects; i.e. we know at once that a predicate such as

“This entity is 3 .5 centimeters long p lu s or m inus 1 m illim eter" applies to an object, while a predicate such

as “This entity has a dimension that we call its length" is clearly a predicate on a type. T he distinction

is that the form er is a predicate on a design entity and the latter is a predicate on an abstract entity that

generalizes som e aspect o f the former. A lso, the form er m entions an attribute dom ain (length) and a range

value (3.5 centim eters . . .) while the latter m entions only a domain.

In o th er words, the process o f generalization o f attributes involves neglecting the values o f the attributes

and dealing on ly with their dom ains. T hat is, attributes that are predicable on type collections are not

predicable on design entities o r the objects that model them , but on generaliza tions o f the design entities.

In a m ore practical sense, we m ay state this as follows:

In H M , objects are typed (or classified) by their structure: sim ilarities in structure arc expressed by

sim ilarities in the dom ains o f the attributes o f objects. A ttributes o f objects are quantitative m easures and

represent in H M only those quantitative aspects o f design entities.

T h e criterion used to define a collection o f objects is based on attribute dom ains. An object is included

in the collection i f the dom ains o f all its attributes m ap identically to all the dom ains in the criterion.

Inform ation defining the criterion is supplied by the type.

A x io m 5 (A b s trac tio n o f S tru c tu re) Abstraction o f object structure is based on generalization o f object

a ttr ibu tes a n d results in types, which are objects that m odel collections o f objects that share structural

fea tures.

L et a type collection be denoted by C 7 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

93

D efinition 6 (Type C ollections) A type collection is a se t o f objects, the dom ains o f the attributes o f all

the m em bers o f which are the same.

3(CV) [V(-V) [V(T) [((.V € C'r) € CT)) = (dom (A ') = dom (V '))]]] . (10 .1)

Wc note that the phrases (.V € C'r) and { Y € C'r) obey the rules o f logical types (see Section 8.2.2).

We can represent all the information necessary to define a collection Cr for types by m eans o f an object.

Specifically, for a type collection Cr. a type T is defined as an object whose dom ain is the sam e as the

dom ain o f every m em ber o f C 'r- This defines the m inim um necessary inform ation to capture the notion

o f type collections.

Because types and type collections are based on object dom ains only (i.e. range inform ation is ignored),

then any m em ber o f a type collection C t can fill the role o f type T . T hat is, fo r a type collection C j ,

wc m ay lake any m em ber object from C t and successfully use it as a type for that type collection. Thus

type objects T are not actual objects distinct from other objects, but are rather ordinary objects that we

consider in the role o f representatives o f their type.

\
Wc m ay denote the set o f all types by T. therefore T e T and T C 0 .

We define the binary predicate IS .A to capture the type relationship betw een two objects.

D efinition 7 (T he T ap in g P red ica te)

V(A') [V (y) [IS -A (X ,F) S (d o m (A) = d om (y))]] . (10 .2)

The author notes that if V were defined to be the type for its type collection, then IS_A could be used to

determ ine if arbitrary objects were "o f a given type”.

Furtherm ore, it is redundant to have m ore than one type object fo r a given type collection . However,

nothing has been said yet that would prevent two objects o f a g iven type collection from being considered

types. We can capture the uniqueness o f type objects using a notation suggested in [1] to indicate the

existence o f unique individuals.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

94

T h eo re m 3 (T heorem o f Type U niqueness)

V(Cr)[!3(T) (7' eC'r)] . (10.3)

T he notation !3 m eans " . . . there exists exactly one

Now let us return to the Axiom o f Separation. It is written:

3 (S) [V(x)((* £ S) = ((* <E A) » f (x))) \

and states that there exists a subset S o f a set A all the m em bers o f which satisfy f (w ith no free occurrences

o f S in if).

W ith regard to types, the author interprets the axiom as follows: there exists a subset .V o f the set o f all

objects 0 all the m em bers o f which satisfy a predicate 6. In this case, 0 is the predicate that differentiates

objects by type - in o ther words, IS_A. We can then write the Axiom o f Separation for types in HM as

the fo llow ing axiom schema:

A xiom 6 (A xiom o f Types)

V (F) 3 (C r) [V (X)((A -€ C T) = [(X e 0) » I S - A (X , y)]) l . (10.4)

T he space separating “ V (T)” from the rest o f Equation 10.4 is a convention used in sym bolic logic to

indicate the extent o f an axiom with respect to a set o f entities. In this case, it binds the use o f Y in the

axiom so as to explicitly define the range o f values that Y can attain w ithin the axiom.

Types them selves represent ou r abstract concepts o f design entities based on their quantifiable attributes;

they define the properties o f a se t o f design entities w ithout defining the degree to w hich each real world

entity exhibits those properties.

In attem pting to relate objects and types, the distinction betw een types and the collections o f objects that

types m odel is essential. C ollections o f objects are not d irectly com parable to objects because they are o f

different degrees o f abstraction (see Section 8.2.2); that is, apparently intuitive statem ents such as X n C r

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

95

and .V e T arc invalid, the system resulting from their inclusion would becom e inconsistent, and there

would be no way o f assuring that all statem ents that can be form ulated in HM can be proved. On the other

hand, statem ents o f the form 0 n T = T. o r A' € C 'r. are acceptable because 0 and T. and A' and C t .

arc o f the sam e degree o f abstraction.

T his is a good exam ple o f the pow er o f set theory: it forces us to think m ore clearly by giving us a system

wherein logical errors are m ore easily detectable, without restricting ou r freedom to express consistent,

relevant inform ation. The m ajority o f logical errors are delectable because “statem ents” in HM are

theorem s; i f they can be proved within the system , they are valid (correct). N ot all errors can be caught

this way because o f the inherent incom pleteness o f formal system s (see Section 5.1).

T he relationship between a type and objects o f that type (the type-object relationship) is a one-to-m any

relationship. But the relationship betw een an object and its type (the object-type relationship) is one-to-

one. We w ould have to be outside the system to "see” that the current ob jec t’s type has m ore than one

instance; this would introduce self-reference that we want to avoid. B ecause one-to-one relationships are

dealt w ith in a straight-forward fashion w ith functions, and because o f the added com plexity o f dealing

w ith both objects and type collections o f objects, HM m odels objects as having types, ra ther than types

as having collections o f objects.

Furtherm ore, types collections (C t) are not considered to be prim ary entities in HM . D esign entities

arc the only entities o f prim ary im portance, since they are identified w ith real-w orld entities relevant to

designers. Types collections, though essential on the theoretical grounds discussed above, are derived

from objects. They are thus regarded as m utable, built from objects that are know n o r presum ed to exist

in som e way. T his m ust be the case because the underlying requirem ents o f the criteria fo r the form ation

o f types can change during the course o f a design process, o r as o u r collective understanding o f design

evolves. If we were to define types as im m utable structures, we w ould be locking ourselves in to a

particular v iew point o f the nature o f design which m ight turn out to be insufficient.

10.3 Aggregations of Objects

Wc have seen that types perm it the ordering o f objects, using abstraction o f the attributes o f objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

96

An aggregate is also an ordering device for objects, but it works through a different abstraction m echanism:

recursive containm ent. Put simply, an aggregate is just a collection o f objects. M em bership in aggregate

collections is based on entirely arbitrary criteria that depend on the exigencies o f the problem at hand.

T his d istinguishes aggregates from types, for which the defining criterion is precise and known a-priori.

A ggregates perm it the hierarchical ordering o f objects o f the same degree o f abstraction (i.e. aggregates

cannot m ix objects and types). Design is strongly hierarchical. Parts m ay be assem blies o f other

parts. Even processes (fo r exam ple, a finite element analysis, or a m achining pntccss) arc composed of

subprocesses. T he larger the design problem , the more important hierarchical ordering becomes.

Once again, we rely on the Axiom o f Separation to guide us in form alizing ou r notion o f aggregates. In

this case, we write the Axiom as follows:

A xiom 7 (T ria l A xiom -Schem a o f A ggregates) There exists a collection o f objects C'a .a ll the members

o f which sa tisfy a particu lar predicate b,

3 (C > t) l V (X) P 6 C A) s [(J f € 0) * < (J f)])] . (1<>.5)

C a is an aggregate collection, and 6 is one o f a set o f predicates A used to define m em bership in the

aggregate object that m odel these collections.

However, we observe that (1) C a and 0 are collections o f objects; and (2) 6 applies only to single objects

in Ca- Defining S in term s o f C a breaks the restriction o f free variables on the axiom o f separation.

T herefore, axiom 7 itse lf is not enough to define the relationship betw een m em bers in an aggregate.

T he generally accepted theory o f classes o f sets [170], which accounts not only for sets but also for

collections o f sets, achieves nothing for us except the replacem ent o f predicates like b by classes o f

objects that are defined in term s o f b.

Alternatively, we m ight consider defining b in term s o f fj,: c ;(a .) where a , e C'a and c, is som e predicate

constrain ing a,-. But in this case each constraint depends on only one m em ber o f C a . whereas we need a

sing le relationship over all the m em bers o f Ca-

To solve th is problem , let us begin by saying that a relationship is needed to define the nature o f the

com ponen ts’ use in the assembly. T he relationship takes the form o f a constraint on the attributes o f the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

97

assem bly (an aggregate object). Thus, the constraint is at the same logical level as the aggregate, not at

the level o f the objects that compose the aggregate. Let k represent these constraints.

In general, a constraint o f this kind on an aggregate will not act on all the attributes in the aggregate. For

exam ple, a constraint defining the relationship between two links in a four-bar linkage need not act on the

other links. So, in general, a constraint will act on a subset o f the attributes o f an aggregate.

Now, a view (sec Section 9.3) is a subset o f an object. If we define a certain view o f the aggregate

to contain only the attributes acted upon by som e aggregation constraint k, we m ay then say that the

constraint acts on all the attributes o f the view. Now, we can begin writing another axiom , based on views

o f an aggregate. Each constraint k can be used to define a view criterion 7 , w hich in tu rn defines a view.

Thus a collection o f constraints «,• for an aggregate leads to a collection o f view criteria 7 ; and a collection

o f view objects V,. We now define C'a more precisely: C a =d{ V).

A xiom 8 (A xiom -Schem a o f A ggregates) There exists a collection o f views C a o f an aggregate object,

all the m em bers o f which satisfy a particular predicate S.

3 (C /t) [V (V)((K 6 C A) s [(V € 0) • (10.6)

where 6 (1 0 m ust be true for all views in (7 ,4 ; that is.

(10-7)
i

T his equation will be true if at least one k , is true. It is noted that this is counter-intuitive: w e m ight have

assum ed that all constraints m ust be sim ultaneously true (i.e. f),- «;)• but this is no t the case.

Since attributes appearing in more than one view object o f an aggregate are identical (no t only equal o r

equivalent - see Section 9.3), we can create the aggregate object itself by sim ple union: Y = { J C a =

U Vi.

A graphical depiction o f the aggregation o f four links to com pose a four-bar linkage is given in Figure

10 . 1, including the link objects g r o u n d , i n p u t , c o u p l e r and o u t p u t , all v iew s, v iew criteria 7 ; and

constraints k,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

www.manaraa.com

98

four-bar linkage

LEV EL OF
ASSEM BLY

LEVEL OF
j ground | | input 1 |co u p le r| [output [| COM PONENTS

Figure 10.1: Aggregation o f a Four-Bar Linkage in HM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

99

The predicate set A is an im portant one: its elem ents provide the m eans o f defining all the necessary

relationships in an aggregate object. The consequences o f this statem ent are m ade quite clear by consid­

ering a sim ple physical assem bly o f components. Objects would model each com ponent. An aggregate

object would model the assembly. It would be the role o f the 6 predicate for that assem bly not only to

partition objects according to which arc needed in the assem bly and w hich are not, but also to provide the

exact relationship that exists between the com ponents in the assembly. In o ther words, it is the aggregate

predicates A that perm it the definition o f how components in a physical assem bly m ate, the tolerances o f

the lit, the m anner in which the m ating occurs (the assem bly process itself) and so forth.

An aggregate object need not contain only o ther objects, but can itself have attributes. One obvious

exam ple o f the kind o f attributes that an aggregate itself m ight have are size and shape. T hese clearly

cannot be derived from the com ponents o f the aggregate alone (e.g. inform ation about a bolt tells us

nothing about the assem bly in which the bolt is to be used). T h is too is perm itted by HM . Aggregate

objects, then, are not ju s t sets o f objects, but an object w ith attributes w hose values are o ther objects.

A t this juncture, we could begin a detailed study o f the properties o f the predicates in A, but shall not.

T his docum ent is m eant to be both an overview o f HM and a statem ent o f the fu n d a m en ta l axiom s that

com pose it. In this spirit, then, we defer such discussions to future work.

10.4 Classes of Objects

In addition to classification by structure using types, objects can be also classified by the function they

arc m eant to provide. The im portance o f capturing sem antic content o f function is best exem plified by

conceptual design.

Conceptual design is one o f the first steps in a design process, and has the greatest im pact on downstream

decisions [17,42,171]. In general, conceptual design is considered to be the m apping betw een the function

provided by som e entity and the physical specification o f the entity. Very little is know n about conceptual

design and we do not presum e a sim ple solution to the problem here. However, the au thor has devised a

m echanism to ease the developm ent o f a system o f classification by function.

T he m apping betw een structure and function is not necessarily one-to-one: a particular structural com ­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

100

ponent m ay provide m ore than one function, o r vice versa. The mechanism o f types discussed in Section

10.2 is inappropriate: the m apping between objects and types is one-to-one. Therefore, the structural

properties o f the entity do not capture sem antics o f function. A m echanism different from typing is

required.

The au tho r defines a class o f objects as an aggregate object whose m em bers all represent design entities

that exhibit a given function. HM considers inclusion o f an object in a class sufficient to establish that the

object exhibits a given function.

It is unclear to the author at this tim e w hether a class should include inform ation for m odeling o f the

function itself, o r w hether this inform ation should be contained by the m em ber objects, o r by the h

function o f the aggregate that relates them . The relationship m odeled by the function w ould permit access

to the m em bers o f the class, m uch as IS-A provides, but without the constraints that IS .A im poses on the

attributes o f m em ber objects.

10.5 Specialization and Generalization of Objects

10.5.1 Specialization of Types

T he abstraction m echanism o f specialization is implemented in HM by inheritance o f type. Inheritance

is a m echanism sim ilar to aggregation, but is controlled by the operation o f set union.

T he difference betw een inheritance and aggregation is very im portant from a sem antic point o f view. For

exam ple, to say that an autom obile inherits the attributes o f its engine (e.g. pow er) is m eaningless; the

reason w hy hum ans can m ake sense o f such statem ents is because we can interpret it correctly and extract

the necessary im plicit inform ation from the statem ent. However, this highly informal and subjective

approach is very undesirable. T he correct statem ent that can be supported by a form al theory would

be that the autom obile is an aggregate, one com ponent o f which is an engine that has a certain pow er

rating. B ecause HM is m eant to form alize design information, the d istinction between aggregation and

inheritance becom es essential.

A type, then, is the union o f all the attributes o f the types that are inherited by it. Union o f sets is very

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

101

well understood in set theory and provides a sim ple and rigorous way to form alize specialization through

inheritance.

Using the A xiom -Schcm a o f Separation again, wc can write the following.

A xiom 9 (A xiom o f Specia lization) F or a given type T , i f there exists a collection o f types C's such that

T contains a ll the a ttributes o f a ll the m embers o f C s . then T is sa id to inhcrit/row t the m em bers o f C s ,

and T is a type specialized from the types in C's.

V (T) 3 (C s) [w m ecs)= [(u e j) * (U c T)])] . (1 0 .8)

Wc can define the predicate INHERITS as:

D efinition 8 (T he In h e ritan c e P red ica te)

V (T) [V((/) [INH ERITS(T, U) = {U C T)]} . (10.9)

The phrase IN H E R IT S ^ , U) is read “type T inherits the attributes o f type U".

As in the standard definition o f the union operation, duplicate elem ents are excluded from the union set.

T he identity axiom (axiom 3) defines the criterion by w hich duplicates are identified in HM .

In design, specialization is an im portant m echanism because it perm its the creation o f specialized types

from a collection o f m ore general, abstract types. It is, therefore, a top-down procedure.

Design also tends to be a top-down process [4 3 ,4 9 ,6 9 ,1 0 6 ,1 2 6 ,1 6 7 ,1 7 2] , m oving from the general

(conceptual design) to the specific (detailed design). T his impacts on how we treat design inform ation.

Because design begins from the general and m oves to the specific, we can expect that a t an arbitrary point

along the developm ent o f a design artifact, inform ation regarding the artifact w ill be incom plete in detail.

Specialization, then, being a top-down process, is used in HM to perm it incom plete inform ation about

design entities to be captured in a consistent m anner, and to perm it the generation o f (application) specific

types from general types.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

in:

10.5.2 Generalization of Types

G eneralization is the inverse o f specialization, and from the purely theoretic point o f view of HM. the

relationship betw een the two is bidirectional (i.e. specialization and generalization are opposites but

equivalents). Thus:

A xiom 10 (A xiom o f G enera liza tio n) / / all the members o f a collection o f types (Vv hove som e attributes

in com m on, then there is a generalized type T that contains those common attributes, a n d a ll the types in

C o inherit the common attributes fro m T .

3 (T) 3 (C c) [V(U) ((U € C g) s [(V € T) • (V C (/)])] . (10.10)

G eneralization is im portant to design too, for two reasons. The first is quite practical: in an environm ent

where a num ber o f types o f design objects have been generated independent o f each other, generalization

provides a form al m echanism by which we can unify o u r m odels o f the objects. T h is kind o f unification

m inim izes the am ount o f inform ation needed to com pletely specify a design artifact m odel, m aking the

m odel sim pler and clearer1.

T he second reason that generalization is important has to do with theoretic, taxonom ic concerns. One

obviously desirable goal in design theory is the generation o f usable, globally applicable taxonom ies

o f design entities. T he issue o f taxonom y in design dieory was discussed in Section 4.2. Taxonom ies

them selves can help standardize our m odels o f design entities and control the inform ation required for the

m odels. G eneralization in HM gives us a very specific formal m ethodology for generating design entity

taxonom ies. Taxonom ies resulting from the application o f generalization to types in HM would result in

inheritance netw orks o f types that would permit the classification (at least in theory) o f arbitrary kinds of

design entities. T he issues involved in generating such taxonom ies arc interesting and m any, and arc not

dealt w ith specifically in this docum ent.

'T h is corroborates Suh's second axiom of information minimization (31J.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

103

10.5.3 Relationship Between Specialization and Views

Assum e tw o types, T and U, and a view criterion '/ j that only exam ines object dom ains. If the types are

sim ilar under the view criterion, then the view objects formed by application o f the criterion to the type

objects arc identical. Therefore, the view object itself is seen as a type from which types T and U inherit

attributes. This m ay be written in the notation o f HM as

T h eo rem 4 (S im ilarity o f Types)

V(T) [V((/) [V(7(i) [(V IE W (r ,7lf) = V IE W ([/,7d) = V) = (10.11)

(IN H E R IT S ^ , V) • IN H ER ITS((/, V))]]] .

T h is further reinforces the importance o f views as an organizational m echanism : we see that view s can

be used to define the conditions whereby inheritance between object types occurs.

10.6 Summary

T he author has presented in this Chapter five ordering m echanism s for objects: typing (by structure),

aggregation, classification (by function), specialization, and generalization. T hese five m echanism s

provide the m eans o f organizing collections o f objects in m eaningful ways (in a design context); such

organization o f inform ation is essential to m axim izing the am ount o f explicit inform ation a designer has

available to him/her, w hich in turn can decrease the chances o f m isinterpreting design inform ation. The

ordering m echanism s are based on ontological considerations o f real-world entities, not on the em pirical

evidence as provided by the conventional understanding o f design. In this way, independence from design

is m aintained; we m ay then be m ore confident o f the universal applicability o f these m echanism s.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 11

Discussion

11.1 General Summary

H M is an evolving, grow ing structure, but the core o f the m odel as presented here is accurate and will not

change as the m odel develops. HM is a variant o f classical Z F set theory, extended and interpreted to suit

engineering design inform ation. HM provides the isom orphism s that perm it us to view design inform ation

in an objective, form al way. Specifically, these isom orphism s perm it design entities to be represented by

se ts that can be grouped into subsets using criteria all finding their roots in the Axiom o f Separation as

defined in ZF; that is, the organizational axiom s o f HM (Chapter 10) are all axiom sub-schem a o f the

A xiom o f Separation.

O ther researchers [162,173] have suggested extending formal system s to suit design, but the author is not

aw are o f any attem pts as detailed o r w ell-grounded in accepted logic system s as is HM.

H M is n o t intended to autom ate the design process, but rather to provide a structured notation that makes

inform ation about design entities clearer and thus perm its the designer to apply w hatever thought processes

he/she prefers. The au tho r perceives the designer as existing in a sym biotic relationship w ith design tools

such as HM , rather than being replaced by them.

H M is based on a functional m odel o f the engineering design process that view s design inform ation as

separate from the various processes that act on this inform ation during the course o f design developm ent.

1 0 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

105

T he key issue lhat perm its HM to be stated at all is that therein the universe o f discourse o f Z F is restricted

to only those entities pertinent to design. In this way, we can m ake m ore specific statem ents (i.e. axiom s)

than ZF alone permits.

The axiom s o f Z F are not altered by HM, and no new prim itives, connectives and quantifiers are introduced.

For these reasons, we are assured that HM represents a valid, consistent form al system o f logic [80] (with

respect to set theory), specifically geared to design information.

Objects arc se ts o f attributes, and capture meaningful information about design entities. T his provides

a natural form o f expression for design information because objects are conceptually equivalent to the

entities they m odel. A ttributes are defined in terms o f dom ains and ranges; dom ains o f attributes in

HM include generalized dim ensions o f m easurement. Views perm it objects to be partitioned according

to criteria specific to particular design tasks. Relations and functions are used to define general classes

o f operators on objects, and provide a flexible, extensible m echanism for the logical representation o f

various k inds o f relationships and constraints. The specific relationships o f structural sim ilarity, functional

sim ilarity, aggregation, specialization, and generalization are all captured form ally by HM .

Since HM applies to different design tasks, such as solid m odeling, analysis, and so on, it presents

an integrated approach to the specification o f design inform ation that is ex tensible: new entities and

relationships can be specified using the m odel without altering the m odel itself.

HM provides (a) a basis for building taxonom ies o f design entities, (b) a generalized approach for m aking

statem ents about design entities independent o f how the entities were generated (i.e. independent o f the

design process used to create them) and (c) a formal syntactic notation for the standardization o f design

entity specification.

11.2 Future Work

There are various fronts on which work o n H M can continue. T he role o f constrain ts in the hybrid m odel

m ust be exam ined, and suitable theory generated. A review o f the current literature indicates that relatively

little w ork has been done in this area. T his m ay be because the design entities that are constrained have

been vaguely and/or im precisely defined in the past. T he formal understanding o f these entities provided

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

106

by HM m ay also help us understand the constraint satisfaction problem better.

C lassification o f design entities by function is another area where current understanding can be improved;

em phasis will be placed on this in the future w ork o f the author.

D ue to the hierarchical nature o f design entities (particularly mechanical design entities), aggregation is

a key abstraction m echanism . Further study o f the A predicates that HM supports for (he definition of

aggregates is warranted.

At the theoretical level, a formal theory o f design information will be a useful tool for the study o f the design

process itself by providing a uniform lexicon and gram m ar for inform ation specification. T he author notes

that it is possib le to blend ZF and first order predicate calculus [80]. T he predicate calculus is the formal

basis o f such tools as expert and knowledge processing system s. Also, fuzzy logic [147,148.174] presents

a unique opportunity for representing the notion o f uncertainty in purely formal term s. It is interesting

to speculate on the nature o f the com bination o f these tools with HM . and their possible applications to

design theory.

A t a m ore practical level, application o f the theory to real design environm ents has the potential to improve

com m unications betw een designers by providing a com m on vocabulary, to assist in the standardization o f

design specifications, and to lead to new and more powerful software tools to aid the designer. The latter

avenue is explored in the next Part o f this document.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Part IV

ENGINEERING COMPUTATION

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 12

Introduction

T he w ork presented thus fa r has been quite abstract. T his has been necessary because little fundamental

w ork ex ists in the area. B ecause o f its abstract nature, practical applications o f the au th o r’s work may

seem difficult to identity. In o rder to address this problem, the au thor has included a m ajor application: the

im pact o f H M on engineering com puting. The intention is to extend the perspective afforded by HM into

m ore practical issues o f com putation in design environm ents. In particular, a software system developed

by the author, called D e s ig n e r , will be presented and discussed as a dem onstration o f the gains that can

be expected from the application o f form al techniques.

T he influence o f com puter technology in design has becom e a strong one. C om puters and com puter

softw are system s are used in every aspect o f the engineering enterprise, from concurrent engineering,

to C A D and analysis, sim ulation, m anufacturing and production, and m arketing. A lthough som e m ay

argue that th is dependence is som ehow detrim ental to the profession o f engineering, there is little doubt

that com puter technology represents the only currently available, feasible m eans by which to control the

com plexity o f the engineering enterprise.

T he Inform ation R evolution the world is currently experiencing is related to its predecessor, the Industrial

R evolution. "B y dram atically reducing the costs o f coordination and increasing its speed and quality,

these new [inform ation] technologies will enable people to coordinate m ore effectively, to do m uch m ore

coordination and to form new coordination-intensive business structures [18].” C oordination, in th is case,

is the ab ility to organize, o r order, what we do, and the inform ation we use to do it. O ne o f the principal

108

with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

109

gains wc m ay expect, then, from formal theories like HM is the ability to generate software system s far

m ore capable than existing ones to assist designers in their work. Indeed, successful softw are system s

based on formal theories can provide a strong indication o f the suitability o f the theories them selves.

Currently available program m ing and database systems arc insufficient for engineering applications [32,

4 2 J. T he high degree o f com plexity o f m odem design artifacts, the richness o f the num ber and kinds

o f interrelationships in inform ation, and the imprecision w ith w hich term s (such as design intent and

fu n c tio n a l description) arc used have all contributed to this problem . T oday’s continuing and ever-

increasing rate o f new engineering software developm ent m akes it evident that these issues have not yet

been addressed properly.

As well, there have been a num ber o f arguments made recently in favor o f a “language-based approach”

to design (e.g. [162,175]). Such an approach entails the developm ent o f languages that perm it the

expression o f design inform ation in a computational environm ent that do no t tie the user to a single

m ethodology o r solution technique. In this way, relatively sm all languages can perm it the capture o f

relatively laigc quantities o f inform ation, while perm itting the users a certain freedom o f expression that

w ould be m issing i f a precise m ethodology had been specified. T he au th o r’s approach throughout the work

presented herein has been to separate inform ation from procedures that use the inform ation, at both the

theoretical and practical levels. T he language-based approach, then, is quite sym pathetic to the au th o r’s

approach, and the program m ing language to be described in this Part m ay be regarded as a contribution

to such language-based research in design.

T he inherent com plexity and relatively ad-hoc nature o f the design enterprise can overw helm even the

m ost powerful system s. In o rder to com bat this, engineering softw are developers and researchers have

rightly searched for m ethodologies em phasizing organization and ordering o f inform ation: increasing the

degree o f organization in a collection o f information m akes it m ore accessible, m ore concise and less

likely to be a source o f error for designers. However, the exact nature o f the organizational form s that

w ould best suit the engineering enterprise in general have to date eluded discovery.

O ne problem not addressed in o ther current research in this area is that o f general engineering com puting

[173]. Not since the creation o f Fortran has a language been targeted in tentionally fo r use by engineers

(w ith the possible exception o f Ada, whose success in this area has yet to be proven). C onsidering

the great evolution that has occurred in design, it is not surprising that Fortran is unable to m eet the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

110

program m ing requirem ents o f m odem engineering enterprises. Given the high degree o f com plexity o f

design inform ation, it is important that the paradigm match the conceptual m odel o f the users.

In order to m otivate the arguments presented in this work, wc shall hegin by exam ining the relationship

betw een softw are system s and engineering in an abstract way. This will penn it us to d istinguish between

the general exigencies o f engineering com puting and the requirements o f particular software systems.

The dom ain o f a software system is the collection o f the kinds o f problem s to which the system can

be applied. T he software system m aintains an internal computational m odel o f its dom ain; that is, the

system is a m anifestation o f this model. T his domain-specific com putational model is a unification o f

a fo rm a l conceptual m odel plus a general m odel o f com putation. For exam ple, continuum m echanics

and m athem atics provide a formal model for finite clem ent analysis; this, com bined w ith a program m ing

environm ent (which is a m anifestation o f a general model o f com putation), provides the com putational

m odel for finite elem ent software systems.

Engineers use a software system to solve problem s w ithin the system 's dom ain; they are using the

sy s tem ’s m odel o f the problem dom ain to perform a given task. In o rder to do this, they must at least

have som e understanding o f the system ’s com putational model. T his includes the fom ial model and also

(unfortunately) som e aspects o f the general com putational model.

How ever, the users also have their ow n m ental, o r cognitive , m odels o f the problem dom ain. If the

u se r’s m odel o f the dom ain is incom patible w ith e ither the formal dom ain m odel inherent in the software

system o r the com putational model o f the softw are system itself, an im pedance m ism atch |2 7 | results.

A s the nam e im plies, an im pedance m ism atch represents an efficiency loss in inform ation m odeling. In

th is sense, the word “efficiency” refers to the ability o f a system (fom ial or softw are) to precisely and

correctly m odel necessary inform ation in a tim ely m anner with respect to the u se r’s m odel. The greater

the m ism atch , the less usable the software system becomes, and the m ore likely inefficiencies and errors

will dom inate its use.

Im pedance m ism atches between the au tho r’s formal dom ain m odel (HM) and the u se r’s cognitive model

are handled by the isom orphism described in Part III. T he isom orphism provides a correspondence

betw een the form al system and design inform ation that effectively elim inates im pedance m ism atches

arising from the use o f HM in a design environm ent. In this Part, the author is concerned prim arily with

con tro lling im pedance m ism atches betw een the com putational m odels o f engineering softw are system s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

I l l

and Ihc user's cognitive model.

Impedance m ism atches arc not bugs. Bugs arc sim ple mechanical errors remedied in a relatively straight­

forward way. Rather, impedance m ismatches arise from lim itations in the program m ing paradigm selected

for the design and im plem entation o f the software system . These mismatches are problem atic. T hey define

from the outset the lim its o f the software system 's functionality, and guide the p rogram m ers throughout

the developm ent o f the system. The paradigm provides the conceptual fram ework fo r general com putation

w ithin which the software will be created. Any lim itations in this fram ework w ill be inherited by the

software. If ihc selected paradigm is incom patible with the formal m odel o f the problem dom ain or

the users’ gnitive m odel, the resulting software will be clum sy and error-prone, and its results will be

difficult to interpret and use. But m ost importantly, there is no sim ple solution to th is k ind o f impedance

m ism atch short o f choosing another program m ing paradigm and rewriting the softw are from scratch.

Clearly, then, the investigation and selection o f program m ing paradigm s is the key to controlling m is­

m atches and im proving the quality o f software system s. Engineering researchers, as experts in the problem

dom ain for w hich suitable software systems are to be developed, are likely candidates to be able to carry

out such investigations successfully.

The author expects that successful efforts will bring to existence entirely new program m ing paradigm s

evolved from existing ones, but significantly different in the com putational m odels they support. These

m odels will be based on formal theories about design that are currently under developm ent by many

different researchers, thus providing continuity o f formal rigor from the dom ain m odel through to the

im plem entation o f support software. The design theories will provide the necessary form al background,

and the com putational m odels will provide the bridge from the purely theoretic w orld to the software

system s that will be able to address real engineering problem s.

In the Sections that follow, a program m ing language fo r design inform ation, called D e s i g n e r , will be

introduced and discussed. D e s ig n e r is an im plem entation o f a com putational m odel based on HM , and

must thus satisfy its axiom s. Since HM describes the structure o f design inform ation w ithout making

statem ents about the use o f that information. D e s ig n e r will deal w ith sta tic data m odeling only; that

is, it will deal w ith the representation o f inform ation, not w ith its m anipulation. C hapter 13 presents

the requirem ents for a new com putational paradigm for engineering. Based on these requirem ents, three

program m ing paradigm s arc identified as the bases o f the current work. C hapter 14 then introduces

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

112

c e r ta in k e y n o t io n s a n d th e b a s ic s y n ta c tic fo rm s o f th e DESIGNER la n g u a g e . C h a p te r 15 fo llo w s u p w ith

s e v e ra l e x a m p le s in d ic a t in g h o w th e D e s i g n e r la n g u a g e c a n c a p tu re d e s ig n in fo rm a tio n e f fe c tiv e ly a n d

c o n c is e ly .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 13

Requirements for a New Programming

Paradigm

M any different program m ing paradigm s have been used to develop engineering softw are, including

functional, logic, im perative, object-oriented, and relational [176-178]; none have succeeded universally.

The latest attem pts, and those show ing the m ost prom ise, are those that blend tw o o r m ore paradigm s.

T h is is because each paradigm alone represents a particular projection o f the “ real” world to that o f

com putation; that is, each paradigm perform s only certain classes o f com putations very well, and in their

purest forms do so to the exclusion o f other kinds o f com putation. A lthough there are m any problem

dom ains where one paradigm alone can perform well, engineering, for all its com plexity, is not one o f

them . Engineering problem s can cover both num eric and geom etric dom ains, both the precisely analytic

and the num erically approxim ated, the ethereal (for exam ple, using chaos theory to m odel turbulent fluid

flow) and the practical (m anufacturing process planning, am ongst others). Clearly, an appropriate solution

for the engineering enterprise m ust perform com putations efficiently, yet rem ain flexible enough to meet

its w idely divergent requirements.

Som e o f the requirem ents o f a new program m ing paradigm for engineering have already been m entioned.

To reiterate, a candidate paradigm must: (a) be supported by a form al m odel o f the application dom ain; (b)

capture the com plex data structures typical o f m any engineering applications; (c) capture and m anage the

rich interrelationships that exist between these structures; (d) be representable by a form al com putational

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

114

m odel; and (e) elim inate, o r at least m inim ize, impedance m ism atches. The author considers one other goal

as well: the paradigm should provide an environm ent for continued research in engineering com puting

and design theory.

It is noted that due to the current lack o f formalism in engineering design, it is difficult to expect the

im m ediate satisfaction o f som e o f these requirements. Wc can. however, use such form alization as

currently exists, and tailor our results in the future as our understanding deepens. Thus llexibility becomes

another goal o f the paradigm . In this context, flexibility is the ability to try new program m ing and modeling

techniques easily w ithout significant alterations to existing software. Wc m ay in this way substitute our

lack o f form al understanding o f design with empirical analysis and the ability to experim ent.

The au thor has identified three program m ing paradigm s as being o f particular relevance in engineering

applications: functional program m ing, sem antic data m odeling and objcct-oricntation. Wc now briefly

introduce these paradigm s.

13.1 Functional Programming

The fundam ental paradigm o f functional program m ing is that a com putation can be represented by a

co llection o f (possibly com plex) operations acting on (relatively sim ple) data structures. In the ideal

case, no assignm ents ever occur, that is, there are no variables in functional program s, only functions and

constants (e.g. num bers, strings, etc.). Though this approach is very elegant from a theoretical point o f

view, it does not take into account the exigencies o f practical com putation; for exam ple, the inlcgcr 10

is represented in a purely functional environm ent as the application o f a function called s u c c e s s o r

to the in teger 0 ten tim es. In a real program m ing environm ent, the com putational overhead o f such

an approach w ould be com pletely unacceptable. Thus, m ost functional languages perm it at least single

assignm ent, i.e. a variable can be assigned a value only once during its lifetim e. O ne docs not change

the value o f a variable, but rather elim inates it in favor o f an entirely new variable that has the new value

assigned to it. T his approach, though an acceptable com prom ise between the practical and theoretical

aspects o f com putation, results in a com putational model that is rather counter-intuitive and difficult to

use, especially by people unaware o f the theory o f functional program m ing. To offset this, m any currently

popu lar functional languages (particularly LISP and Scheme) perm it m ultiple assignm ent, but only in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

115

certain controlled ways. A lthough it is com m only said that the functional paradigm does not perm it the

capture o f state, th is is a m isconception. Functional program m ing only requires that m anipulation o f the

state o f a program be explicit. T his ensures that unwanted and often difficult to identify side-effects do not

occur in functional program s. References [176,179,180] discuss various aspects o f functional languages,

and 1181] discusses som e o f the advantages o f using the functional paradigm in engineering applications.

One o f the m ost novel ideas o f the LISP family o f functional languages is that o f meta-circularity. A

m eta-circular language is defined largely in term s o f itself, turning program s w ritten in that language

into extensions o f the language itself. This perm its the creation o f self-m odifying program s and active

data structures. M eta-circularity also unifies the roles o f program m er and user: it becom es easie r fo r the

“program m er” to understand the user’s needs and for the “user” to have control over softw are program m ed

by others. It also perm its the developm ent o f software in m odular layers, all w ritten in the sam e language,

each layer expanding upon the capabilities o f the preceding layers.

The ability o f these languages to treat program s as data (i.e. perform sym bolic com putation [179]) is o f

particular advantage in applications involving design inform ation m odeling. We can w rite functions that

can exam ine design m odels and check for satisfaction o f various kinds o f constraints. T h e constraints

m ay be specific to the dom ain (e.g. constraining weight o r size o f a com ponent in an assem bly), bu t they

may also be com putational in nature (e.g. database integrity constraints, norm alization, etc.). We can thus

unite database schem a and instances o f those databases (i.e. m odels o f actual design artifacts), treating

them with a single language and computational paradigm . T his further integrates the roles, and thus blurs

the distinction, betw een program m er and user.

The greatest advantage o f functional program m ing is the sound and detailed theoretical background upon

which it rests [99 ,182]. Firstly, the X-calculus presents a general m athem atical theory o f functions, and

is based on set theory. Secondly, denotational sem antics provides a notation (based on the A-calculus)

for the representation and study o f com putation, perm itting the evaluation and m anipulation o f program s

as if they were algebraic expressions. Such formal com putational theories provide the bridge betw een a

fom ial design theory, and the im plem entation o f software system s based on that theory.

A lthough Schem e and LISP are rather similar. Schem e [183-185] was chosen as the base language for

D e s ig n e r because its sem antics is defined in m uch m ore formal term s than LISP. T h is m eans Schem e

exhibits a h igher degree o f robustness and formal rigor than its predecessor. A particular im plem entation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

116

o f Scheme, Elk [186], was used because because it provides certain im plem entation features that made the

developm ent o f D e s ig n e r quicker and easier in a Un i x 1 environm ent. It is noted, however, that D e s ig n e r

has also been ported to another version o f Scheme, called SCM 2, which is more rigorously adherent to

the existing Scheme standard [184] than is Elk. This indicates conclusively that D e s ig n e r is a legitimate

extension o f Scheme.

Finally, it is notew orthy that there has been some effort [181.187] to study and implement Ihc notion of

a database based on the functional paradigm. The significant advantage o f the functional paradigm in

this area is that the explicit m anagem ent o f program state can make database update m anagem ent and

norm alization easier than in conventional approaches.

The one notable disadvantage o f the functional program m ing paradigm is that com plex data structures

are norm ally not supported. 1 his restricts the organizational structures that can be imposed on design

inform ation. However, as will be demonstrated below, this deficiency can be remedied by the use of

concepts from object-orientation. Although recently developed functional languages (e.g. ML, Haskell)

have richer type system s3 and data structures, it is not yet clear how these m echanism s can he best used in

an engineering environm ent. As well, the type system s supported by these languages arc not necessarily

com patible w ith the formal design theories they are intended to support. The author therefore favors the

use o f an untyped language (like Scheme) into which can be built w hatever type inform ation is found

necessary.

13.2 Semantic Data Modeling

Sem antic da tam odeling was originally conceived o f to perm it the creation and description o f data schema

that would then be coded into relational im plem entations [111]. It presented the advantage o f ignoring

im plem entation issues in favor o f achieving a deeper conceptual understanding o f the problem domain.

Im plem entation issues were then dealt w ith using the relational data model [1 0 8] , Eventually, it was

recognized that there were application dom ains where the richer assortm ent o f abstraction m echanism s

1 UNIX is a trademark o f AT&T.
2SCM is maintained by Aubrey Jaffer, copyright © 1989 Free Software Foundation, Inc.
3In computational theory, type systems deal with the specification o f kinds o f data structures (e.g. integers, character strings,

records, procedures, etc.). This is not to be confused with the use o f the term “ type" in HM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

117

available in sem antic m odeling would be o f great advantage. Engineering was identified as one such

dom ain. Since then, a num ber o f different sem antic data m odels have been generated and im plem ented.

Two good surveys o f the field arc [28, 111],

Because o f the diversity o f approaches taken by various researchers in sem antic data m odeling, it is

difficult to identify key notions representative o f the general approach. However, one very relevant notion

has found use in the definition and im plem entation o f D e s ig n e r , and is worthy o f note here. Attributes

o f data structures in sem antic data m odels arc regarded as functions m apping one (group of) object(s) to

another (group of) objcct(s). This is noticeably different from the view taken in object-orientation (see

below), wherein attributes are com m only seen as constituent parts o f data objects and are thus considered

m ore structural than procedural. For exam ple, given som e objects m odeling engines and som e other

objects m odeling fuels, sem antic m odeling would define an attribute u s e s - f u e l as a function m apping

engine objects to fuel objects; alternatively, in object-orientation, an attribute f u e l w ould be a com ponent

o f engine objects whose values are chosen from available fuel objects.

T he author has found that the sem antic m odeling view o f attributes is quite useful in im plem enting an

object-oriented system w ithin a functional language (i.e. D e s ig n e r). T his is particularly interesting

because it indicates a relationship between two very different com putational paradigm s (functional and

object-oriented program m ing) by way o f a data m odeling system not originally intended for such a

purpose. Exactly how attributes are dealt w ith in D e s ig n e r will be discussed in the Sections to follow.

13.3 Object-Orientation

O bject-orientation has had as its goal, since its origins in the language Sim ula, the m odeling o f entities o f

interest to the user in a very high-level and thus usable m anner [188]; in o ther words, object-orientation

perm its the creation o f software m odels o f “ real-world” entities that are very sim ilar to the users’ mental

m odels o f those entities. By definition, then, object-orientation has at least the potential o f m inim izing

im pedance m ism atches in applications where the inform ation to be m odeled m ust be presented and

m anipulated in as straight-forward a m anner as possible [27], such as engineering design.

An object is generally defined as an entity that can capture all relevant inform ation about a particular

real-world entity. O bjects encapsulate their im plem entation, th js m aking their usage en tirely independent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

118

o f how they function internally. T his frees the user from having to understand the details o f how the

data structures operate. Encapsulation has been show n to provide m any advantages in the developm ent

and use o f software from the points o f view o f both com puter science [159,188-1901 and engineering

[2 5 .112 .191 ,192],

C om m unication between an object and another object o r a user occurs by passing m essages between

objects; a m essage is a request that an operation be carried out by an object o r group o f objects. Objects

can be active (dispatching m essages to each other) passive (requiring an external agent for m essage

dispatch), o r som e m ix o f the two. Sim ilar kinds o f objects can be grouped together in various ways,

perm itting different organizations o f collections o f objects that reflect the requirem ents o f the problem

dom ain. These abstraction m echanism s are particularly im portant in a dom ain like engineering, where

the nature o f relationships betw een data can be both very com plex and very im portant.

T he greatest advantage o f object-oriented system s is that they perm it the m odeling o f com plex, highly

interrelated entities (such as those found in an engineering environm ent) in a m ore sim ple, flexible and

elegan t w ay than can o ther program m ing paradigms. T he principal disadvantage o f object-oriented

system s is that there is still no consensus on exactly what the nature o f objects should be; there are

no form al m odels for com puting with objects. It should be noted, however, that there are a num ber o f

on-going research efforts aim ed at providing a m ore formal footing forobjecl-oricnta tion (e.g. 1193—195 J)

both as a program m ing paradigm and as a database m odel.

T h e a u th o r h a s id e n tif ie d th re e p a ra m e te r s th a t in d iv id u a te o b je c t-o r ie n te d te c h n o lo g ie s . T h e s e p a ra m e te r s

a re d i s c u s s e d h e re in s o f a r a s s e le c t io n o f a l te rn a t iv e a p p ro a c h e s b a s e d o n th e m h e lp e d fo rm th e o v e ra ll

s t r u c tu r e o f DESIGNER.

13.3.1 Message Passing Protocols

T he first param eter deals w ith protocols for m essage passing. A recent report by the O bject Oriented

Database Task G roup o f ANSI [196] differentiates between tw o kinds o f m essage passing protocols. The

first, classica l m essage passing, is sim ilar to that provided by languages like S m a l l t a l k -8 0 [197] and

C++ [198]. T h e protocol defines a particular object as the recipient o f the m essage. T he m essage contains

a selector, w hich is used by the receiver to identify a suitable procedure (called a m ethod) to be invoked.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

119

M ethods are defined w ithin object classes (see below). O ther argum ents to the m ethod m ay also be

provided by the m essage. The m ethod is evaluated with respect to the receiver o f the m essage and the

result is returned to the sender o f the message.

The second form o f m essage passing is called generalized o r canonical m essage passing. In this protocol,

a m essage takes the form o f a function call. There is no explicitly defined receiver, rather, all objects

are passed as arguments and treated equally. The result o f the evaluation o f the m essage is returned to

w hatever environm ent originally dispatched it.

T he classical m essage passing protocol perm its m ethods to be associated only w ith those objects fo r which

evaluation o f the m essage is m eaningful. Depending on the approach taken to define m ethods, this can

im prove encapsulation and is thus advantageous. However, it can also introduce asym m etry in the way

actions on objects are regarded by the user.

For exam ple, in S m a l l t a l k -8 0 , the m essage 3 + 4 is evaluated as follow s: the object identified as 3

is sent the expression + 4; a m ethod associated with the appropriate class o f objects is identified based

on the receiver (in this case, integer addition) and evaluated by taking the value o f the argum ent (4) and

adding it to the value o f the receiver. Now, if we had previously defined x +- 3 and y «— 4, evaluation

o f the m essage x + y would result in x taking the value 7 , w hile y ’s value rem ained 4. T he asym m etry

is m anifested in the different roles played by the two term s x and y : a lthough they would conventionally

be considered equivalent in that they both sim ply represent values, classical m essage passing causes the

role o f x to be active and that o f y to be passive. This asym m etry can becom e confusing , especially in

m ore com plicated cases typical in design. Furthermore, classical m essage passing causes side-effects;

that is, the change in the value o f x is an im plicit change in the state o f the program that is uncontrollable

by the user. The existence o f side-effects can prevent verification o f softw are m odels o f design entities;

they are thus detrim ental to the construction o f reliable software system s.

O n the o ther hand, the canonical m essage passing protocol w ould evaluate x + y by using the function +

to create a new object whose value is the sum o f the argum ents. T h is form elim inates the asym m etry and

appeals to the intuition m ore than the classical form. The function is not bound directly to a type o r class

o f object. Though this m ay be seen as a violation o f encapsulation (i.e. the function is not defined w ithin

an object class), techniques exist to offset this loss while m aintaining the advantages o f the classical form .

T hese techniques will be discussed below in conjunction w ith the description o f D esig n er .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

120

Finally, the canonical m essage passing protocol elim inates the requirement for the special mcta-variablc

self, w hich refers to the receiver o f a m essage. In the classical protocol, m ethods arc attached to object

classes; there is no way to determ ine a-priori which particular object will have to evaluate a given method

in response to a m essage. Therefore, there is no a-priori way to identify the receiver o f a m essage. To

circum vent th is problem , researchers use a special variable com m only nam ed se l f which, at any point in a

com putation , identifies the receiver o f the currently active method. The problem is that s e l f is an inherently

self-referential structure, and m akes verification o f program s and software m odels very difficult. Since the

canonical m essage passing protocol does not explicitly associate m ethods w ith objects o r object classes,

there is no need for this special variable, and we are spared a great deal o f com plexity.

13.3.2 Abstraction Mechanisms

T he second issue regards the abstraction m echanism s used to group objects. T here are tw o abstraction

m echanism s currently com peting as the principal m echanism for this purpose: classes and prototypes.

T hey are both based on grouping objects by sim ilarities in their properties. G enerally know n as “clas­

sification” o r “ typing” , this m echanism is also a basis o f hum an cognitive function in general, and is

recognized as such by psychologists, philosophers, and artificial intelligence researchers [28 ,131,166],

C lasses are the o lder o f the two forms, and are used in such languages as S m a l l t a l k -8 0 and C++.

T hey define the structure and behavior o f collections o f objects. C lasses are m ore abstract entities than

are objects: the latter describe real entities to be m odeled, whereas the form er describe the objects

them selves. T hey are com m only dealt w ith using the sam e syntactic form s as plain objects (instances),

but have significantly different sem antics.

Prototypes, on the o ther hand, are plain objects that are used as tem plates to create o ther objects. They are

entirely different from classes because classes are m ore abstract m odeling entities than objects, whereas

any ob ject m ay be a prototype. Thus, the sam e syntax a n d sem antics can be used uniform ly throughout

prototype-based system s.

Prototype-based languages have the potential to replace class-based system s as the standard for object-

oriented program m ing because prototype-based com putational m odels are sim pler than class-based ones,

but retain the lu ll expressive pow er o f the latter [199].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

121

There are problem s w ith class-based system s that are dealt w ith better by prototypes, especially in engi­

neering com puting. Firstly, schem a - o r m eta-data - evolution is orthogonal to the developm ent o f objects

in class-based system s, because classes and their instance objects are o f different degrees o f abstraction.

In prototype-based system s, there is no orthogonality. This sim plification can be o f great assistance

especially in engineering, where relationships are already complex w ithout the added requirem ents o f

different orthogonal system s for data and meta-data. Secondly, version control, w hich is very im portant

in m aintaining accurate histories o f designs, is greatly simplified in prototype-based system s. Thirdly,

one-of-a-kind m odeling o f design artifacts is m uch m ore straight-forward using prototypes, since there is

no need to generate classes for w hich there will ever be only single instances. SELF [200] is one system

that has been dem onstrated to provide potentially all o f the benefits o f classes w hile m aintain ing the h igher

flexibility associated w ith prototypes.

13.3.3 Hierarchical Construction of Objects

The finai issue that d istinguishes various object-oriented languages is the m anner by w hich hierarchies o f

objects are constructed. Again, there are tw o principal alternatives. In inheritance , g iven a m essage, the

corresponding m ethod is searched for and used by the receiver in the evaluation process. T he criterion

upon which the search process is based depends on prescribed relations betw een various ob ject classes.

One class inherits from a super-class i f its instances respond to all the m essages to w hich instances o f the

super-class also respond. In o ther words, the receiver o f a m essage in inheritance-based system s evaluates

m ethods that have been located in o ther objects.

D elegation , on the o th er hand, can be viewed as m essage transform ation: g iven a certain m essage, the

delegation constructs and transm its a new m essage based on the given one. T he new m essage replaces

the original and is re-dispatched in its place. Thus, in delegation-based system s, the receiver object is

sent as an additional argum ent to whatever object has the m ethod used to evaluate the m essage; this is

the converse o f w hat happens in inheritance-based system s. In general, inheritance is used in class-based

languages and delegation is used in prototype-based languages. Though both these approaches have been

used in various language im plem entations to date, neither has show n m arked advantages o v er the other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

122

13.4 Combining Object-Orientation and Functional Programming

A lthough functional program m ing and object-oriented program m ing arc often considered to he at opposite

ends o f the language spectrum , it is interesting to note that m any functional languages have had object-

based o r object-oriented extensions for som e time. Scheme (and LISP) have both been used to generate

object-oriented system s [201-206], but alm ost all these system s have been class-based. Som e system s

(e.g. [207]) have supported prototypes rather than, o r in addition to, classes, but none o f these efforts

capture the intention o f a system that w ould be useful for design. T hey arc general purpose program m ing

languages o r platform s for language research, and too prim itive to be applied to formal design theories

such as HM .

It m ay be argued that a d istinct sim ilarity exists between the theoretical notions o f an object and a

closure [208]. A closure is a data structure often used in functional program m ing to represent the

conjunction o f a function w ith an environm ent, providing values for any variables o r identifiers not

otherw ise defined w ithin the function itself. Both objects and closures arc capable o f capturing the state

o f a com putation. A lthough this sim ilarity is quite evident, it is no t sufficient to com pletely unify the two

program m ing paradigm s. However, it is a good sign, and indicative o f possibilities fo r success.

O ne d istinct difference betw een functional and object-oriented program m ing that m ust be reconciled in

any attem pt to m erge the tw o is the issue o f static versus dynam ic scope. In static scoping, values for

variables m ay be identified by static lexical analysis o f the program text. T h is m eans that the environm ent

used to evaluate a given function is the environm ent that w as current when the function was defined. In

dynam ically scoped system s, the environm ent used to evaluate a function is that which exists when the

function is called. A rguably, functional program m ing is at its best in a statically scoped system [176],

w hereas, since the first version o f S m a l l t a l k -8 0 , object-oriented languages have favored dynam ic

scoping. Various approaches have been suggested in the literature [176,202,209]; a definitive solution to

the problem does not appear to exist yet. T he au thor’s approach takes advantage o f m ultiple assignm ent in

Schem e to provide the m inim al dynam ic scope needed to support encapsulation o f state. It is interesting to

note, how ever, that the first object-oriented language, S im ula, used static rather than dynam ic scope [209].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

123

13.5 Summary

T his C hapter has introduced the requirements for a new program m ing paradigm for design, and identified

three key existing paradigm s that can be used to meet these requirem ents. T he tw o principal requirem ents

arc: that the paradigm model design information in as direct a m anner as possible (so as to elim inate o r at

least m inim ize im pedance m ism atches), and that formal rigor be m aintained as far as possible betw een the

form al dom ain m odel (HM) and the im plem entation o f the program m ing paradigm as a real com puterized

tool. Objcct-oricntation provides the m odeling constructs needed to m eet the first requirem ent, while

functional program m ing provides the degree o f form alization needed to m eet the second requirem ent.

A lso, notions from sem antic data m odeling provide a unique, expressive and efficient m echanism fo r the

treatm ent o f attributes (as defined in HM) within a com putational fram ework.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 14

Concepts and Forms in Designer

T his C hapter introduces the key notions and syntactic forms o f D e s i g n e r , a prototype-based object-

oriented language implemented in Scheme. T he prim ary goal o f this exposition is to dem onstrate (a) how

object-oriented and functional program m ing can be effectively com bined, and (b) that there are significant

advantages in the use o f formal tools to design and build software system s for engineering applications.

O n ly th e p r in c ip a l D e s ig n e r fo rm s w il l b e in tro d u c e d in th is C h ap te r . O th e r , a n c i l la r y fo rm s w ill b e

in t r o d u c e d in th e n e x t C h a p te r a s re q u ire d f o r th e v a r io u s e x a m p le s .

In o rd er to avoid circularity w ithin the definition o f DESIGNER, a d istinction is m ade between actions

o f objects, and actions on objects. T h is d istinction prevents the definition o f D e s ig n e r from being

self-referential. Since D e s ig n e r is m eant to satisfy HM, which is no t self-referential, it too m ust not be

self-referential.

A ctions o f objects are the operations they are m eant to carry out. R equests fo r such operations take the

form o f m essages. Actions on objects occur at a different degree o f abstraction; in D e s ig n e r , these

actions are captured by regular Scheme functions.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

125

14.1 Syntactic Conventions

Since D e s ig n e r is an extension o f Scheme, it obeys Schem e's syntactic rales. Schem e is sim ilar to LISP

in that its fundam ental structure is a list, denoted by values enclosed in parentheses. Function calls take

the form o f lists whose first clem ent is the name o f the function. For exam ple: (+ 3 4) is a function call

to +, with argum ents 3 and 4 . In the general case, we write a kind o f statem ent (i.e. a fo rm) in D e s ig n e r

using the form al:

(FUNCTION-NAME ARGUMENT ARGUMENT. . .)

where capitalized words represent the denotation intended o f data in those relative positions w ithin the

call. An ellipsis (. . .) indicates zero o r m ore item s o f the sam e kind as that im m ediately preceding it.

T hus we could generalize (+ 4 5) as:

(A R ITH -O P NUM BER.. .)

w h e re a r i t h - o p s ta n d s fo r a n y a r i th m e tic o p e ra to r a n d N U M B E R .. . s ta n d s f o r a s e q u e n c e o f a t le a s t

o n e n u m b e r ' .

C om m ents in Schem e are started by a sem icolon and continue to the end o f the line.

14.2 Creating Objects

Objects in D e s ig n e r are representations o f objects as defined in HM . A D e s i g n e r object is a passive

store o f attributes: this treatm ent is in keeping with the selected m essage-passing m echanism (see Section

14.6. below), the general philosophy o f the functional paradigm , and the definition o f objects in HM.

T h e re a rc th re e w a y s to c re a te n e w o b je c ts in D e s ig n e r . T h e f irs t is th ro u g h th e u s e o f g e n - o b j e c t :

(g e n - o b j e c t)

'In Scheme, arithmetic operators can lake any number o f arguments; for example (+ 2) simply returns 2. and (+ 3 4 5
6 1 returns 18.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

126

T his is the m ost prim itive object-form ing function. It returns a new, em pty data structure representing

an object. T he object has no attributes, will respond to no messages, and is in no way related to any

o ther object. At the u se r’s level, this function is o f little use: however, it is at the heart o f all o ther more

sophisticated object-form ing functions.

A n object is im plem ented as a vector2 containing (a) a list o f the object's attributes, (b) a list o f the object's

parents, and (c) a list o f constraint relationships between attributes in that object. T he notions o f parents

and constraints w ill be discussed below.

Secondly, existing objects can be cloned to form new ones using the form:

(c l o n e OBJECT)

T he argum ent o f c l o n e m ay be any object. A clone has all the attributes o f its paren t. the object from

w hich it was cloned. T he parent is the prototype for the new object. The attributes o f the new object

are autom atically initialized to have values equal to the values o f the parent’s attributes. T he parent/child

relationship betw een an object and its clones is sim ilar to the relationship between classes and instances in

languages like S m a ll ta lk - 8 0 , in that the parent provides the inform ation needed to dclinc the structure

o f the child. C loning is generally not intended for the user, but can be utilized in creating hierarchies o f

objects and quickly creating copies o f objects.

T h e th ir d w a y to c re a te o b je c ts is w ith th e n e w fo rm :

(n e w PARENT-SPEC A T T R -S P E C I N I T - S P E C)

Because D e s ig n e r is a prototype-based language w ithout the notion o f object classes, n e w provides the

functionality to instantiate existing prototypes as well as the functionality to create new prototypes. It re­

places both the class instantiation and subclassing m echanism s in conventional object-oriented languages.

It is noted that n e w satisfies the axiom o f specialization in HM.

PARENT-SPEC is e ither a single object o r a parenthesized list o f objects that will be the parents of

the new object. T he set o f attributes o f the new object is the cartesian product o f the a ttribute sets o f its

2Scheme vectors are fixed-Ienglh sequences whose values are indexed much as one-dimensional arrays are accessed. Fur­
thermore, the elements o f a vector may be arbitrary Scheme objects, including number, strings, functions, etc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

127

parents. Since an object can have m ore than one parent. DESIGNER provides a kind o f m ultip le inheritance.

However, the axiom o f specialization in HM restricts objects to be form ed only by a union operation o f

disjoint parent objects; that is, the parents o f an object cannot share attributes.

O ther attributes not available in any o f the parent objects can be defined by m eans o f A T T R - S P E C , a list

o f attribute specifications. If no extra attributes are needed to define a new object, an em pty list, () . must

appear as the second argument o f new . The exact syntax o f attribute specifications is described in the

next Section.

Finally, I N I T - S P E C is a sequence o f forms providing initial attribute values. T he syntax o f an

I N I T - S P E C form is:

(ATTRIBUTE-NAME IN IT IA L -V A L U E !

w h e re A T T R IB U T E -N A M E is th e s y m b o l b y w h ic h a p a r t ic u la r a t t r ib u te is id e n tif ie d , a n d I N I T I A L - V A L U E

is a D e s ig n e r fo rm th a t is e v a lu a te d to p ro v id e th e in itia l v a lu e o f th a t a t tr ib u te . O n ly th o s e a t t r ib u te s fo r

w h ic h d e fa u l t v a lu e s a re in s u ff ic ie n t n e e d b e in it ia l iz e d ; d e fa u l t v a lu e s a re ta k e n f ro m th e p a re n ts o f th e

n e w o b je c t .

All constraints arc checked before a final value is returned from new .

Finally, som e general rem arks regarding these forms are in order.

Identity o f objects is based on the corresponding axiom in HM (axiom 3). To be exact, tw o objects

are identical if the sets o f attributes o f the objects correspond, and if the values o f the m em bers o f each

corresponding pair o f attributes are equal.

All the object-form ing functions described above perm it at m ost the addition o f a ttributes to objects; no

facility is currently provided for the removal o f attributes.

A clone keeps track o f all o f its parents. The sequence containing all parents o f an object, all parents o f

the parents, and so on, is called the lineage o f an object. A ny object occurring in the lineage o f an object

is referred to as an ancestor o f the object. Inform ation regarding parents o f objects is im portant fo r two

reasons. First, it is used to create attributes in cloned objects, thus defining object state. Second, it perm its

sharing procedural inform ation betw een objects o f sim ilar kinds: since an object know s w hat objects it

descends from, it can behave like its parents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

128

T he au tho r has found that a prototype-based approach can also capture the conventional notion o f object

classes. In fact, the definition o f a class-like object using only the low-level functions provided by

D e s i g n e r ’s prototype system has been successfully im plemented. T his supports the notion that the

p rototype-based approach is at once m ore general than, yet as equally expressive as, the class-based

approach o f languages like S m a l l t a l k -8 0 .

14.3 Attributes

A ttributes in D e s ig n e r are constrained values stored in objects. T he constraints lim iting the types o f

values an attribute can have are referred to as domain constraints. Exam ples o f dom ain constraints

include i n t e g e r ? and C u b o id ? which are unary predicates that return True only if their arguments

are integers o r "C uboids”, respectively. The dom ain o f an attribute in D e s ig n e r is the set o f values

that satisfies the attribute’s dom ain constraint. A ttributes are identified by a nam e unique am ong all the

attributes o f an object.

A ttributes are added to objects w hen they are created, using the n e w fom i introduced above. Attributes

are defined w ith in n e w by giving a specification o f its com ponent parts using the syntax:

(NAME DOMAIN IN IT IA L -V A L U E)

where NAME is the nam e by w hich the attribute shall be iden tified , DOMAIN is a unary predicate defining

the dom ain constraint, and INITIAL-VALUE is an optional initial value. If the initial value is om itted,

the a ttribute is given the value n o - v a l , a special sym bol in D e s i g n e r indicating no assignm ent has

been m ade, n o - v a l satisfies any constraint in DESIGNER, and is intended to differentiate betw een object

c reation and assignm ent o f values to object attributes. Such a d istinction is im portant because a user will

often know that a certain object will be used, but m ay not a-priori know exactly what the specific nature

o f the ob ject will be [2],

W hen an a ttribute is defined. D e s ig n e r autom atically defines a query fu n ction , used to query the attribute

for its value, and a setter function , used to set its value. T he syntax o f these two kinds o f functions is

given as:

(QUERY-FN OBJE CT)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

129

(S ETTER-FN OBJE CT VALUE)

A query function takes an object as its single argument and returns the current value o f the corresponding

attribute in that object. A setter function takes an object and a value as its argum ents and assigns the value

to the corresponding attribute in that object. A ssignm ent occurs i f the dom ain constraint is satisfied; if a

dom ain constraint violation occurs, an error message is displayed and no assignm ent occurs.

The nam es o f query and setter functions arc based on the name of the attribute. For exam ple, creating an

attribute nam ed l e n g t h causes the creation o f a query function nam ed ? l e n g t h and a se tter function

nam ed l e n g t h : . ? l e n g t h and l e n g t h : will function correctly for all objects w ith an attribute

nam ed l e n g t h , and are created only once. T his convention does not clash w ith S chem e’s convention o f

nam ing predicates w ith a trailing question m ark, yet provides sufficient connotation to m ake the m eaning

o f these functions clear.

T he query and setter functions o f an attribute are representative o f the attribute itself; the im plem entation

o f attributes in D e s ig n e r is not visible to the user. From the user’s point o f view, these functions are the

attribute. T hus we are taking advantage o f the sem antic data m odel’s notion o f attribu tes as functional

m appings betw een objects.

We note finally that the setter function m akes use o f the s e t ! prim itive in Schem e to a lte r the state o f

an attribute in an object. T he author feels justified in this “corruption” o f the functional paradigm insofar

as attribute state is strongly encapsulated w ithin objects; the side-effects are therefore controlled by the

sem antics o f the setter function and beyond the reach o f o ther objects and the user.

14.4 Constraints between Attributes

Dom ain constraints on single attributes are defined v ia dom ain predicates. C onstraints can a lso be imposed

betw een m any attributes in a given object. These constraints are referred to as object constraints, and are

defined using the follow ing form;

(c o n s t r a i n OBJE CT ((N A M E . . .) F O R M .. .) . . .)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

130

where O B J E C T is the object to be constrained, (N A M E .. .) is a list o f the attribute nam es involved in

the constraint, and the rem aining forms F O R M .. . arc the body o f the constraint, the evaluation of which

should return a boolean value. To facilitate adding many constraints to a single object, more than one

constraint can be given in each c o n s t r a i n form.

Object constraints in D e s ig n e r arc passive structures. That is. if a constraint is evaluated and found

to be not satisfied. D e s ig n e r will signal this fact to the user, hut will not attempt to alter the model in

order to satisfy the constraint. T he author reasons that the responsibility o f such alterations should fall on

either the user o r som e software system o f a higher level than D e s ig n e r (e.g. a expert system , neural net,

o r o ther know ledge-based controlling system). D e s ig n e r is meant only to capture design inform ation

statically; it is not a goal-oriented m anipulatory system. Put another way. D e s ig n e r is intended to answer

the question What is th is design? rather than How was this design created?

A particular object constraint is checked whenever an assignm ent is attem pted to any attribute involved

in the constraint. However, the assignm ent occurs whether the object constraint is satisfied o r not. This

is acceptable due to the exigencies o f design. It is often the case that in the course o f a design process,

various constraints m ay not be satisfied. This is quite normal in design [2) and does not necessarily mean

the design is inadequate. It m ay be that the constraints o r the design problem itself arc not wcli-poscd.

T hat is, in design, the m odel o f the artifact evolves as design proceeds, and it is nonnal for there to be

instants w hen the m odel is inconsistent. These are not, and should not be treated as, fatal errors, but rather

as interm ediate steps.

14.5 Function Overloading

In Schem e, one m ay create and use a function w ithout assigning the function a particular name. Such

functions are called anonym ous functions. Overloading o f function nam es is achieved in D e s ig n e r hy

grouping a n u m b ero f anonym ous functions in a list accessible only to a special, generic function. Various

definitions o f the term s “overloading” and “generic functions" have been suggested in the literature

(e.g. [1 9 7 ,1 9 8 ,2 1 0 ,2 1 1]). Here, we use the term “overloading" to denote a language sym bol that

has m ultiple, non-exclusive definitions, and “generic function” to denote a function that can operate

successfully on a num ber o f different types o f objects, where object types are defined by their ancestry.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

131

In order to distinguish between different anonym ous functions bound to the sam e generic function, each

anonym ous function has associated with it a signature indicating the num ber o f param eters required by toe

anonym ous function and a (possibly complex) predicate that is true only for sets o f actual param eters that

arc acceptable for that anonym ous function. The generic function is bound to a user-supplied nam e. W hen

a generic function is called (by referring to its name), the actual param eters are com pared by the system

to the signatures attached to each anonym ous function. The first anonym ous function w ith a signature

m atching the actual param eters is applied to those param eters, and the resulting value is returned.

Generic functions are created in Designer using the o v e r l o a d form:

(o v e r l o a d NAME K I D . . .) (P R E D I C A T E . . .) F O R M .. .) . . .)

where NAME is the sym bol to be overloaded as a generic function, (ID .. .) is a list o f form al param eters to

be used in thcd efin itio n o fap articu la ran o n y m o u s function, and (PREDICATE...) is a list o f predicates

that, together w ith the list o f parameters (ID . . .) .fo rm the signature o f the anonym ous function. FORM...

is the body of the anonym ous function. To facilitate writing m any overloadings o f a single sym bol at

once, o v e r l o a d can accept m any anonym ous function definitions.

By convention, nam es o f generic functions begin with a colon (e.g. : v o lu m e) .

Generic functions com bined with object lineage inform ation perm it the sharing o f functions that act on

objects (i.e. m ethods in conventional object-oriented languages). A signature n a y contain a predicate

that checks for m em bership o f an aigum ent in the lineage o f an object. T h is is equivalent to the IS_A

relationship in HM and im plies that the child object inherits from its parent. T hus, we can cause different

behaviors in generic functions depending on the ancestry o f its arguments. Exam ples are g iven in the next

Section that dem onstrate how this m echanism is sim ilar to polym oiphism in conventional object-oriented

languages.

14.6 Message Forms

T his au thor has found that the canonical m essage passing protocol lends itse lf well to im plem entation in

a functional environm ent, especially if generic functions are used. It also m aintains a single, consistent

syntactic convention for the expression o f both function calls and m essages. A lthough classical m essage

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

132

p a s s in g h a d b e e n im p le m e n ie d in e a r l ie r v e rs io n s o f D e s ig n e r , th e c a n o n ic a l fo rm is fo u n d to b e e a s ie r

to im p le m e n t , m u c h m o re e ff ic ie n t, a n d h a s led to a m u c h m o re u s a b le s y s te m .

T he canonical form dim inishes the importance o f inheritance and/or delegation. T his is because it

establishes m ethods to exist outside objects rather than to be part o f them . Nonetheless, the u ltim ate goal

o f inheritance and delegation - the sharing o f behavior (actions) between objects without requiring the

existence o f object classes o r other higher-ordcr structures - is achieved.

14.7 Intentional Versus Extensional Attributes

In D e s i g n e r , w e distinguish betw een extensional and intentional attributes. An extensional attribute is

one that has an actual value assigned to it, whereas the value o f an in tentional attribute is derived from

the values o f o ther attributes. Extensional attributes are static; that is, their values are not procedural.

T hey are stored w ithin objects them selves and are representative o f the state o f the object. Intentional

a ttributes, however, are procedural (active) in nature. M essages im plem ented w ith generic functions

capture intentional attributes. Exam ples o f this are given in the next Section.

T he au thor notes that it is not alw ays obvious w hether a particular property o f a design entity should be

m odeled w ith an extensional attribute o r an intentional attribute. The criteria for m aking this decision

are bound up in the requirem ents o f the design process used, and can vary widely. For exam ple, if the

w eight o f a particular com ponent is to be constrained, it m ay be preferable to m odel the com ponent’s

d im ensions extensionaliy. and its volum e intentionally. However, if the constraint is based on a restriction

o f space that the com ponent m ay take up, then it m ay be preferable to model its volum e extensionaliy and

its dim ensions intentionally (e.g. as param eterized functions o f the volum e). T h is indicates a relationship

betw een constraint and attribute specifications. An in-depth study o f this relationship is deferred for future

work.

14.8 Summary

In th is Chapter, the author has introduced the principal notions and syntactic form s o f D e s i g n e r , a com ­

puter p rogram m ing language that com bines object-orientation in a functional program m ing environm ent

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

133

such that the axiom s o f HM are satisfied. In this way, continuity o f form al rigor is m aintained from

the logical aspects o f HM through to the implementation o f D e s ig n e r itself. Though unconventional in

som e regards, the D e s ig n e r language provides a num berof m echanism s for the direct m odeling o f design

inform ation in a concise manner.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 15

Examples

D e s i g n e r is an extension o f the Schem e program m ing language, providing a prototype-based object

system . A signature-based, canonical m essage-passing m echanism perm its overloading o f function

nam es. T hus, D e s ig n e r objects satisfy the axiom s o f HM w hile also providing certain very convenient

program m ing m echanism s to increase usability and efficiency.

In add ition to the actual object-oriented extensions o f Scheme, D e s ig n e r also includes a library o f

generally useful objects. T he library can be expanded by the user. Inform ation used to generate som e o f

the a lgorithm s im plem ented in D e s ig n e r and in the prototype library was taken from [212-215]. The

com plete source o f D e s ig n e r and o f the prototype library is given in the Appendices.

15.1 Simple Examples

A sim ple exam ple o f the definition o f two object prototypes is given in Figure 15.1.

T h e first s tatem ent in the exam ple defines C u b o i d to be an object. It is generated by specializing a single

object. O b j e c t , defined within D e s ig n e r as the root parent o f all o ther objects. T he statem ent is noi

a m essage because it acts on objects. It is taken as a convention in D e s ig n e r that objects intended to

be used as prototypes have capitalized nam es (e.g. O b j e c t , C u b o i d) while o ther objects have nam es

consisting entirely o f lower-case letters. T h is rule is not enforced by the syntax o f D e s i g n e r , but is used

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

135

(d e f i n e C u b o i d
(n e w o b j e c t

((x n u m b e r - g t O ? 1)
ly n u m b e r - g t O ? 2;
(z n u m b e r - g t O ? 1))))

(i;iah e - t y p e - p r e d i c a t e C u b o i d)

(d e f i n e S p h e r e
(n e w O b j e c t

((r a d i u s n u m b e r - g t O ? 1))))
(m a k e - t y p e - p r e d i c a t e S p h e r e)

(o v e r l o a d i v o l u m e (I s) ((S p h e r e ? s)) (* (/ 4 3) P i (** (? r a d i u s s) 3)))
((c) ((C u b o i d ? c)) (* (? x c) (? y c) (? z c))))

Figure 15.1: Definition o f tw o Objects.

only to improve readability.

Three extensional attributes are then added to C u b o id , nam ed x , y and z , representing the d im ensions o f

the entity. All three attributes are constrained to be num bers greater than zero by the dom ain specification

n u m b e r - g t 0 ? (assum ing we accept a physical dim ension to be positive and non-zero). A default value

o f 1 is assigned to each attribute.

The second statem ent, (m a k e - t y p e - p r e d i c a t e C u b o i d) , creates a predicate C u b o id ? that

takes a single argum ent and returns True o r False, depending on w hether the argum ent is an object and an

ancestor o f C u b o id .

In the exam ple, a S p h e r e object is also defined, as well as a predicate S p h e r e ? . S p h e r e has one

attribute representing a radius.

Next, the sym bol : v o lu m e is overloaded for both C u b o id s and S p h e r e s . It accepts a single argum ent

descended from either C u b o id or S p h e r e , calculates the volum e o f its argum ent, and returns this

value. T his m eans that any object cloned from C u b o id o r S p h e r e is a valid argum ent. : v o lu m e

is an exam ple o f an intentional attribute; that is, an attribute defined as a function o f o ther attributes.

Representing intentional attributes as functions assures that the values o f these attributes will always

refiect the m ost recent values o f the attributes upon w hich they depend.

D om ain constraints on extensional attributes are checked only w hen new values are about to be assigned

to the attributes, since assignm ent is the only operation that can change their values. I f the new value does

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

136

not satisfy these constraints, the assignm ent does not occur and an error is signalled.

C onstraints m ay also be im posed between attributes in an object. For exam ple, if we w ished to constrain

the C u b o id object such that its y dim ension is always twice its x dim ension, we could write a constraint

as in Figure 15.2.

(c o n s t r a i n C u b o i d (; x y) (= y (* 2 x))))

Figure 15.2: A constraint on Cuboid.

T h is object constraint w ill autom atically be checked each tim e an attempt is made to assign values to

e ither the x o r y d im ensions o f C u b o id o r any object cloned from C u b o id . However, as discussed in

the previous Section, v iolation o f object constraints does not prevent assignm ent from occurring.

C onstraints on intentional attributes are represented differently. Since intentional attributes do not have

explicitly defined values and are represented by functions o f objects, constraints on these attributes occur

at a d ifferent level o f abstraction. For exam ple, if there were a circum stance that required constraining a

C u b o id - lik e object so that its volum e were not to exceed 100 units, we could use form s sim ila r lo those

in Figure 15.3.

(d e f i n e T h i n g
(n e w o b j e c t

((b o x C u b o i d ?)
(m a x - v o l n u m b e r ? 1 0 0))))

(c o n s t r a i n T h i n g ((b o x m a x - v o l) (<= (v o l u m e b o x) m a x - v o l)))

Figure 15.3: Exam ple o f constraint on intentional attributes.

T h is restriction on the form ation o f constraints on intentional attributes is reasonable because such

constrain ts arise from the interaction o f objects (design entities) w ith their environm ent, i.e. o ther objects

w ith w hich they interact. In the exam ple, the m axim um volum e is not a com ponent o f our m odel o f

cuboids. It is inappropriate, then, to em bed such constraints w ithin an object when they in fact model

relationships betw een (possibly) m any objects.

A t any tim e, the constraints on an object m ay be checked w ith the function c h e c k - o b j e c t - c o n s t r a i n t s ,

w hich takes an object as its single argument, and returns a boolean value indicating w hether the constraints

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

137

on the ob jec t’s attributes are satisfied or not.

(d e f i n e boy. (n e w C u b o i d () (x 3) (y 6) (z 5)))
(? x boy.)
(: v o l u m e boy.)
(d e f i n e b a l l (n e w S p h e r e (r 5)))
(: v o l u m e b a l l)

=> 3
=> 90

=> 5 2 3 . 5 9 8 7 7 5 6

Figure 15.4: Exam ples o f D e s ig n e r queries a n d m essages.

Figure 15.4 show s exam ples o f DESIGNER queries and messages. T he text follow ing the =► sym bol show s

the return value when these statem ents are evaluated. The first statem ent defines a new C u b o i d object

whose dim ensions are initialized to 3 ,6 and 5 respectively.

The second statem ent in Figure 15.4 is (? x b o x) . This is a query fo r the value o f the attribute called x

in object b o x . It returns the value 3.

The third statem ent shows the retrieval o f the current value o f an intentional attribute o f b o x : its volum e.

T his is actually a m essage, though in form it appears the sam e as a function call. Because its single

argum ent is a descendant o f C u b o id , the anonym ous function w ithin : v o lu m e that returns the volum e

o f C u b o id objects is evaluated.

It is noted that C u b o id and b o x are both objects, and that there is no essential difference betw een them .

In particular, e ither one m ay be used as a prototype for the generation o f o ther objects.

We then create a new S p h e r e object, nam ed b a l l , w ith a radius o f 5 units. T he v o lu m e m essage is

then evaluated again. But because its argum ent descends from S p h e r e th is tim e, a different anonym ous

function is evaluated.

D e s i g n e r ’s ability to define functions that act differently depending on their argum ents is sim ilar to

polym orphism and dynam ic binding in class-based, object-oriented languages. In the term inology o f

these m ore conventional languages, we w ould say that v o lu m e is a m essage accepted by instances o f

both S p h e r e and C u b o id classes, but im plem ented by different m ethods in each class.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

138

15.2 Multiple Inheritance

D e s i g n e r supports a form o f m ultiple inheritance. Objects m ay inherit from m ore th;ui one parent object,

but none o f the parents m ay share attributes; that is, the sets o f attributes contributed by each parent must

be d isjo in t from the sets o f attributes o f all o ther parents. T his restriction is im posed by HM to m aintain

its logical validity. O ther object-oriented languages have attempted to support m ultiple inheritance of

overlapping parents o r classes, but none has succeeded completely. Indeed, the author considers the

problem atic nature o f m anaging overlapping parents and classes in inheritance to be a clear indication o f

inconsistency, and prefers to restrict the possible kinds o f relationships that can be specified for the sake

o f form al rigor.

In o rd er to introduce the notion o f m ultiple inheritance as supported by D e s i g n e r , w c include a small

exam ple based on an exam ple in [210 ,216] which deals w ith the conceptual m odeling o f vehicles,

m achines, and autom obiles. Figure 15.5 gives both a graphical depiction o f the m odel and the D e s ig n e r

form s used to im plem ent the appropriate prototypes.

In th e e x a m p le , A u t o m o b i l e in h e r its f ro m b o th V e h i c l e a n d M a c h i n e . T h e la s t th re e fo rm s a rc

q u e r ie s d e m o n s t r a t in g th a t th e a t t r ib u te s o f b o th p a re n ts h a v e b e e n p a s s e d o n to A u t o m o b i 1 e .

A l th o u g h o n e m a y q u e s t io n th e v a l id i ty o f m o d e l in g a n a u to m o b ile a s in th is e x a m p le , i t is u s e d h e re o n ly

to d e m o n s t r a te th e s t ra ig h t- f o rw a r d n a tu re o f th e m u l t ip le in h e r i ta n c e m e c h a n is m p ro v id e d b y D e s ig n e r .

T h e v a l id i ty o f u s in g m u lt ip le in h e r i ta n c e a s in th is e x a m p le is in i t s e l f w o r th y o f s tu d y ; h o w e v e r , w c

d e f e r s u c h d i s c u s s io n s in c e i t d o e s n o t b e a r d ir e c t ly o n th e s u b je c t a t h a n d .

15.3 Mimicry of Classes

A nother exam ple indicating the flexibility o f D e s ig n e r involves the generation o f a class-like object as

m igh t b e found in other object-oriented languages (such as S m a l l t a l k -8 0) . The im plem entation o f this

object requires the use o f the low-level functions o f D e s ig n e r and is less than 70 lines o f code. A sim ple

exam ple o f its use for queue objects (first-in, last-out lists) is given in Figure 15.6.

The exam ple dem onstrates that the d istinction is m ade betw een classes (e.g. Q u e u e) and iastanccs (e.g. q),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

139

Vehicle Machine
speed fuel

Automobile
speed

 fuel

(d e f i n e V e h i c l e
(n e w o b j e c t

((s p e e d n u m b e r ? 0))))

(d e f i n e M a c h i n e
(n e w o b j e c t

((f u e l s y m b o l ? n o - v a l))))

(d e f i n e A u t o m o b i l e
(n e w (V e h i c l e M a c h i n e)))

(f u e l : A u t o m o b i l e ' g a s o l i n e)

(? s p e e d A u t o m o b i l e)
(? f u e l A u t o m o b i l e)
(? f u e l M a c h i n e)

Figure 15.5: An exam ple o f m ultiple inheritance in D esig ner .

=*• o
=> g a s o l i n e
=> n o - v a l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

140

(n e w - c l a s s Q u e u e () (1 s t 0 ' ()))

(o v e r l o a d p u s h ((q v) ((Q u e u e ? q)) (1 s t : q (cons v (? l s l q) I)))
(o v e r l o a d p o p ((q) ((Q u e u e ? q))

(i t (n o t (? l s t q)) (e r r o r ' p o p - q u e u e i s e m p t y . -))
(l e t ((r (c a r (? l s t q))))

(1 s t : q (c d r (? l s t q)))
r) I I

(o v e r l o a d a s - l i s t ((q) ((Q u e u e ? q)) (? l s t q)))

(c l a s s ? Q u e u e) => t r u e
(i n s t a n c e - v a r i a b l e s Q u e u e) => (1 s t ())

(d e f i n e q (i n s t a n c e Q u e u e))
(i n s t a n c e ? q)
(c l a s s ? q)
(i s - a q)

(p u s h q 1)
(p u s h q 2)
(p u s h q 3)

(a s - l i s t q) = > (1 2 3)

Figure 15 .6 : Example o f use o f D e s ig n e r Class object.

and that the im portant relation i s - a correctly returns the class o f an instance. A lso, in the n e w - c l a s s

form , the first em pty parentheses are for a list o f (possibly m any) superclasses, thus providing support for

m ultip le inheritance. In th is particular exam ple, no superclasses arc specified.

15.4 Preliminary Design/Synthesis - Four-Bar Linkage

T his Section describes a m ore complex exam ple o f the kinem atic synthesis o f a four-bar linkage given

three precision points. T he three point synthesis technique used here is taken from [34], pages 103-110.

Figure 15.7 presents a schem atic representation o f the geom etry o f the four-bar linkage with various

objects labelled, and a single link with its various parts labelled. T he objects them selves arc discussed

below.

T he four-bar linkage is m odeled as an object (4 b a r , see Figure 15.8) with five attributes, b a s e - a and

b a s e - b are the base connections o f the driver and output links respectively. T he attributes i n p u t ,

=> C r u e
=> f a l s e
^ Q u e u e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

141

c o u p l e r

output

i n p u t

base-a base-b

c-length

joint-b
shaft

joint-a

.Origin o f local
c o o rd in a te f ra m e

Figure 15.7: Schematic geometry o f 4bar and L ink objects.

4bar object

Link object

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

142

c o u p l e r a n d o u t p u t m o d e l th e th re e m o v in g l in k s o f th e m e c h a n is m .

(d e f i n e I b a r
(n e w P a r t

((b a s e - a C o o r d ?)
I b a s e - b C o o r d ?)
(i n p u t L i n k ?)
(c o u p l e r L i n k ?)
(o u t p u t L i n k ?))))

(m a k e - t y p e - p r e d i c a t e - i b a r)

Figure 15.8: Definition o f four-bar linkage object.

O u r d e f in i t io n o f 4 b a r d e p e n d s o n th re e o th e r o b je c ts : C o o r d , P a r t a n d L i n k . T h e s e o b je c ts a re

p ro to ty p e s d e f in e d in th e D e s ig n e r p ro to ty p e lib ra ry . C o o r d m o d e ls 3 D p o in ts . P a r t re p re s e n ts

m e c h a n ic a l p a r ts ; d e s c e n d a n ts o f P a r t m a y b e c o m p o n e n ts o r a s s e m b lie s , a n d a re a g g re g a te s o f o th e r

o b je c ts m o d e l in g a p h y s ic a l p a r t ’s g e o m e tr ic a n d p h y s ic a l p ro p e r t ie s (i .e . m a te r ia l ty p e , e tc .) . L i n k is a

s p e c ia l iz a t io n o f P a r t s p e c if ic to th e d e v e lo p m e n t o f th e fo u r -b a r l in k a g e m o d e l , a n d is d e f in e d in F ig u re

15 .9 .

(d e f i n e L i n k
(n e w P a r t

((c - l e n g t h n u m b e r - g t O ? 1)
(s h a f t P a r t ?)
(j o i n t - a P a r t ?)
(j o i n t - b P a r t ?))))

(m a k e - t y p e - p r e d i c a t e L i n k)

Figure 15.9: Definition o f L ink objects.

T he geom etry o f L i n k is a com plex one which could be based on a solid m odel. Its attributes include a

shaft and tw o jo in ts . The jo in ts are used to connect links to one another. In addition. L i n k has one other

attribute: a characteristic length that represents the distance from one jo in t o f the link to the other. It is

used as a constrain t on the geom etry o f the link and is generated as part o f the solu tion o f the three-point

synthesis technique. T he values o f the s h a f t and j o i n t a t t r ib u te s a r c n o - v a l by default; as the actual

geom etry o f individual links is defined, we can add constraints to L i n k that will assure that the geometric

p roperties o f the s h a f t and j o i n t s m aintain a relationship defined from the synthesis m ethod via the

lin k ’s characteristic length (see Figure 15.10).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(c o n s t r a i n L i n k ((c - l e n g t h s h a f t j o i n t - a j o i n t - b)
(: = c - l e n g t h

(: i n t e r s e c t (? a x i s j o i n t - b) (? a x i s s h a f t))
(: i n t e r s e c t (? a x i s j o i n t - a) (? a x i s s h a f t))))))

(m a k e - c o n s t r u c t o r L i n k (c l) (n e w L i n k () (c - l e n g t h c l)))

Figure 15.10: Geometric constraints for L in k objects.

The definition o f L in k introduces a new D esign er function, m a k e - c o n s t r u c t o r . This function is

meant for convenience and creates a constructor function that facilitates the instantiation o f prototypes.

In this case, m a k e - c o n s t r u c t o r will create a function @ Link that creates a new L in k object and

uses its single argument to initialize the link's characteristic length. Many, though not all, prototypes in

D esig n er have constructors defined for them.

The three-point synthesis technique is implemented in D esig n er as a method activated by the message

O p t - s y n t h e s i s . . .) and is given in Figure 15.11.

A detailed explanation o f the 3 p t - s y n t h e s i s m ethod is unnecessary here. E ssentially , the technique

uses various angular and linear displacem ents o f the four-bar linkage through the three prescribed points

to generate enough inform ation to create a new 4 b a r object that satisfies the input param eters. A series

o f exam ples taken from [34] were used to test the algorithm ; ou r results were num erically identical to

those given in the reference. The heart o f the m ethod is the last form , (n e w 4 b a r . . .) , w hich actually

creates a clone o f 4 b a r and returns it.

The author notes that the 3 p t - s y n t h e s i s m ethod is not covered explicitly by H M itse lf because it is

a procedural com ponent o f design; it is included here as a vehicle by w hich design m odels created w ith

D esig n er can be d irectly m anipulated to perform useful design operations.

T his representation o f a four-bar linkage is a param eterized m odel suitable fo r a num ber o f purposes. If,

for exam ple, a kinem atic analysis o f the four-bar linkage were to be perform ed, the 4 b a r object could be

extended to capture the inform ation needed to constrain the com ponents o f the four-bar linkage assembly.

These constraints can be specified in D esig n er with the form s in Figure 15.12.

T he base points b a s e - a and b a s e - b are not considered part o f the geom etry o f the linkage itself, but

rather com ponents o f constraints placed on parts o f the geometry. Specifically, the ends o f the input

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

144

(o v e r l o a d 3 p t - s y n t h e s i s
((D2 D3 p h i 2 p h i 3 g a m ma ? gamraa3 p s i 2 p s i 3 l

((C o m p l e x ? D 2) (C o m p l e x ? D3) (n u m b e r ? p h i 2) (n u m b e r ? p h 13)
(n u m b e r ? g a m m a ?) (n u m b e r ? gamma3) (n u m b e r ? p s i 2) (n u m b e r ? p s i 3)

(l e t ((C p h i 2 (O C o m p l e x (c o s p h i 2) (s i n p h i 2)))
(C p h i 3 (O C o m p l e x (c o s p h i 3) (s i n p h i 3)))
(Cgamma2 (O C o m p l e x (c o s g amma 2) (s i n g a m m a 2)) l
(Cgamma3 (O C o m p l e x (c o s gamma3) (s i n g a m m a 3)))
(C p s i 2 (O C o m p l e x (c o s p s i 2) (s i n p s i 2)))
(C p s i 3 (O C o m p l e x (c o s p s i 3) (s i n p s i 3)))
(2 1 n o - v a l) (Z2 n o - v a l) (Z3 n o - v a l)
(Z4 n o - v a l) (Z5 n o - v a l) (Z6 n o - v a l))

(s e t ! Z1 (/ (- (* D2 (- Cgamma3 1)) (* (- Cg a mma ? 1) D 3) I
(- (* (- C p h i 2 1) (- Cgamma3 1)) (* (- Cganuna2 1)

(s e t ! Z2 (/ (- (* (- C p h i 2 1) D 3) (* D2 (- C p h i 3 1)))
(- (* (- C p h i 2 1) (- Cgamma3 1)) (* (- Cgamma2 1)

(s e t ! Z3 (/ (- (* D2 (- Cgamma3 1)) (* (- Cg a mma ? 1) D 3))
(- (* (- C p s i 2 1) (- Cgamma3 1)) (* (• Cgamma2 1)

(s e t ! Z4 (/ (- (* (- C p s i 2 1) D3) (' D2 (- C p s i 3 I D)
(- (* (- C p s i 2 1) (- Cgamma3 1)) (' (- Cgamma2 1)

(s e t ! Z5 (- Z2 Z 4))
(s e t) Z6 (- (+ Z1 Z5) Z 3))

(n e w 4 b a r (b a s e - a (O C o o r d 0 0 0))
(b a s e - b (O C o o r d (? r e a l Z6) (? i m a g Z6) (z 0))
(i n p u t (@L i n k (m a g n i t u d e Z l))
(c o u p l e r (@L i n k (m a g n i t u d e Z 5))
(o u t p u t (@L i n k (m a g n i t u d e Z 3)))))))) >)

Figure 15.11: Three point synthesis method.

(- C p h i 3 H D D

(- C p h i 3 D I D)

(- C p s i 3 1) 1 1) 1

(- C p s i 3 D))) I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

145

(c o n s t r a i n 4 o a r
I (b a s e - a i n p u t)

l i l o t a t e i n p u t (l a m b d a (p o)
(a n d (= (? x p) (? x b a s e - a))

(= (? y p) (? y b a s e - a))
(= (? z p) (? z b a s e - a) !))))

((i n p u t c o u p l e r)
(: l o c a t e c o u p l e r (l a m b d a (p o)

(a n d (= (? x p) (? c - l e n g c h i n p u t))
(= (? y p) 0) (= <?z p) 0)))

i n p u t))
((c o u p l e r o u t p u t)

(: l o c a t e o u t p u t (l a m b d a (p o)
(a n d (= (? x p) (? c - l e n g t h c o u p l e r))

(= (?y p) 0) (= (? z p) 0)))
c o u p l e r))

((o u t p u t b a s e - b)
(: l o c a t e o u t p u t (l a m b d a (p o)

(a n d (= (? x p) (? x b a s e - b))
(= (?y P) (?y b a s e - b))
(= (?z p) (? z b a s e - b)))))))

Figure 15.12: Kinematic constraints fo r 4 b a r objects.

and outpul links o f the four-bar linkage are constrained to rem ain at the coordinates defined by the base

points, though they are free to rotate, and successive links in the linkage are sim ilarly constrained. In

the constraint specification, b a s e - a , b a s e - b , i n p u t , c o u p l e r and o u t p u t refer to attributes in

a 4 b a r object; : l o c a t e is an overloaded m essage to any P a r t that takes tw o o r three arguments.

T he first argum ent is an attribute whose value is to be spatially constrained. T he second argum ent is a

function definition (a lambda form) that specifies the nature o f the constraint, and takes tw o argum ents: the

position and orientation o f the attribute to be constrained. T he optional third argum ent is another attribute

in whose coordinate fram e the spatial constraint is to occur. T he representation o f spatial coordinates w ith

respect to non-global coordinate fram es is rem iniscent o f the relative coordinate form ulation o f variational

solid m odeling taken by Fogle [75]; in that work, it is dem onstrated that the use o f relative coordinate

fram es can sim plify the specification o f spatial relationships. The current w ork w ith D e sig n e r appears

to corroborate Fogle 's findings.

T he first constraint is betw een the base point b a s e - a and the i n p u t link: : l o c a t e is used to constrain

the position o f i n p u t to m ap exactly to the position o f b a s e - a . T he second constrain t is betw een the

i n p u t and c o u p l e r links, and constrains the origin o f c o u p l e r to be a t the end o f i n p u t opposite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

146

where i n p u t is attached to b a s e - a . In this case, the constraint is defined w ith respect to the coordinate

system o f i n p u t . T he other constraints are sim ilarly defined.

T he 4 b a r object defined herein m odels a four-bar linkage that satisfies the input data at an abstract,

conceptual level. A lthough the actual shape o f the links has not been defined, their one essential property,

their characteristic length, has been captured. The value o f these attributes becom e constraints on the

actual geom etries o f the links.

T his exam ple dem onstrates that D esigner is capable o f m ore than ju st m odeling design artifacts

them selves; it provides the m eans to capture inform ation about the entire design. For exam ple, the

3 p t - s y n t h e s i s m ethod defines a relationship between the functional requirem ents o f a four-bar link­

age, and the key design param eters that define the physical solution. T his indicates that D esig n er can

represent the relationship between functional requirements o f a design problem specification end the

physical param eters that define a solution. Specifications expressed as generic functions acting on objects

define relationships betw een the requirem ents o f a design artifact and the objects them selves capture key

design param eters that define the physical solution. T his indicates that D esig n er can represent the rela­

tionship betw een functional requirem ents o f a design problem specification and the physical param eters

that define a solution.

15.5 Hierarchical Organization - Thermal Analysis of a Wall

T his final exam ple shall focus on the organization o f design inform ation with D esign er . Specifically,

we shall present (a) a param eterized r.todel o f a wall, and (b) a representation o f steady-stale heat flow

fo r the wall m odel. T h is exam ple is inspired by the m aterial in [97]. It is noted here at the outset that

the m odel presented below is not the only way one could represent a wall in D esigner; this particular

m odel was chosen because (a) it m atched the au thor’s cognitive model o f walls and (b) it is sufficient for

dem onstration purposes in this document.

T hroughout the follow ing text, the reader m ay refer to Figure 15.13; this figure depicts graphically the

structure o f the wall m odel, including all objects as well as all inheritance and aggregation relationships.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

147

” In c re a s in g A ggregation '

| Geometry [D E SIG N E R A N D
D E S IG N E R L IB R A R Y

r— — » ' - I ♦
 >|M aterial LayeTl-""! 11 ~H Shape

| O p en in g |brick , Rectangle

Wdw

EXAMPLE
PROTOTYPES

1 ■ Inheritance R elationsh ip

 A ggrega tion R elationsh ip

Figure 15.13: Inheritance/A ggregation N etw ork for Wall Exam ple.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

148

15.5.1 Structural Modeling Considerations

There are tw o im portant aspects that m ust be considered to generate a useful m odel o f a wall: its geometry

and its com position.

T he w idth and height o f a wall are im portant in defining its relationship to o ther structural elem ents, but

are not essentially tied to its com position1. The constraints on wall w idth and height exist at the level of

assem blages o f m any walls and thus are beyond our single-wall model; so, from the point o f view of this

exam ple, heigh t and w idth are arbitrarily defined values.

T he thickness o f a wall, however, m ust be treated differently because it depends on the w all’s composition.

A wall is com posed o f various layers, each serving a specific purpose - load bearing, insulation, covering,

and so on. Each layer is constrained according to the requirements o f that particular wall, which in turn

constrains the w all’s overall thickness. So though the height and w idth o f a wall are arbitrary (from the

po in t o f view o f the wall model), its thickness is not.

Therefore, we will represent height and w idth as purely geometric extensional attributes and thickness as

an intentional attribute depending on the w all’s composition.

15.5.2 Thermal Analysis Modeling Considerations

For the therm al analysis portion o f this exam ple, we will m ake use o f the follow ing physical relationships

(draw n from [97] and a standard therm odynam ics text [214]).

T he heat flow through a wall is represented approxim ately by;

0 = (15.1)

w here A T is the change in tem perature through the wall from the w anner side to the coo ler side, I and A

are the thickness and area o f the wall respectively, and k is the therm al conductivity o f the wall.

Furtherm ore, by analogy w ith electrical system s, we m ay define an overall coefficient o f therm al conduc-

'F o r stress analysis and structural integrity, we would likely need to constrain the size o f the wall based on its composition:
it m ust be able to carry its own w eight However, we are only interested in thermal analysis for this example.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

149

livity, U, for a wall o f m any layers o f constant area as:

U = (15.2)

where r, is the therm al resistance o f the ith layer o f the wall, defined by:

(15.3)

15.5.3 Definition of Wall Prototype Objects

We begin by defining a prototype for sim ple planar geom etric S h a p e objects (F igure 15.14), w ith

attributes o f h e i g h t and w i d t h . S h a p e objects will be used to define the m ajo r com ponents o f walls.

T he area o f these shapes will be o f importance in the therm al analysis, so we include the definition o f

an intentional attribute : a r e a . S h a p e inherits from G e o m e tr y , an object defined in the D esig n er

prototype library w hich m odels an arbitrary spatial object, providing a local coordinate fram e for the

object and m essages to perform various transform ations.

(m a k e - t y p e - p r e d i c a t e S h a p e) ; a b s t r a c t p r o t o t y p e
(d e f i n e S h a p e

(n e w G e o m e t r y
((w i d t h n u m b e r - g t O ? 1)

(h e i g h t n u m b e r - g t O ? 1))))

(m a k e - t y p e - p r e d i c a t e T r i a n g l e) ; s u b t y p e f o r t r i a n g l e s
(d e f i n e T r i a n g l e (c l o n e S h a p e))

(m a k e - t y p e - p r e d i c a t e R e c t a n g l e) ; s u b t y p e f o r r e c t a n g l e s
(d e f i n e R e c t a n g l e (c l o n e s h a p e))

(o v e r l o a d : a r e a
((t) ((T r i a n g l e ? t)) (* (? w i d t h t) (? h e i g h t t) 0 . 5))
((r) ((R e c t a n g l e ? r)) (* (? w i d t h r) (? h e i g h t r))))

Next, we need to represent the notion o f a layer o f a wall. We shall assum e that a single layer is com posed

o f a single m aterial and is o f constant thickness. L a y e r objects are defined in Figure 15.15. F o r the

Figure 15.14: 2D Shape objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

150

sake o f the therm al analysis, we include a m essage definition for : t h e r m - r e s i s t , which returns the

therm al resistance o f a layer o f a given thickness and material.

(m a k e - t y p e - p r e d i c a t e L a y e r)
(d e f i n e L a y e r

(n e w O b j e c t
((m a t e r i a l M a t e r i a l ?)

(t h i c k n e s s n u m b e r - g t O ? 1))))
(m a k e - c o n s t r u c t o r L a y e r (m t) (n e w L a y e r 0 (m a t e r i a l m) (t h i c k n e s s t)))

(o v e r l o a d : t h e r m - r e s i s t a n c e
((1) ((L a y e r ? 1)) (/ (? t h i c k n e s s 1) (? t h e r m - c o n d (T m a t e r i a l])))))

Figure 15.15: Layer objects.

T he M a t e r i a l prototype is defined in Figure 15.16; for brevity, we have included only one necessary

property, therm al conductivity, and the few instances needed for this exam ple. Therm al conductivity data

w as taken from [214], Num eric values are in SI units.

(m a k e - t y p e - p r e d i c a t e M a t e r i a l)
(d e f i n e M a t e r i a l

(n e w O b j e c t ((t h e r m - c o n d n u m b e r - g t O ? 1))) |

(d e f i n e b r i c k , c o m m o n (ne w M a t e r i a l () (t h e r m - c o n d 0 . 6 9)))
(d e f i n e b r i c k , f a c e (n e w M a t e r i a l 0 (t h e r m - c o n d 1 . 3 1)))
(d e f i n e g l a s s , w i n d o w (ne w M a t e r i a l () (t h e r m - c o n d 0 . 7 8)))
(d e f i n e p l a s t e r , g y p s u m (ne w M a t e r i a l 0 (t h e r m - c o n d 0 . 4 8)))
(d e f i n e w o o d , p i n e , y e l l o w (n e w M a t e r i a l () (t h e r m - c o n d 0 . 1 4 7)))
(d e f i n e w o o d , p i n e , w h i t e (ne w M a t e r i a l () (t h e r m - c o n d 0 . 1 1 2)))
(d e f i n e w o o l , r o c k (n e w M a t e r i a l 0 (t h e r m - c o n d 0 . 0 3 9)))
(d e f i n e a i r (n e w M a t e r i a l () (t h e r m - c o n d 0 . 0 2 6 2 4))) ; a t 300K

Figure 15.16: M aterial Prototype and Instances.

In o rder to perm it the creation o f w alls with m ore com plex geom etries than those described by S h a p e

objects, we define a segm ent to be an area-wise com ponent o f a wall. Segm ents will be defined with

S h a p e and L a y e r objects. We will also be able to use segm ents to define w alls that have regions

com posed o f different layers. However, before we define a prototype to represent wall segm ents, we

m ust consider one o ther com positional elem ent o f walls: openings. An opening is intended to generalize

the no tion o f passages through a wall. For this exam ple, we will only consider doors and windows.

A n opening exhibits the same properties as segm ents: they occupy a certain area, and are com posed

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

151

o f p o s 'lb ly many layers (e.g. m ulti-paned windows). Since it is desirable to m inim ize the inform ation

content o f our m odel, we will begin by defining a WallAtom object that will capture those properties

com m on to both wall openings and segm ents (see Figure 15.17). It is noted that none o f these prototypes

will use the Shape prototype defined above for planar shapes. WallAtom and its descendants are used

lo capture inform ation specific to walls o ther than their shape. We will, however, m ake use o f the shape
prototype later.

(m a k e - t y p e - p r e d i c a t e Wa 11A t oin)
(d e f i n e W a l l A t o m (c l o n e O b j e c t !)

(o v e r l o a d : t h i c k n e s s
((a l ((W a l l A t o m ? a))

(a p p l y + (f o r e a c h - a t t r i b u t e a L a y e r ? ? t h i c k n e s s))))

(o v e r l o a d : t h e r m - c o n d
((a) ((W a l l A t o m ? a))

(/ 1 . 0
(a p p l y + (f o r e a c h - a t t r i b u t e a L a y e r ? : t h e r m - r e s i s t a n c e)))))

Figure 15.17: Atom ic wall com ponents for openings and segm ents.

The : t h e r m - c o n d m essage calculates the overall coefficient o f therm al conductivity o f a W a llA to m

according to the mathematical m odel in Section 15.5.2. T he instances o f f o r e a c h - a t t r i b u t e

gathers all attributes in W a llA to m objects that are L a y e r s , applies a function to them (? t h i c k n e s s

and : t h e r m - r e s i s t a n c e respectively), and returns the list containing the results o f the function

applications.

Now we can use W al 1 A tom to define prototypes for wall openings and segm ents. T he only real d istinction

betw een openings and segm ents is that segm ents m ay contain openings, but openings cannot contain other

openings (i.e. a w indow cannot have another w indow as a com ponent).

(m a k e - t y p e - p r e d i c a t e O p e n i n g)
(d e f i n e O p e n i n g (c l o n e W a l l A t o m))

(o v e r l o a d : s p e c - h e a t - f l o w
l (o) ((O p e n i n g ? o)) (* (: t h e r m - c o n d o) (: a r e a o))))

Figure 15.18: Prototype for wall openings.

First, we define an O p e n in g object in Figure 15.18. The specific hea t flo w o f an O p e n in g is de ­

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

152

fined as the rate o f heal flow per degree o f temperature, and is represented by the intentional attribute

: s p e c - h e a t - f l o w .

(m a k e - t y p e - p r e d i c a t e S e g m e n t)
(d e f i n e S e g m e n t (c l o n e W a l l A t o m))

(o v e r l o a d : o p e n i n g - a r e a
((s) ((S e g m e n t ? s))

(a p p l y + (f o r e a c h - a t t r i b u t e s O p e n i n g ? : < u e n) M)

; ; ; w a l l s e g m e n t a r e a = t o t a l a r e a - o p e n i n g a r e a
(o v e r l o a d : s e g m e n t - a r e a

((s) ((S e g m e n t ? s)) (- (: a r e a s) (: o p e n i n g - a r e a s))))

(o v e r l o a d : s p e c - h e a t - f l o w
((s) ((S e g m e n t ? s))

(+ (a p p l y + (f o r e a c h - a t t r i b u t e s O p e n i n g ? : s p e c - h e a t - E l o w))
(* (: t h e r m - c o n d s) (: s e g m e n t - a r e a s)) M)

(o v e r l o a d : h e a t - f l o w
((s d t) ((S e g m e n t ? s) (n u m b e r ? d t))

(* (: s p e c - h e a t - f l o w s) d t)))

Figure 15.19: Prototype for wall segm ents.

Second, w e define a S e g m e n t object in Figure 15.19. In this case, we differentiate betw een the total area o f

the wall segm ent, the area o f all the openings (represented by the intentional attribute : o p e n i n g - a r e a)

and the area o f actual w all m aterial (represented by the attribute : s e g m e n t - a r e a) . T he specific heat

flow (: s p e c - h e a t - f lo w) o f a segm ent is the sum o f the specific heat flows o f each opening and the

specific heat flow o f the rest o f the wall. We finally define the attribute : h e a t - f l o w to calculate the

actual heat flow through a given S e g m e n t for a g iven tem perature difference.

Next, we shall specialize Opening for both doors and windows. First, we define Door in Figure

15.20. Door inherits m ultiply from both Opening and Rectangle: the form er provides those aspects

that represent design intent and function (at least, insofar as thermal analysis is concerned) as well as

com position , whereas the latter provides those aspects representing its o ther geom etric characteristics.

T he @Door constructor (created by make-constructor) sim plifies the creation o f single-layered

doors. I f som e particular door has more than one layer (unlikely though that m ight be), it can be created

using new.

Various prototypes are created for different kinds o f w indows in Figure 15.21.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

153

(in;.! k o - t y p e - p r e d i c a t e D o o r)
(d e f i n e D o o r (n e w (O p e n i n g R e c t a n g l e)

((l a y e r L a y e r ?))))
(m a k e - c o n s t r u c t o r D o o r (in w h t)

(n e w D o o r 0
(l a y e r (n e w L a y e r () (m a t e r i a l m) (t h i c k n e s s c)))
(w i d t h w)
(h e i g h t h)))

Figure 15.20: Prototype object for doors.

(m a k e - t y p e - p r e d i c a t e Wdw)
(d e f i n e Wdw (c l o n e O p e n i n g))

(m a k e - t y p e - p r e d i c a t e W d w , I P a n e)
(d e f i n e W d w , I P a n e

(n e w Wdw
((p a n e L a y e r ? (n e w L a y e r 0 (m a t e r i a l g l a s s , w i n d o w))))))

(m a k e - c o n s t r u c t o r W d w , I P a n e (t)
(l e t ((w (c l o n e W d w , I P a n e)))

(t h i c k n e s s : (? p a n e w) t)
w))

(m a k e - t y p e - p r e d i c a t e Wdw, 2 P a n e)
(d e f i n e W d w , 2 P a n e

(n e w Wdw
((p a n e l L a y e r ? (n e w L a y e r () (m a t e r i a l g l a s s , w i n d o w)))

(g a p L a y e r ? (n e w L a y e r () (m a t e r i a l a i r)))
(p a n e 2 L a y e r ? (n e w L a y e r 0 (m a t e r i a l g l a s s , w i n d o w))))))

(m a k e - c o n s t r u c t o r W d w , 2 P a n e (t - p a n e l t - g a p t - p a n e 2)
(l e t ((w (c l o n e W d w , 2 P a n e)))

(t h i c k n e s s : (? p a n e l w) t - p a n e l)
(t h i c k n e s s : (? g a p w) t - g a p)
(t h i c k n e s s : (? p a n e 2 w) t - p a n e 2)

w))

(m a k e - t y p e - p r e d i c a t e W d w , I P a n e , 5)
I d e f i n e W d w , I P a n e , 5 (S W d w , I P a n e 0 . 0 0 5))

(m a k e - t y p e - p r e d i c a t e W d w , 2 P a n e , 5 - 4 - 5)
(d e f i n e W d w , 2 P a n e , 5 - 5 - 5 (0 W d w , 2 P a n e 0 . 0 0 5 0 . 0 0 4 0 . 0 0 5))

Figure 15.21: Prototype objects for windows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

154

We begin by defining a sim ple Wdw object, specialized from O p e n in g . Wdw is then specialized into

single-paned (Wdw, I P a n e) and doublc-pancd (Wdw, 2 P a n e) types. In both cases, glass is used as the

m aterial for the panes, and in the case o f Wdw, 2 P a n e , the interstitial space contains air. Constructors

(@Wdw, I P a n e and @Wdw, 2 P a n e) arc created for convenience. Finally, in the last four lines o f Figure

15.21, tw o specific kinds o f w indows are created: Wdw, I P a n e , 5. a single-pancd w indow with a 5

m illim eterpane o f glass: and Wdw, 2 P a n e , 5 - 4 - 5, a doublc-pancd window with two 5 m illim eter panes

and a 4 m illim eter air gap betw een them.

O ne last prototype needs to be defined: the wall itself. Since all the important functions for thcnual

analysis have been defined w ithin S e g m e n t and O p e n in g , the W a l l object need not be m uch more

than an aggregate used to gather together various S e g m e n t objects. W a l l is defined in Figure 15.22.

O ur m odel provides intentional attributes for the overall area o f a wall (: a r e a) and the total area o f all

openings in a wall (: o p e n i n g - a r e a) . It also provides a m essage : h e a t - f lo w that calculates the

total heat (low through a wall for a given tem perature difference.

(m a k e - t y p e - p r e d i c a t e W a l l)
(d e f i n e W a l l (c l o n e G e o m e t r y) !

(o v e r l o a d : a r e a
((w) ((W a l l ? w)) (a p p l y + (f o r e a c h - a t t r i b u t e w S e g m e n t ? : a r e a))))

(o v e r l o a d : o p e n i n g - a r e a
((w) ((W a l l ? w))

(a p p l y + (f o r e a c h - a t t r i b u t e w S e g m e n t ? : o p e n i n g - a r e a))))

(o v e r l o a d : h e a t - f l o w
((w d t) ((W a l l ? w) (n u m b e r ? d t))

(* (a p p l y + (f o r e a c h - a t t r i b u t e w S e g m e n t ? : s p e c - h e a t - f l o w))
d t)))

Figure 15.22: Prototype object for walls.

15.5.4 Example of Wall Model Usage

We now present an exam ple o f the use o f these prototypes to define a particular wall, and calculate the heat

flow through it. T he sam ple wall will consist o f two segm ents, a large rectangular segm ent containing a

w indow and a door, and a sm aller triangular segm ent with no openings. Figure 15.23 defines these two

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

155

segm ents, and the wall they compose.

(' Jr . - f ine cngl
(no w (S egme n t : R e c t a n g l e) ; S e g m e n t #1

((d o o r D o o r ? (QDoo r w o o d , p i n e , w h i t e 1 2 0 . 0 6))
(•wdw Wdw? (ne w (Wdw, I P a n e , 5 R e c t a n g l e) ()

(w i d t h 1) (h e i g h t 0 . 6)))
(o u t e r L a y e r ? (Q L a y e r b r i c k , f a c e 0 . 1))
(c o r e L a y e r ? (O L a y e r w o o l , r o c k 0 . 1))
(i n n e r L a y e r ? (Q L a y e r p l a s t e r , g y p s u m 0 . 0 1)))

(w i d t h 4) (h e i g h t 2 . 5)))

(d e t i n e s e g 2 ; S e g m e n t 02
(n e w (S e g m e n t T r i a n g l e)

((o u t e r ? L a y e r ? (Q L a y e r w o o d , p i n e , w h i t e 0 . 0 0 5))
(o u t e r L a y e r ? (Q L a y e r b r i c k , c o m m o n 0 . 1))
(c o r e L a y e r ? (Q L a y e r w o o l , r o c k 0 . 1))
(i n n e r L a y e r ? (Q L a y e r w o o d , p i n e , y e l l o w 0 . 0 0 5)))

(w i d t h 4) (h e i g h t 1 . 5)))

(d e t i n e w ; T h e w a l l i t s e l f
(n e w Wa11

((s i S e g m e n t ? s e g l l
(s 2 S e g m e n t ? s e g 2))))

Figure 15.23: Two sam ple wall segm ents.

T he rectangular segm ent, s e g l , is com posed o f three layers: an ou ter layer o f brick, a central layer o f

rock wool (for insulation), and an inner layer o f plaster. T he door is m ade o f pine, and the w indow is

single-paned. The triangular segm ent, s e g 2 , is com posed o f four layers: an inner pine layer, a central

layer o f rock wool, and two outer layers, pine over brick. The w a l l object itse lf is ju s t an aggregate o f

the two segm ents.

Figure 15.24 show s three m essages sent to the wall w, and the values returned; the last query returns the

heat flow through the wall for a tem perature difference o f 20 degrees.

(: a r e a w) = > 1 3
(. - o p e n i n g - a r e a w) ^ 2 . 5
C h e a t - f l o w w 2 0) => 1 7 1 2 . 5 5 3 9 1 9 0 0 9 3 1

Figure 15.24: M essages sent to the sam ple wall.

We can then change the window in wall w to be double-paned, to see w hat the saving in heat flow will

be, if any. T his is show n in Figure 15.25. We find that a double-paned w indow can greatly im prove the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

156

overall therm al insulation o f the wall.

(wdw: (? s e g l w) (n e w (W d w , 2 P a n e , 5 - 4 - 5 R e c t a n g l e) (I
(w i d t h 1) (h e i g h t 0 . 5)))

(: h e a t - f l o w w 2 0) => 2 13 . 00 4 7 4 8 3 5 7 9 3 ?

Figure 15.25: Altering the sam ple wall.

15.5.5 Observations

T his exam ple dem onstrates the conciseness with which relatively com plex m odels can be created. The

entire wall m odel as defined in this Section consists o f less than 200 lines o f code, and som e o f the model

prototypes (i.e. M a t e r i a l , S h a p e) could easily be re-used in m any o ther applications.

Furtherm ore, because design intention is m odeled in a relatively straight-forw ard manner, we conclude

that analysis o f design entity m odels created with D esigner can accurately reflect on the adequacy o f

o u r conceptual m odels o f those entities. For exam ple, both segm ents o f the wall created in Figure 15.23

inherit m ultip ly from S e g m e n t and from descendants o f S h a p e (i.e. R e c t a n g l e and T r i a n g l e) . It

is at th is po in t that the geom etric and com positional aspects o f the m odel arc com bined. These aspects

are, insofar as we have defined them here, independent. T heir com bination has been deferred to the point

w here it w as absolutely necessary. We m ay have com bined S h a p e and S e g m e n t objects earlier in the

developm ent o f the m odel, but this would have led to an increased num ber o f prototypes (i.e. there would

have been proto types for rectangular openings, rectangular segm ents, triangular openings, and triangular

segm ents). T h is approach would have introduced a great deal o f redundant inform ation that would have

m ade o u r m odel m ore difficult to com prehend. As well, the subsequent addition o f o ther kinds o f S h a p e

objects (e.g. C i r c l e) w ould have required the addition o f circular opening and segm ent prototypes to

m aintain consistency w ith the rest o f the model. But as we have done it here, wc would only need to

define the C i r c l e prototype and use it in the creation o f various wall segm ents as required. Thus, an

analysis o f the com putational m odel o f a wall in D esig n er corresponds to an analysis o f the conceptual

m odel underly ing the com putational one. Such analysis can im prove o u r collective ability to perform

design.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 16

Discussion

D e s ig n e r represents a new com putational paradigm for engineering applications com bining the advan­

tages o f functional and object-oriented program m ing paradigm s in a seam less and usable system . The

functional paradigm lets us use robust form alism s that ensure logical rigor o f the resulting system , while

object-orientation gives us the ability to model complex entities and relationships directly. Sem antic data

m odeling provides a unique view point on the nature o f attributes.

D e s ig n e r largely satisfies HM. Since HM m inim izes im pedance m ism atches w ith respect to the u se r’s

cognitive m odel o f design inform ation by m eans o f its isom orphism (see Part III), D e s i g n e r also m ini­

m izes im pedance m ism atches w ith respect to the u ser’s cognitive m odel.

D e s ig n e r is not intended to m anipulate data, satisfy constraints, perform analysis o f design m odels,

o r database m anagem ent. It is a static data m odeling language. However, because o f S chem e’s meta-

circularity and its ab ility to operate w ith higher order functions, it is possible to extend D e s i g n e r to

include dynam ic data m odeling capabilities (i.e. the capability to operate on and otherw ise m anipulate

data as opposed to its specification).

Experim entation w ith D e s ig n e r has included three m ajor exam ples to date. Firstly, a c lass-like object has

been successfully im plem ented using D e s i g n e r ’s low-level prototyping facilities. T h is im plem entation

captures all the basic properties o f object classes as they are conventionally defined in languages such

as S m a l l t a l k -8 0 . T his indicates that ou r com putational m odel is as expressive as m odels used by

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

158

conventional object-oriented languages, yet sim pler and more general than those models.

T he second exam ple is the four-bar linkage model. This exam ple dem onstrates D esign er's ability to

capture quite arbitrary design inform ation, and that it is not restricted to m odeling the design artifact alone,

but can include the artifact’s functional specifications and design intent (e.g. the relationships between

the specification o f the design problem and its solution). The ability o f D esigner to assist in m odeling

design artifacts in the conceptual stages o f a design process arc also indicated.

Third, the exam ple o f structural and thermal m odeling o f walls dem onstrates the abilities o f D esig n er and

its underlying form al m odels to capture detailed technical inform ation as well its m ore general conceptual

inform ation about designs. A lso, the correspondence between D esig n er com putational m odels and users’

conceptual m odels facilitates the analysis o f designs in general.

T he current im plem entation o f D e s ig n e r is quite compact. The object-oriented extensions to Scheme

that form the core o f D e s ig n e r am ount to about 3 0 0 lines o f code. The D e s ig n e r prototype library is

only about 7 0 0 lines o f code and includes circular lists, queues and stacks, com plex num bers, 3 D points

and vectors, hom ogeneous 3 D transform ation matrices, coordinate frames, and som e sim ple param etric

so lid prim itives. D e s ig n e r currently has no graphics capabilities; but even so, the author feels it is a

strong dem onstration o f the conciseness that can be achieved using object-oriented concepts in a formal

Junctional fram ework.

D e sig n e r currently satisfies all the axiom s o f HM but two: view s and generalization. D esig n er docs

perm it the creation o f sub-objects (subsets), but does not capture the view relationship betw een an object

and its sub-objects explicitly. Views are difficult to deal with because object constraints introduce coupling

betw een attributes in an object. A t this tim e, it appears that each object constraint im plicitly defines a

view uncoupled from o ther views; however, it is not c lear that providing support only for such uncoupled

view s is sufficient. Suitable theory will have to be generated regarding the interaction betw een object

constrain ts and view s before the latter can be supported fully by D esig n er . We note here that D esign er

has fulfilled its role as a testbed for HM by providing us w ith this insight regarding its adequacy as a

m odel o f design inform ation; however, it does not affect the logical validity o f HM , which is preserved.

G eneralization (the inverse o f specialization) can sim plify (norm alize) a hierarchy o f objects. This

sim plification can bring to light relationships between objects - and hence between the design entities

they m odel - that m ay have been obscured by the com plexity o f the initial hierarchy. N orm alization

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

159

can also im prove the efficiency o f operations on the software m odel. However, there do exist som e

arguments (28,93] that strongly suggest norm alization is o f limited usefulness in engineering software

system s. These arguments are based on the observation that norm alization requires a stable schem a

(organization) o f inform ation to operate correctly. But schem a definitions in design tend to exhibit a

highly dynam ic nature; norm alizing a dynam ic schem a leads to unpredictable and possibly disastrous

results. Additionally, generalization implies som e fairly complex com putation and certainly m ore so than

specialization. F o r these reasons, the author has elected to defer addition o f generalization in DESIGNER

to future work.

One final aspect o f HM that is not directly supported by the current version o f DESIGNER is that o f

d im ensions o f m easurem ent, as defined in Section 9.5. Very little work has been done to support

dim ensions o f m easurem ent in computational environm ents; the author is only aware o f the work o f

Cunis [217]. Because o f the lick o f available inform ation on the treatm ent o f dim ensions o f m easurem ent

in com putational environm ents upon which to build this capability into DESIGNER, the au tho r has elected

to defer the m atter to future work.

T he distinction betw een cxtensional attributes and intentional attributes perm its the capture o f various

kinds o f relationships (i.e. constraints) between attributes in a straight-forw ard m anner; as well, this

approach is integrated seam lessly into the functional paradigm, thus greatly sim plify ing the overall

com putational m odel. However, this does indicate a further relationship betw een the m odeling o f attributes

and o f constraints. C onstraints relate entities at a g iven degree o f abstraction, bu t logic d ictates that the

constraints them selves m ust exist at a higher degree o f abstraction. T his essentially defines a rule, o r

crif jrion , that governs the form ation o f constraint hierarchies. A s was d iscussed in Section 14.7, the

m odeling o f attributes as intentional o r extensional depends on the requirem ents o f the design model;

m is, in turn, will affect the constraint hierarchy o f the mode M ore research is needed in the area o f

attribute m odeling in o rder to define the relationship betw een attributes and constrain ts m ore clearly.

T h is constitutes a future extension o f HM which the author intends to undertake. T h is is another insight

provided by D e s ig n e r regarding HM.

D esigner em ploys a canonical message passing mechanism. Though unconventional, the author con­

siders there to be a significant advantage to this approach: the clean separation between function (using

generic functions) and structure (using objects) provides a simple, intuitive computational model for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

160

simulation o f design artifacts and systems. Furthermore, the notion o f self, and all the complications that

arise from it, are avoided entirely. Although the evaluation o f generic functions in the current implemen­

tation o f DESIGNER is not particularly efficient, several techniques exist that can significantly improve its

performance.

In a multi-user environment such as a design group, generic functions offer another potential advantage.

Individual group members may locally overload particular functions (because, for example, they arc so

often used by the group member) without affecting the objects and other data structures to which other

group members would have access. This would significantly decrease the chances o f accidental data

corruption.

Finally, the distinct separation o f functions that act on objects (i.e. methods in classical object models)

from the objects themsel ves permits the bundling together o f groups o f functions into modules providing a

coarser form o f functionality. These modules can be loaded automatically as requited, and automatically

freed when they are no longer needed, without affecting the data defining the design models themselves.

For example, a single design model could be used in two different tasks (e.g. solid modeling and numerical

analysis) by sim ply loading modules o f generic functions that provide the functionality needed for each

task (e.g. color graphical rendering for solid modeling, versus automatic mesh generation for numerical

analysis).

Even though inheritance is generally used in class-based system s, the author has found it to be be usable

in a prototype-based system like D esigner, where, in conjunction with cloning, it has replaced both

subclassing and class instantiation. Furthermore, the use o f canonical message-passing eliminates the

need for the user to be aware o f occurrences o f inheritance, and rather treat the relationship as the more

intuitive notion o f specialization.

D e sig n e r permits multiple inheritance only from parent objects that have sets o f attributes disjoint from

one another. Although this restriction does not exist in other object-oriented languages, the author is

constrained to impose it because o f the validity requirements o f HM. Although the goal o f maintaining

validity is a desirable one, we must also ask ourselves if this kind o f multiple inheritance is enough

to satisfy the general requirements o f engineering design. There is no simple answer to this question

yet; indeed, there is som e evidence to suggest that multiple inheritance p e r se is not needed at all, and

that the abstractions it provides can be supplied by single inheritance combined with various forms o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

161

aggregation [218], In the m eantim e, the author conjectures that m ultiple inheritance o f the kind defined

by HM and supported by D e s ig n e r is sufficient. This is based on the grounds that a counter-exam ple has

yet to be found. Obviously, this issue requires further study.

T he formal dcnotational sem antics o f DESIGNER has yet to be defined. However, Schem e itse lf is a

form alized com puter language w ith a com plete dcnotational sem antics [183,184], D enotalional sem antics

is derived from set theory and the predicate calculus by way o f the A-calculus. Since DESIGNER does not

alter Schem e but only extends it w ithin its ow n formal framework, there is a continuity o f logical rigor

from the formal dom ain m odel (HM) through to the actual im plem entation o f D esigner. Nonetheless,

form alizing D esigner’s extensions is a worthwhile goal to pursue in o rder to (a) further corroborate the

validity o f HM , (b) identify areas where the im plem entation o f Designer m ay be im proved, (c) provide

formal p roof that Designer in fact satisfies HM (from the point o f view o f com puter science), and (d)

provide formal tools to analyze design m odels generated w ith Designer.

T here exist o ther various formal sem antics (e.g. [208,219]) that define objects in functional program m ing

environm ents. Som e aspects o f these efforts are sim ilar to the approaches taken w ith D esigner. T he

author is therefore confident that a formal sem antics for D esigner is possible w ithout changes to Schem e's

essential structure.

A lthough the experience w ith Schem e has indicated to the author that it is a very useful language fo r such

projects as D esigner, som e difficulties remain: Schem e’s syntactic form s can be ra ther clum sy: support

is lacking for certain useful m athem atical constructs (such as m atrices); the language itse lf is no t tuned to

com pute efficiently given the im portant m echanism s Designer requires (i.e. generic functions and object

encapsulation). Recent advances in program m ing language design, however, indicate that these problem s

m ay be solved adequately in the near term.

There are many other directions in which Designer can expand in the future. We mention some o f them

here to indicate the potential for growth.

An argum ent has been m ade in [181] that functional program m ing can perm it various degrees o f parallelism

in com pulation, and that due to the nature o f engineering com puting only certain kinds o f coarse-grained

parallelism can be expected to enhance perform ance. E lim inationof side-effects and strict explicit control

o f program state vastly sim plify parallelization o f computation. Objects p roviding strict encapsulation o f

infom iation. as in Designer, m eet this requirem ent and m ay provide the m eans by w hich granularity o f

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

162

parallelism can be made more coarse. The inclusion o f an object system in a functional language may thus

be an ideal solution. Although Designer does not currently support any parallelism, the author intends

to investigate this possibility in the future.

A nother area w here DESIGNER m ay find application is in system sim ulation. Advanced com puterm odcling

and sim ulation o f products has been gaining popularity [220] because o f its potential to save a significant

am ount o f tim e by elim inating the need for physical prototypes. T he functional paradigm permits the

straight-forw ard developm ent o f quite com plex procedural units. Functions to m easure tim e and generate

signals are included in m any im plem entations o f Scheme. Detailed m odels o f com ponents and design

artifacts are also possible in Designer, ow ing to the object-oriented m echanism s it em bodies. Thus,

system sim ulation is also possible within the sam e computational m odel as are o ther k inds o f engineering

com puting.

Since Schem e can be used for sym bolic m anipulation, a system to sym bolically m anipulate mathematical

expressions could be integrated w ith D esigner to provide extensive m athem atical support o f various

kinds o f analysis and synthesis in a seam less and integrated way. For exam ple, algebraic functions can be

overloaded to operate on sym bolic expressions (in Scheme - and hence in Designer as well - sym bols

such as “x ” are acceptable data values that m ay be operated on). Furthermore, functions that manipulate

sym bolic representations o f equations m ay be overloaded to provide num erical approxim ations if numeric

data is provided. T his would be particularly useful for constraint m anagem ent [130 |.

T he culm ination o f the research effort that the author has started and described herein will be a new

com puter language and associated com putational model specifically geared to engineering design. The

language and com putational model would satisfy HM and be formally defined using dcnotational (o r som e

other) sem antics. T h is language will provide a com puting environm ent for engineering that will be usable

not on ly fo r conventional engineering com putation, but also as a vehicle for the continued formal study

o f engineering design.

We note that this approach is itself a strictly formal approach. It m akes use o f existing, proven tools o f

com puter science and logic, rather than the m ore hap-hazard m eans by w hich m any languages currently

in use in engineering environm ents were developed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Part V

CONCLUSION

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 17

Final Discussion

T he contribu tion o f this thesis has been to explain the nature o f engineering design inform ation in objective,

form al term s.

T h e form alization o f design inform ation m ust be treated independently o f design processes w hich aflcct

o r otherw ise m anipulate the inform ation. Because o f its independence from design processes, such a

form alization is universally applicable to any stage o r aspect o f design. T he au thor has achieved this goal

w ith the Hybrid M odel o f design information, introduced in Part III. It provides isom orphism s that let

us v iew design inform ation objectively, and its structured notation perm its us to reason form ally about

design inform ation. T he abstraction m echanism s introduced in C hapter 10 are founded on ontologic

considerations o f design. T hey perm it various organizational schem es to be developed, m axim izing the

am ount o f available explicit inform ation; this in turn m inim izes the am ount o f interpretation required,

thus increasing confidence in the outcom e o f actions based on that inform ation. Furtherm ore, by adhering

to the rules regarding the extension o f classical set theory, H M is proved valid w ith respect to its logical

foundation (set theory); that is, H M is no less valid than is ZF. HM can facilitate continued research into

design by providing a universal form al language for the specification o f design inform ation. Its use can

im prove com m unications betw een designers, contribute to the developm ent o f effective new taxonom ies

o f design entities and processes, and lead to the creation o f m ore powerful com puterized designers’ aides.

T he u se o f form al system s greatly clarifies o u r understanding o f design inform ation by helping to resolve

difficulties arising from incom plete and vaguely defined nom enclature, m anaging the changes resulting

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

165

from an evolving notion o f design, and elim inating sources o f logical inconsistencies such as self-

reference. Insights o f logic have lead the author to introduce conceptual tools - the layered structure o f

design (Section 6.1), and the notions o f a design space (Section 6.2) and artificial science (Section 5.2)

- to help organize our collective design and design research efforts. T he results will assist in unifying

otherw ise incom patible techniques and m ethodologies by providing a robust and valid reference.

In clearly separating the structure o f design itself from the m anner in w hich it is conducted (the w hat o f

design, versus the how o f it), the author acknowledges the im portant role o f the designer as the singular

agent by w hich design is manifested. In this sense, logic is seen as the m eans by w hich the designer’s

creativ ity and intuition can be channeled in directions m ost likely to result in successful solutions to

design problem s, m uch as it has been in other “scientific” fields, and forcing us to th ink m ore clearly

by providing a system wherein logical errors are m ore easily detected w ithout restricting o u r freedom to

express consistent, relevant information.

In o rder to dem onstrate the advantage o f formal system s in design, HM is applied to the developm ent

o f a new program m ing language for design (see Part IV). T he D esigner language is m eant to capture

arbitrary design inform ation in a flexible fram ework while largely satisfying HM . In so doing, we provide

a bridge betw een design theory on the one hand and the developm ent o f practical com putational tools to

aid the designer on the other. T his continuity o f formal rigor has not been achieved before, and increases

o u r confidence in the validity o f the language. The unique approaches taken in D esigner (e.g. the use o f

proto types rather than classes, and canonical rather than conventional m essage passing) are necessary to

m eet the requirem ents o f design as a unique and unconventional inform ation m anagem ent dom ain. T he

brevity o f its im plem entation in Schem e is suggestive o f the clarity and elegance possible through the use

o f form al theories to guide the developm ent o f engineering software.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 18

Future Directions

Future research d irections for both HM and Designer are discussed in detail at the ends o f parts III and

IV. Here, the author outlines in a more general sense what the future m ay hold for the work presented

herein.

The key relationship betw een HM as a form al system and design theory is the isom orphism the author

has identified betw een set theory and design information. The advantage o f a form al system with a

precise notation is that it lets one see relationships between inform ation in a far sim pler and objective

w ay than is possib le w ith m ore verbose system s requiring significant interpretation (e.g. using the English

language instead o f m athem atical logic). Further study o f the axiom s o f HM will likely bring to light new

re lationships betw een kinds o f engineering inform ation, and thus im prove o u r understanding o f design

on the w hole. T he discovery o f new relationships m ay necessitate m odifications o r o ther extensions to

HM ; th is feedback will be beneficial to the developm ent o f both HM and design in general. The particular

issues that w ill require further investigation in the near term are aggregations (the prim ary m eans by wh ch

specific sim ple design entities are grouped into m ore com plex entities) and constraints (the driving force

behind the design process).

Besides the im plem entation o f program m ing languages for design, HM could be applied to a num ber o f

o th er areas o f com puter-aided engineering.

The axiom atic form o f HM m akes it quite am enable to im plem entation with existing logic program m ing

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

167

languages (e.g. Prolog). The resulting "expert system ” would not depend on heuristic know ledge, and

would be useful as an analysis tool for design m odels generated using other com puterized tools (e.g.

Designer). The use o f heuristic knowledge, as has been indicated in the literature survey (Section 2) can

m arkedly reduce the confidence level o f expert system s by capturing “know ledge” the soundness o f which

cannot be proved. Since the num ber o f axiom s in HM is quite sm all, an expert system im plem enting it

m ay be able to perform in a tim ely manner.

A nother area where HM could find use is in the generation o f engineering databases. M any operations

for object-oriented databases may be written in term s o f the axiom o f separation o f se t theory [193]. This

im plies a relationship betw een database theory and set theory (and hence HM) w hich appears prom ising.

There is a w ell-established precedent in the literature fo rthe general usefulness o f object-oriented databases

in engineering [56 ,102 ,106 ,168 ,221 ,222].

One important difference between program m ing language design and database design is the notion o f

equality. Currently, in both HM and D esigner, identity is defined in term s o f structure and behavior

o f objects; this m eans that identical objects are perm itted to exist. However, in database theory, such

identical entities are generally disallowed [223-225] to m aintain the database in a norm alized form; in

o ther words, the conventional definition o f identity in database theory differs from that w e have accepted

in this work. T h is discrepancy will have to be addressed before HM can be used to generate useful

engineering databases.

Finally, and perhaps m ost importantly, HM can be used to help teach design in an objective and rigorous

manner. It is a relatively sm all formal system that allows precise definition o f term s, and a consistent

system for the organization and presentation o f inform ation. The actual language o f sym bolic logic, as

used in Part 111 o f this docum ent, need not be introduced im m ediately: key notions o f any theory can be

taught by exam ple, as has been done by others [31,86]. However, the author feels that an introduction to

formal system s and sym bolic logic sufficient to understand HM would not be a lengthy undertaking and

would prove a w orthw hile pedagogic investm ent.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter 19

Closing Remarks

W hat is engineering design?

T h is docum ent began w ith that very question. It is useful now to return to it and determ ine w hat headway,

if any, has been m ade tow ards answering it. Has the au thor’s w ork presented in this docum ent answered

this question? T he answ er is: to a certain extent, yes.

It m ay be aigued that the question itself is not a particularly good one. It is too vague, too open to

interpretation, and tends to invite oversimplified responses. Therefore, som e provision is needed to deal

w ith the inherent am biguity. In keeping w ith the general tone o f this w ork, the author regards the intention

o f the question “W hat is engineering design?" as being o f a descriptive nature. T hat is, we do not wish

to confuse th is question w ith its procedural com plem ent "H ow is engineering design perform ed?"

M any o f the param eters by w hich designs are judged are based on quantitative m easures. T h is indicates

that design is rooted in the physical world. A designer’s “artistic” abilities are constrained insofar as the

results o f his efforts m ust com ply w ith the exigencies o f the physical world. Furthermore, upon reflection

on the argum ents m ade in this docum ent, it is clear that any extem alization o f the design process m ay be

subjected to logical analysis. Therefore, the author concludes design m ust be largely rational in nature.

T his is not a statem ent o f fact, since the rationality o f design is not d irectly observable; n o r is the

au th o r’s w ork to be construed as a (technical) p ro o f o f this notion. But the body o f evidence herein —

the argum ents m ade in Part II, the definition o f HM , and its use to create the Designer program m ing

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

169

language — strongly indicate that design has a definite structure that can be treated formally, objectively,

and rationally.

We have intentionally said nothing about how design is perform ed. T h is issue includes the role o f the

hum an designer and is prone to effects (such as self-reference) that severely lim it the applicability o f

I'onnal techniques. Nonetheless, som e very important headway has been m ade in this work, headway

that represents a strong first step towards a better understanding o f engineering design. A lthough it has

traversed the spectrum from the theoretic to the practical, the central them e o f this w ork has been to

dem onstrate that the use o f logic can give us useful and relevant insights into the nature o f design. The

m ost im portant o f all, in the opinion o f this author, is that logic has been found to be sufficient to explain

part o f the problem : HM has given us the m eans o f defining the nature o f design inform ation in form al

and objective terms. It provides the m eans o f capturing, analyzing and com m unicating design inform ation

effectively, efficiently and in a tim ely manner. It gives us, designers and design researchers, a fram ew ork

to guide o u r thinking and o u r work, by providing a logical system to verify our ideas and thoughts. U pon

this foundation new theories o f the design process m ay be built, strengthening o u r understanding and

im proving o u r abilities to m eet the challenges o f the future.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Part VI

APPENDICES

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix A

Source Listings of Designer

A .l Designer Source

T his section lists the source o f Lhe Designer language.

1 ; P i l e c o r e . s c m
"» . D e s c r i p t i o n C o r e D e s i g n e r f u n c t i o n s .
3 ; V e r s i o n k
A ; R e v i s e d 1 9 - 0 1 - 9 3

5 ; C o p y r i g h t 1 9 9 3 by F i l i p p o A. S a l u s t r i
6 ; N o t e s
7
0 { r e q u i r e * b e n c h . o)
9
0 ; ; MISCELLANEOUS

12 (d e f i n e - m a c r o (w a r n f m t . 1 s t)
13 ' (p r i n t (f o r m a t #£ , (s t r i n g - a p p e n d " W a r n i n g : " f m t) , 0 1 s t)))
H
15 (d e f i n e (a n n o u n c e - > £ i l e n a m e s ym)
16 (s t r i n g - i - s y m b o l (s t r i n g - a p p e n d (s y m b o l - > s t r i n g s y m) * . s c m ")))
17
18 (d e f i n e (f i l e n a m e - > p r o v i d e - s t m t f n) (l i s t ' p r o v i d e ' ' , f n))
18 (d e f i n e (f i l e n a m e - ' - r e q u i r e - s t m t f n) (l i s t ' r e q u i r e ' ' , f n))
:o
Cl (d e f i n e - m a c r o (a n n o u n c e . 11
CC ' (b e g i n , t ! (m a p f i l e n a m e - > p r o v i d e - s t m t (map a n n o u n c e - > f i l e n a m e 1))))
C3
C-l (d e f i n e - m a c r o (n e e d s . 1)
25 ' (b e g i n , 0 (m a p £ i l e n a m e - > r e q u i r e - s t m t (map a n n o u n c e - > f i l e n a m e 1))))
C 6

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

172

27 (d e f i n e (f l a t t e n - l i s t 1 s t) ; ' 1 s t ' i s a l i s t o t 1 i : 1 : =.
28 (l e t l o o p ((1 1 s t))
2 9 (i f (n u l l ? 1)
3 0 ' ()
31 (a p p e n d (c a r i) (l o o p (c d r 1) !))))
32
33 (d e f i n e (a n d m a p p r e d 1 s t)
34 (l e t l o o p ((1 1 s t))
3 5 (i f (n u l l ? 1)
3 6 t t t
37 (i f (n o t (p r e d (c a r 1)))
3 8 Of
39 (l o o p (c d r 1))))))
4 0
41 (d e f i n e (o r r a a p p r e d 1 s t)
4 2 (l e t l o o p ((1 1 s t))
43 (i f (n u l l ? 1)
44 tt f
4 5 (i f (p r e d (c a r 1))
46 # t
47 (l o o p (c d r 1))))))
48
49 (d e f i n e (f i l t e r p r e d 1 s t)
50 (l e t l o o p ((1 1 s t))
51 (i f (n u l l ? 1)
52 ' ()
53 (i f (p r e d (c a r 1))
54 (c o n s (c a r 1) (l o o p (c d r 1)))
55 (l o o p (c d r 1)) I)))
56
57 (d e f i n e n o t - f o u n d ' n o t - f o u n d)
58 (d e f i n e (n o t - f o u n d ? x) (e q ? x n o t - f o u n d))
5 9 (d e f i n e n o - v a l ' n o - v a l)
6 0
61 (d e f i n e (i n - l i s t ? v a l 1 s t)
62 (l e t l o o p ((1 1 s t))
63 (c o n d
64 ((n u l l ? 1) # f)
6 5 ((e q ? v a l (c a r 1)) t t t)
66 (e l s e (l o o p (c d r 1))))))
67
68 ; ; ; TYPE MODI FI CATI ONS
69
7 0 (d e f i n e (a t t r i b u t e ? x)
7 1 (a n d (v e c t o r ? x)
7 2 (e q ? (v e c t o r - l e n g t h x) 3)
73 (e q ? (v e c t o r - r e f x 0) ' a t t r i b u t e)))
74
7 5 (d e f i n e (o b j e c t ? x)
7 6 (a n d (v e c t o r ? x)
77 (e q ? (v e c t o r - l e n g t h x) 4)
7 8 (e q ? (v e c t o r - r e f x 0) ' o b j e c t)))
7 9
8 0 (d e f i n e (g e n e r i c ? x)
8 1 (a n d (c o m p o u n d ? x)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

173

82 (e q u a l ? (p r o c e d u r e - l a m b d a y.) t h e - g £ - d e f i n i t i o n)))
81
84 (d e f i n e (f u n c t i o n ? x) (o r (p r o c e d u r e ? z ! (c o m p o u n d ? x)))
85
86 ; ; ; GENERIC FUNCTIONS
HI
88 (d e f i n e (i n a k e - s i g n a t u r e s i g)
89 (v e c t o r (i f (l i s t ? (c a r s i g)) (l e n g t h (c a r s i g)) - 1)
9 0 (e v a l ' (l a m b d a , (c a r s i g) (a n d , @ (c a d r s i g))))
91 (e v a l ' (l a m b d a , (c a r s i g) . G M c d d r s i g)))))
92
93 (d e f i n e (e v a 1 - s i g n a t u r e s i g - l s t a r g - l s t)
94 (l e t l o o p ((s i g - l s i g - l s t))
95 (i f (n u l l ? s i g - l)
96 n o t - f o u n d
97 (i f (a n d (o r (= (v e c t o r - r e f (c a r s i g - l) 0) - 1)
96 (= (v e c t o r - r e f (c a r s i g - l) 0) (l e n g t h a r g - l s t)))
99 (a p p l y (v e c t o r - r e f (c a r s i g - l) 1) a r g - l s t))

1 0 0 (a p p l y (v e c t o r - r e f (c a r s i g - l) 2) a r g - l s t)
101 (l o o p (c d r s i g - l))))))
102
1 03 (d e f i n e (g f - s e t t e r n a m e)
104 (s t r i n g - > s y m b o l (s t r i n g - a p p e n d “g f s e t - " (s y m b o l - > s t r i n g n a m e))))
105
1 0 6 (d e f i n e t h e - g t - d e f i n i t i o n ' (l a m b d a a r g - 1
107 (i n c r - g f c)
108 (e v a l - s i g n a t u r e s i g - l a r g - 1)))
109
1 10 (d e f i n e - m a c r o (o v e r l o a d n a m e . s i g - l)
111 ' (b e g i n
11 2 (i f (n o t (b o u n d ? ' . n a m e))
113 (b e g i n
114 (i n c r - g f)
1 1 5 (d e f i n e . n a m e)
1 1 6 (d e f i n e , (g f - s e t t e r n a m e))
117 (l e t ((s i g - l ' ()))
1 1 8 (s e t ! . n a m e
11 9 (l a m b d a a r g - 1
1 2 0 (i n c r - g f c)
12 1 (e v a l - s i g n a t u r e s i g - l a r g - 1)))
1 22 (s e c ! , (g f - s e t t e r n a m e)
1 2 3 (l a m b d a (n e w - s i g - 1)
124 (s e t ! s i g - l (a p p e n d (ma p m a k e - s i g n a t u r e n e w - s i g - 1)
12 5 s i g - l))
1 2 6 ' ()))))) ; r e t u r n n u t h i n .
127 (, (g f - s e t t e r n a m e) ' . s i g - l)))
128
1 2 9 LOW-LEVEL ATTRI BUTE FUNCTIONS
130
131 (d e f i n e (A n y ? v a l u e) # t)
132
1 33 (d e f i n e (g e n - a t c r i b u t e) (v e c t o r ' a t t r i b u t e A n y ? n o - v a l))
134
1 3 5 (d e f i n e (d o m a i n a) (v e c t o r - r e f a 1))
13 6 (d e f i n e (s e t - d o m a i n a d) (v e c t o r - s e t ! a i d))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

174

1 3 7
1 3 8 (d e f i n e (v a l u e a) (v e c t o r - r e f a 21)
1 3 9 (d e f i n e (s e t - v a l u e a v)
1 4 0 (i f (o r (e q ? v n o - v a l) ((d o m a i n a) v))
1 4 1 (v e c t o r - s e t ! a 2 v)
1 4 2 (e r r o r ' v a l u e " C o n s t r a i n t ~s n o t s a t i s f i e d f o r ' s . ” (d o m a i n i l v l i)
1 43
1 44 (d e f i n e (a t t r i b u t e d v)
1 4 5 (i f (n o t (p r o c e d u r e ? d))
1 4 6 (e r r o r ' a t t r i b u t e " D o m a i n ~s m u s t b e p r e d i c a t e s . " d))
1 4 7 (l e t ((a (g e n - a t t r i b u t e)))
1 4 8 (s e t - d o m a i n a d)
1 4 9 (s e t - v a l u e a v)
1 5 0 a))
1 5 1
1 5 2 ; ; ; THE COPY FUNCTION
1 5 3
1 5 4 (d e f i n e (c o p y t h i n g)
1 5 5 (l e t l o o p ((x t h i n g))
1 5 6 (c o n d
1 5 7 ((a t t r i b u t e ? x) (a t t r i b u t e (d o m a i n x) (l o o p (v a l u e : <))))
1 5 8 ((o b j e c t ? x) (c l o n e x))
1 5 9 ((p a i r ? x) (c o n s (l o o p (c a r x)) (l o o p (c d r x))))
1 6 0 ((v e c t o r ? x) (l e t * ((v l (v e c t o r - l e n g t h x))
1 6 1 (n v (m a k e - v e c t o r v l n o - v a l)))
1 6 2 (d o ((i 0 (1+ i)) I ((>= i v l) n v)
1 6 3 (v e c t o r - s e t ! n v i (l o o p (v e c t o r - r e f x i))))))
1 64 (e l s e x))))
1 6 5
1 6 6 ; ; ; LOW-LEVEL OBJECT FUNCTIONS
1 67
1 6 8 (d e f i n e (g e n - o b j e c t)
1 6 9 (i n c r - g o)
1 7 0 (v e c t o r ' o b j e c t ' () ' () ' ()))
1 7 1 (d e f i n e O b j e c t (g e n - o b j e c t)) ; t h e p r o g e n i t o r o b j e c t .
1 7 2
1 7 3 (d e f i n e (s l o t s o) (i f (o b j e c t ? o) (v e c t o r - r e f o 1) ' ()))
1 7 4 (d e f i n e (a d d - s l o t o n a m e v)
1 7 5 (v e c t o r - s e t ! o 1 (c o n s (c o n s n a m e v) (v e c t o r - r e f o 1))))
1 7 6 (d e f i n e (a d d - s l o t s o 1) (v e c t o r - s e t ! o 1 (a p p e n d 1 (v e c t o r - r e f o 1))))
1 77 (d e f i n e t s e t - s l o t s o 1) (v e c t o r - s e t ! o i l))
1 7 8
1 7 9 (d e f i n e (p a r e n t s o) (i f (o b j e c t ? o) (v e c t o r - r e f o 2) ' ()))
1 8 0 (d e f i n e (a d d - p a r e n t o p) (v e c t o r - s e t ! o 2 (c o n s p (v e c t o r - r e f o ?))))
1 8 1
1 8 2 (d e f i n e (c o n s t r a i n t s o) (i f (o b j e c t ? o) (v e c t o r - r e f o 3) ' ()))
1 8 3 (d e f i n e (a d d - c o n s t r a i n t o) (v e c t o r - s e t ! o 3 (c o n s c (v e c t o r - r e f o ' !))))
1 8 4 (d e f i n e (a d d - c o n s t r a i n t s o 1) (v e c c o r - s e t ! o 3 (a p p e n d 1 (v e c t o r - r e f o 3))))
1 8 5
1 8 6 (d e f i n e (: o n a m e . v)
1 8 7 (l e t { (s (a s s q n a m e (s l o t s o))))
1 8 8 (i f (n o t s) (e r r o r ' : " ~ s : no s u c h s l o t n a m e " n a m e))
1 8 9 (i f v
1 9 0 (s e t - c d r ! s (c a r v).)
1 9 1 (c d r s))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

175

152
153 (d e f i n e (r e s o l v e - o b j e c t - n a m e x) (i f (s y m b o l ? x) (e v a l x) x))
154
1 5 5 ; ; ; OBJECT CONSTP.A I UTS
1 9 6
197 (d e f i n e (c o m p i l e - c o n s t r a i n t - s p e c c - s p e c)
19 8 (e v a l ' (l a m b d a (o b j)
15 9 (l e t , (map (l a m b d a (x) (l i s t x ' (v a l u e (: o b j ' , x) >))
2 0 0 (c a r c - s p e c))
201 (c d r c - s p e c)))))
2 0 2
2 0 3 (d e f i r i e - m a c r o (c o n s t r a i n o b j . c - s p e c - 1)
2 0 4 ' (b e g i n (a d d - c o n s t r a i n t s , o b j (map c o m p i l e - c o n s t r a i n t - s p e c ' , c - s p e c - l) l
2 0 5 ' ()))
2 0 6
2 0 7 (d e f i n e (e v a l - c o n s t r a i n t s o b j c o n s t r - 1)
2 0 8 (l e t l o o p ((c - 1 c o n s t r - 1))
2 0 9 (i f (n u l l ? c - 1)
2 1 0 * t
21 1 (a n d ((c a r c - 1) o b j)
2 1 2 (l o o p (c d r c - 1))))))
2 1 3
2 1 4 (d e f i n e (c h e c k - o b j e c t - c o n s c r a i n c s o b j)
2 1 5 (e v a l - c o n s t r a i n t s o b j (c o n s t r a i n t s o b j)))
2 1 6
2 1 7 ; ; ; HI GH- LEVEL ATTRIBUTE FUNCTIONS
2 1 8
2 1 9 (d e f i n e (a t t r i b u t e - v a l u e s - > l i s t o b j)
2 2 0 (ma p v a l u e (f i l t e r a t t r i b u t e ? (map c d r (s l o t s o b j)))))
2 2 1
2 2 2 (d e f i n e (a t t r i b u t e - n a m e s - > l i s t o b j) (ma p c a r (s l o t s o b j)))
2 2 3
2 2 4 ; ; f o r e a c h a t t r i b u t e i n o b j s a t i s f y i n g p r e d , m a p f u n .
2 2 5 (d e f i n e (f o r e a c h - a t t r i b u t e o b j p r e d f u n)
2 2 6 (ma p f u n (f i l t e r p r e d (a t t r i b u t e - v a l u e s - > l i s t o b j))))
22 7
2 2 8 ; ; e x t e n s i o n s o f ' a n d m a p ' a n d ' o r m a p ' t o o b j e c t a t t r i b u t e s .
2 2 9 (d e f i n e (f o r a l l o b j p r e d) (a n d m a p p r e d (a t t r i b u t e - v a l u e s - > l i s t o b j)))
2 3 0 (d e f i n e (e x i s t s o b j p r e d) (o r m a p p r e d (a t t r i b u t e - v a l u e s - > l i s t o b j)))
231
2 3 2 ; ; ; HIGH- LEVEL OBJECT FUNCTIONS
2 3 3
2 3 4 (d e f i n e (d o - i n h e r i t a n c e d e s t s r c)
2 3 5 (a d d - s l o t s d e s t (c o p y (s l o t s s r c)))
2 3 6 (a d d - p a r e n t d e s t s r c)
2 3 7 (a d d - c o n s t r a i n t s d e s t (c o p y (c o n s t r a i n t s s r c))))
2 3 8
2 3 9 (d e f i n e (e x p a n d - f r o m - c l a u s e o b j 1)
2 4 0 (c o n d
2 4 1 ((l i s t ? 1)
2 4 2 (f o r - e a c h (l a m b d a (p) (d o - i n h e r i t a n c e o b j p)) (ma p r e s o l v e - o b j e c t - n a m e 1)))
2 4 3 (e l s e (d o - i n h e r i t a n c e o b j (r e s o l v e - o b j e c t - n a m e 1)))))
2 4 4
2 4 5 (d e f i n e (e x p a n d - w i t h - c l a u s e o b j 1)
2 4 6 (f o r - e a c h (l a m b d a (s p e c)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

176

2 4 7 (a d d - s l o t o b j
2 4 8 (c a r s p e c)
2 4 9 (a t t r i b u t e (e v a l (c a d r s p e c))
2 5 0 (i £ (c d d r s p e c)
2 5 1 (e v a l (c a d d r s p e c))
2 5 2 n o - v a l)))
2 5 3 d e c * (i n (c a r s p e c))
2 5 4 (q - n a m e (s t r i n g - > s y m b o l
2 5 5 (s t r i n g - a p p e n d " ? * (s y m b o l - > s c r i n g n)) ')
2 5 5 (s - n a m e (s t r i n g - > s y m b o l
2 5 7 i s t r i n g - a p p e n d (s y m b o l - > s t r i n g n) “ : “))))
253 (i f (n o c (b o u n d ? q - n a m e))
2 5 9 (e v a l ‘ (d e f i n e (, q - n a m e o) (v a l u e (: o ‘ , n)) l
2 5 0 t o p - l e v e l - e n v i r o n m e n t I)
2 6 1 (i f (n o t (b o u n d ? s - n a m e))
2 6 2 (e v a l ‘ (d e f i n e (, s - n a m e o v)
2 6 3 (s e t - v a l u e (: o ‘ , n) v)
2 6 4 (i f (n o t (c h e c k - o b j e c t - c o n s t r a i n t s o)>
2 6 5 (w a r n " O b j e c t c o n s t r a i n t s n o t s a t i s f i e d . ")))
2 6 6 t o p - l e v e l - e n v i r o n m e n t))))
2 6 7 1))
2 6 8
2 6 9 (d e f i n e - m a c r o (n e w p a r e n t - s p e c w i t h - s p e c . i n i t - s p e c)
2 7 0 ‘ (l e t ((n e w - o b j (g e n - o b j e c t)))
2 7 1 (e x p a n d - f r o m - c l a u s e n e w - o b j ‘ , p a r e n t - s p e c)
2 7 2 (e x p a n d - w i t h - c l a u s e n e w - o b j ‘ , w i t h - s p e c)
2 7 3 (i f i n i t - s p e c
2 7 4 (b e g i n
2 7 5 , @ (m a p (l a m b d a (x)
2 7 6 (l i s t ' s e t - v a l u e ' (: n e w - o b j ' , (c a r x)) (c a d r x)))
2 7 7 i n i t - s p e c)))
2 7 8 (i f (n o t (c h e c k - o b j e c t - c o n s t r a i n t s n e w - o b j))
2 7 9 (w a r n " O b j e c t c o n s t r a i n t s n o t s a t i s f i e d . "))
2 8 0 n e w - o b j))
2 8 1
2 8 2 (d e f i n e (c l o n e o b j)
2 8 3 (l e t ((n e w - o b j (g e n - o b j e c t)))
2 8 4 (d o - i n h e r i t a n c e n e w - o b j o b j)
2 8 5 n e w - o b j))
2 8 6
2 8 7 ; ; ; OTHER OBJ ECT FUNCTIONS
2 8 8
2 8 9 (d e f i n e (p a r e n t ? c h i l d p) (i n - l i s t ? p (p a r e n t s c h i l d)))
2 9 0
2 9 1 (d e f i n e (l i n e a g e o b j)
2 9 2 (i f (n o t (o b j e c t ? o b j))
2 9 3 ' ()
2 9 4 (c o n s o b j (f l a t t e n - l i s t (ma p l i n e a g e (p a r e n t s o b j ; ;))))
2 9 5
2 9 6 (d e f i n e (a n c e s t o r ? o b j a n c)
2 9 7 (i f (n o t (o b j e c t ? o b j)) # f)
2 9 8 (l e t l o o p ((o o b j))
2 9 9 (o r (e q ? o a n c)
3 0 0 (o r m a p (l a m b d a (p) (l o o p p)) (p a r e n t s o)))))
3 0 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

177

3 02 (d e f i n e - m a c r o (m a k e - t y p e - p r e d i c a t e o)
3 0 3 ' (d e f i n e (, (s t r i n g - > s y m b o l (s t r i n g - a p p e n d (s y m b o l - > s c r i n g o) • ? “)) >:)
30 4 (a n c e s t o r ? x , o) l)
305
3 0 6 (d e f i n e - m a c r o (m a k e - c o n s t r u c t o r o . r e s t)
30 7 ' (d e f i n e , (s t r i n g - > s y m b o l (s t r i n g - a p p e n d (s y m b o l - > s t r i n g o)))
308 (l a m b d a , O r e s t)))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

178

A.2 Support/Utility Functions

T his section lists various functions used extensively in Designer, but w hich arc not part o f Scheme.

1 ; ; ; F i l e : P r e a m b l e . sera
2 ; ; ; D e s c r i p t i o n : b a s i c f u n c t i o n s a n d p r i m i t i v e o v e r l o a d i n g s u s e d t h r o u g h o u t .
3 ; ; ; V e r s i o n : k
■1 ; ; ; R e v i s e d : 1 6 - 0 1 - 9 3
5 ; ; ; C o p y r i g h t : 1 9 9 2 b y F i l i p p o A. S a l u s t r i
6 ; ; ; N o t e s :
7
8 ; ' o r i e n t a t i o n - e u l e r ' a n d ' o r i e n t a t i o n - r p y ' f r o m [r e f p a u l l .
9

10 ; C o n s t a n t s
11
12 (d e f i n e P i 3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6) : f r o m / u s r / i n c l u d e / m a t h . I)
13
14 ; F u n c t i o n s ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; j ;
15
16 (d e f i n e (n u m b e r - g t O ? x) (a n d (n u m b e r ? x) (> x 0)))
17 (d e f i n e (p o s i t i v e ? x) (a n d (n u m b e r ? x) (>= x 0)))
18
19 (d e f i n e (r a d - > d e g r) (/ (* 1 8 0 . 0 r) P i))
2 0 (d e f i n e (d e g - > r a d d) (/ (* P i d) 1 8 0 . 0))
21
22 (d e f i n e ** e x p t)
23
24 (d e f i n e (m a t r i x 4 4 - x - m a t r i x 4 4 a b)
2 5 (l e t ((r e s (v e c t o r 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1)))
2 6 (d o ((i 0 (+ i 1))) ((= i 4) r e s)
27 (d o ((j 0 (+ j 1))) ((= j 4) r e s)
2 8 (d o ((k 0 (+ k 1))
2 9 (v 0 (+ v (* (v e c t o r - r e f a (+ I ' i 4) k))
30 (v e c t o r - r e f b (‘ (* k 4) j))))))
31 ((= k 4) (v e c t o r - s e t ! r e s (+ (* i 4) j) v)))))))
32
33 (d e f i n e (v e c t o r 4 - c r o s s a b)

34 (v e c t o r (- (* (v e c t o r - r e f a 1) (v e c t o r - r e f b 2))

35 (* (v e c t o r - r e f b 1) (v e c t o r - r e f a 2)))

36 (- (* (v e c t o r - r e f a 2) (v e c t o r - r e f b 0))

37 (* (v e c t o r - r e f b 2) (v e c t o r - r e f a 0)))
38 (- (’ (v e c t o r - r e f a 0) (v e c t o r - r e f b 1))
39
40

C
1))

(v e c t o r - r e f b 0) (v e c t o r - r e f a 1)))

41
42 (d e f i n e (v e c t o r 4 - d o t a b)
43 (+ (* (v e c t o r - r e f a 0) (v e c t o r - r e f b 0) 1
44 (* (v e c t o r - r e f a 1) (v e c t o r - r e f b 1))
45 (’ (v e c t o r - r e f a 2) (v e c t o r - r e f b 2))))
46
47 (d e f i n e (v e c t o r 4 - x - m a t r i x 4 4 v m)
4 8 (l e t ((r e s (v e c t o r 0 0 0 1)))
49 (d o ((i 0 (* i 1)) > ((= i 4) r e s)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

179

' , 0 (do ((j 0 (* j 1))
51 (a 0 (+ a (* (v e c t o r - r e f v j)
52 (v e c t o r - r e f m (+ (* j 4) i))))))
53 ((= j 4) (v e c t o r - s e t ! r e s i a l l))))

4
5 5 (d e f i n e (s c a l a r - x - v e c t o r 4 s v)
5 6 (v e c t o r (* s (v e c t o r - r e f v 0))
07 (* s (v e c t o r - r e f v 1))
08 (* s (v e c t o r - r e f v 2))
09 1))
00
01 (d e f i n e (v e c t o r 4 v e c t o r 4 a b)
02 (v e c t o r (- (v e c t o r - r e f a 0) (v e c t o r - r e f b 0))
03 (- (v e c t o r - r e f a 1) (v e c t o r - r e f b 1))
04 (- (v e c t o r - r e f a 2) (v e c t o r - r e f b 2))
60 1))
06
67 (d e f i n e (v e c t o r 4 - + - v e c t o r 4 a b)
68 (v e c t o r (t (v e c t o r - r e f a 0) (v e c t o r - r e f b 0 1)
69 (+ (v e c t o r - r e f a 1) (v e c t o r - r e f b 1))
7 0 {+ (v e c t o r - r e f a 2) (v e c t o r - r e f b 2))
7 1 1))
72
7 3 (d e f i n e (v e c t o r 4 - m a g n i t u d e v)
74 (s q r t (r (* (v e c t o r r e f v 0) (v e c t o r - r e f v 0))
7 5 (* (v e c t o r - r e f v 1) (v e c t o r - r e f v 1))
7 6 (’ (v e c t o r - r e f v 2) (v e c t o r - r e f v 2)))))
77
7 8 ; O r d e r : r o t (z , p h i) + r o t (y * , t h e t a) + i o t (z ' ' , p s i)
7 9 ;
8 0 (d e f i n e (o r i e n t a t i o n - e u l e r m)
81 (l e t * ((p h i (i f (a n d (= (v e c t o r - r e f m 9) 0) (= (v e c t o r - r e f m 8) 0))
8 2 0 (a t a n (v e c t o r - r e f m 9) (v e c t o r - r e f ra 8))))
8 3 (c p h i (c o s p h i))
8 4 (s p h i (s i n p h i)))
85 (v e c t o r p h i
86 (a t a n (+ (* c p h i (v e c t o r - r e f m 8)) ; t h e t a
87 (* s p h i (v e c t o r - r e f m 9)))
88 (v e c t o r - r e f m 1 0))
8 9 (a t a n (- (* c p h i (v e c t o r - r e f m l)) ; p s i
9 0 (* s p h i (v e c t o r - r e f m 0)))
91 (- (* c p h i (v e c t o r - r e f m 5))
92 (* s p h i (v e c t o r - r e f m 4))))
93 1)))
94
95 ; O r d e r : r o t (x . p s i) + r o t (y , t h e t a) + r o t (z . p h i)
96 ; w i t h r e s p e c t t o t h e g l o b a l (f i x e d) f r a m e .
97 ;
9 8 (d e f i n e (o r i e n t a t i o n - r p y m)
9 9 (l e t * ((p h i (i f (a n d (= (v e c t o r - r e f m 1) 0) (= (v e c t o r - r e f m 0) 0))

1 0 0 0 (a t a n (v e c t o r - r e f m 1) (v e c t o r - r e f m 0))))
101 (c p h i (c o s p h i))
10 2 (s p h i (s i n p h i)))
10 3 (v e c t o r (a t a n (- (* s p h i (v e c t o r - r e f m 8)) ; p s i
104 (* c p h i (v e c t o r - r e f m 9)))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

180

1 0 5 1- * c p h i (v e c t o r - r e f m 5))
1 06 * s p h i (v e c t o r - r e f ra 4))))
1 07 (a t a n (- v e c t o r - r e f m 2)) ; t h e t a
1 0 8 (+ * c p h i (v e c t o r - r e f m 0))
10 9 ’ s p h i (v e c t o r - r e f m 1))))

1 10 p h i
111 1)))
1 12
1 13 (d e f i n e (l i s t - l a s t 1) (l i s t - r e f 1 (1 - (l e n g t h 1))))

1 14
1 1 5 (d e f i n e (l i s t - i n t e r r e c t a b) ■ . i l t e r (l a m b d a (x) (i n - l i s t ?
1 1 6
1 17 ; u v e r l o a u i n g s ; ; ; ; ; ; t > t ! ! • t > > ! t >• t ' • > < > • • • • • • • • • • •

118
1 1 9 (o v e r l o a d ; o h o w
1 2 0 ((o) ((o b j e c t ? o)) (f o r m a t t t f "An O b j e c t "))
121 ((X) () x))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix B

Designer Prototype Library

T his chapter lists the object prototype definitions available in the Designer library.

B.l Complex Numbers

1 ; ; ; F i l e : C o m p l e x . s c m
2 ; ; ; D e s c r i p t i o n : c o m p l e x n u m b e r s
3 ; ; ; V e r s i o n : k
4 ; ; ; R e v i s e d : 1 4 - 0 1 - 9 3
5 ; ; ; C o p y r i g h t : 1 9 9 2 b y F i l i p p o A. S a l u s t r i
6 ; ; ; N o t e s :
7
8 (a n n o u n c e C o m p l e x l
9

10 ; ; ; P r o t o t y p e
11
12 (m a k e - t y p e - p r e d i c a t e C o m p l e x)
13 (d e f i n e C o m p l e x (n e w O b j e c t
14 ((r e a l n u m o e r ? 0)
15 (' m a g n u m b e r ? 0))))
16 (m a k e - c o n s t r u c t o r C o m p l e x (r i) (n e w C o m p l e x () (r e a l r) (i m a g i)))
17
18 ; ; ; O v e r l o a d i n g s
19
20 (o v e r l o a d : z e r o ? ((c) ((C o m p l e x ? c))
21 (a n d (= (? r e a l c) 0) (= (? i m a g c) 0))))

23 (o v e r l o a d r m a g n i t u d e ((c) ((C o m p l e x ? c))
24 (s q r t (+ (* (? r e a l c) (? r e a l c))
25 (* (? i m a g c) (? i m a g c))))))
26

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1S2

27 (o v e r l o a d :+
2 8 ((a b) ((C o m p l e x ? a) (C o m p l e x ? b))
2 9 (S C o m p l e x (+ t ? r e a l a) (? r e a l b)) (* (? i m a g a ! l . ' i n u g b ! M >
3 0 ((c n) ((C o m p l e x ? c) (n u m b e r ? n))
31 (S Cor . i p l e x (<■ (? r e a l c) n) (? i m a g c l) i
32 (< n c) ((C o m p l e x ? c l (n u m b e r ? n i l
3 3 (S C o m p l e x (-*■ n (? r e a l c) l (? i m a g c >)))
34
3 5 (o v e r l o a d
3 6 (l a b) ((C o m p l e x ? a) (C o m p l e x ? b))
37 (S C o m p l e x (- (? r e a l a) (? r e a l b)) (- (V i m u g a) (l i n i n g b) M I
38 ((c n) ((C o m p l e x ? c l (n u m b e r ? n i l
3 9 (S C o m p l e x (- (? r e a l c) n) (? i m a g 0) 1
4 0 ’ ' n c) ((C o m p l e x ? c) (n u m b e r ? n i l
41 (S C o m p l e x (- n (? r e a l e l l (? i m a g c l)))
42
4 3 (o v e r l o a d : *
44 ((a b l ((C o m p l e x ? a) (C o m p l e x ? b) I
4 5 (S C o m p l e x (- (' (? r e a l a) (? r e a l b))
4 6 (* (? i m a g a) (? i m a g b i l l
4 7 (+ (* (? r e a l a) (? i m a g b) I
4 8 (' (? r e a l b) (? i m a g a))) I) I
49
5 0 (o v e r l o a d : /
51 ((a b) ((C o m p l e x ? a) (C o m p l e x ? b))
52 (I f (: z e r o ? b)
5 3 (e r r o r ' : / “C o m p l e x d i v i s o r i s z e r o . “ I)
54 (S C o m p l e x (/ (+ (' (? r e a l a) (? r e a l b))
55 (* (? i m a g a) (? i m a g b)))
5 6 (+ (* (. r e a l b) (? r e a l b))
57 (* (V i ma g b) (? i m a g b))))
5 8 (/ (- (* (? r e a l d) (? i m a g a))
5 9 (* (? r e a l a) (? i m a g b)))
6 0 (+ (* (? r e a l b l (? r e a l b) I
61 (* (? i m a g b) (? i m a g b) I ') I I)
62
63 (o v e r l o a d : s h o w
64 ((a) ((C o m p l e x ? a)) (f o r m a t #£ " (~ s ' s) “ (? r e a l a) (? i i n a g a))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

183

B.2 3D Spatial Coordinates

1 ; ; ; F i l e : C o o r d , scin
2 ; ; ; D e s c r i p t i o n : 3D c o o r d i n a t e s (4 v e c t o r) .
3 ; ; ; V e r s i o n : k
4 ; ; ; H e v i s e d : 1 4 - 0 1 - 9 3
5 ; ; ; C o p y r i g h t : 1 99 3 b y F i l i p p o A. S a l u s t r i
>1 ; ; ; M o t e s :
7
H (a n n o u n c e C o o r d)
9 (n e e d s T r a n s f o r m)

10
I I ; ; ; S p e c i a l f u n c t i o n s ; ; ; ; ; ; ; ; ; ; ; ; ;
1)1
13 (d e f i n e (v e c t o r ! - > C o o r d v)
14 (O C o o r d (v e c t o r - r e f v 0) (v e c t o r - r e f v 1) (v e c t o r - r e f v 2)))
15
1 (1 ; C o o r d p r o t o t y p e : ; : ; ; ; ; ; : ; ; : : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
17
I B (m a k e - t y p e - p r e d i c a t e C o o r d)
19 (d e f i n e C o o r d (n e w O b j e c t
20 ((x n u m b e r ? 0) (y n u m b e r ? 0) (z n u m b e r ? 0))))
21 (m a k e - c o n s t r u c t o r C o o r d (x v y v z v) (n e w C o o r d () (x x v) (y y v) (z z v)))

23 (o v e r l o a d . - show ((c) ((C o o r d ? c))
24 (f o r m a t Ilf " (~ s " s ~ s) " (? x c) (? y c) (? z c))))
25
2G (o v e r l o a d : a s - v e c t o r ((a) ((C o o r d ? a)) (v e c t o r (? x a) (? y a) (? z a) 1)))
27
2 8 (o v e r l o a d m a g n i t u d e ((c) ((C o o r d ? c)) (v e c t o r ! - m a g n i t u d e (: a s - v e c t o r c)) })
2 9
3 0 (o v e r l o a d : n o r m a l i z e ((c) ((C o o r d ? c))
31 (l e t ((m (v e c t o r 4 - m a g n i t u d e (: a s - v e c t o r c))))
32 (O C o o r d (/ (? x c) m) (/ (? y c) m) (/ (? z c) m l))))
33
34 (o v e r l o a d := ((a b) ((C o o r d ? a) (C o o r d ? b))
35 (a n d (= (? x a) (? x b))
36 (= (? y a) (? y b))
37 (= (? z a) (? z b)))))
38
39 (o v e r l o a d : c r o s s ((a b) ((C o o r d ? a) (C o o r d ? b))
4 0 (v e c t o r 4 - > C o o r d
41 (v e c t o r 4 - c r o s s (: a s - v e c t o r a) (: a s - v e c t o r b)))))
4 2
4 3 (o v e r l o a d : d o t ((a b) ((C o o r d ? a) (C o o r d ? b))
44 (v e c t o r ! - d o t (: a s - v e c t o r a) (: a s - v e c t o r b))))
4 5
4 6 (o v e r l o a d s*
47 ((c t) ((C o o r d ? c) (T r a n s f o r m ? t))
4 8 (v e c t o r ! - > C o o r d
4 9 (v e c t o r ! - x - m a t r i x ! 4 (: a s - v e c t o r c) (: a s - v e c t o r s t))))
5 0 ((s c) ((n u m b e r ? s) (C o o r d ? c))
51 (v e c t o r 4 - > C o o r d (s c a l a r - x - v e c t o r 4 s (: a s - v e c t o r c))))
52 I (c s) ((C o o r d ? c) (n u m b e r ? s))
53 (v e c t o r ! - > C o o r d (s c a l a r - x - v e c t o r 4 s (: a s - v e c t o r c)))))

Reproduced with permission of the copyright owner. Further rep ro d u c tio n prohibited without permission.

www.manaraa.com

184

54
5 5 (o v e r l o a d
5 6 ((a b) ((C o o r d ? a) (C o o r d ? b))
57 (v e c t o r 4 - > C o o r d
5 8 (v e c t o r 4 v e c t o r 4 (: a s - v e c t e r a) (: a s v , v t o r b i l l) '
59
6 0 (o v e r l o a d :+
61 ((a b) (I C o o r d ? a) (C o o r d ? b))
6 2 (v e c t o r 4 - > C o o r d
63 (v e c t o r 4 - + - v e c t o r 4 (: a s - v e c c o r a) (: a s ■v e c t o r b)))))
64
6 5 ; S u b t y p e s
66
67 (d e f i n e O r i g i n (c l o n e C o o r d))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

185

B.3 Cuboid Parametric Volumes

1 ; ; ; F i l e
2 ; ; ; D e s c r i p t i o n

C u b o i d . s o n
c u b e - l i k e g e o m e t r y .

1 ; ; ; V e r s i o n
A R ev i se d 1 4 - 0 1 - 9 3

1 9 9 2 by F i l i p p o A. S a l u s t r it ; ; ; C o p y r i g h t
6 ; ; ; N o t e s
7
8 (announce Cuboid)
9 (n e e d s G e o m e t r y)

10
11 (m n k e - t y p e - p r e d i c a t e C u b o i d)
12 (d e f i n e C u b o i d (r e w G e o m e t r y
13 ((x n u m b e r - g t O ? 1)
14 (y n u m b e r - g t O ? 1)
19 (z n u m b e r - g t O ? 1))))
16 (m a k e - c o n s t r u c t o r C u b o i d (x v y v z v) (n e w C u b o i d 0 (x x v) (y y v) (z z v)))
17
18 (o v e r l o a d : v o l u m e ((c) ((C u b o i d ? c)) (* (? x c) (? y c) (? z c))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1S6

B.4 Coordinate Frames

1 ; ; ; F i l e : F r a m e , s c m
2 ; ; ; D e s c r i p t i o n : a c o o r d i n a t e f r a m e .
3 ; ; ; V e r s i o n : k
4 ; ; ; R e v i s e d : 1 3 - 0 1 - 3 3
5 ; ; ; C o p y r i g h t : 1 9 9 2 b y F i l i p p o A. S a l u s t r i
6 ; ; ; N o t e s :
7
8 (a n n o u n c e F r a m e)
9 (n e e d s T r a n s f o r m C o o r d)

10
11 (m a k e - c y p e - p r e d i c a t e F r a m e)
12 (d e f i n e F r a m e (c l o n e T r a n s f o r m))
13 ; ; ; n o c o n s t r u c t o r y e t .
14
15 (o v e r l o a d : p o s i t i o n ((f) ((F r a m e ? f)) (: ' O r i g i n £)))
16 (o v e r l o a d : o r i e n t a t i o n ((f) ((F r a m e ? £))
17 (v e c c o r 4 - > C o o r d
18 (o r i e n t a t i o n - r p y (: a s - v e c t o r s I)))))
19
2 0 (o v e r l o a d : i n v e r t ((f) ((F r a m e ? £))
21 (l e t ((o (: o r i e n t a t i o n £))
2 2 (n£ (c l o n e F r a m e)))
23 (: z - r o t a t e n f (- (? z o i l)
24 (: y - r o t a t e n f (- (? y o)))
2 5 (: x - r o t a t e n f (- (? x o)))
2 6 n f)))
2 ?
2 8 (o v e r l o a d : t r a n s l a t e
2 9 ((f x y z) ((F r a m e ? f))
30 (m a t : f (? ma c (: * f (: t r a n s l a t i o n x y z i i l l l l
31 (o v e r l o a d : x - r o t a t e
32 ' (f r) ((F r a m e ? £)) (m a t : £ (? m a t (: * £ (: x - r o t a t i o n r))))))
33 (o v e r l o a d : y - r o t a t e
34 ((£ r i ((F r a m e ? £)) (m a t : f (? m a t (: * f (: y - r o t a t i o n r))))))
3 5 (o v e r l o a d : z - r o t a t e
36 ((£ r) ((F r a m e ? £)) (m a t : f (? m a t (: * f (: z - r o t a t i o n r))) I))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

B.5 Generalized Geometric Entities

187

3
4
5
6

1 F i l e
D e s c r i p t i o n
V e r s i o n
R e v i s e d
C o p y r i g h t
N o t e s

G e o m e t r y ' . s c m
3 d g e o m e t r i c s p e c s - s o l i d o b j e c t s .
k
1 3 - 0 1 - 9 3
1 9 9 2 b y F i l i p p o A. S a l u s t r i

7
8 (a n n o u n c e G e o m e t r y)
9 (n e e d s F r a m e)

10
11 (m a k e - t y p e - p r e d i c a t e G e o m e t r y)
12 (d e f i n e G e o m e t r y (c l o n e F r a m e))
13
14 (o v e r l o a d : v o l u m e ((g) ((G e o m e t r y ? g))
1 5 (e r r o r ' G e o m e t r y " M u s t b e i m p l e m e n t e d i n s u b t y p e s . ")))

16
17 (o v e r l o a d : l o c a t e
1 8 ((g p w r t) ((G e o m e t r y ? g) (f u n c t i o n ? p) (G e o m e t r y ? w r t))
19 (p (: - (: p o s i t i o n g) (: p o s i t i o n w r t))
2 0 (: o r i e n t a t i o n (: * (: i n v e r t w r t) g))))
2 1 ((g p) ((G e o m e t r y ? g) (f u n c t i o n ? p))
2 2 (p (: p o s i t i o n g) (: o r i e n t a t i o n g))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

188

B.6 3D Lines

1 ; ; ; F i l e : L i n e . s c m
2 ; ; ; D e s c r i p t i o n : p a r a m e t r i c l i n e s e g m e n t s i n 3D
3 ; ; ; V e r s i o n : k
4 ; ; ; R e v i s e d : 1 4 - 0 1 - 9 3
5 ; ; ; C o p y r i g h t : 1 9 9 2 b y F i l i p p o A. S a l u s t r i
0 ; ; ; M o t e s :
7
8 (announce Line)
9 (n e e d s Trans f orm C o o r d)

10
11 L i n e p r o t o t y p e
12
13 (m a k e - t y p e - p r e d i c a t e L i n e)
14 (d e f i n e L i n e (n e w o b j e c t ((s t a r t C o o r d ?) (e n d C o o r d ?))))
15 (m a k e - c o n s t r u c t o r L i n e (a b) (n e w L i n e () (s t a r t a) (e n d b)))
16
17 (o v e r l o a d : = ((a b) ((L i n e ? a) (L i n e ? b))
18 (a n d (: = (? s d a r t a) (? s t a r t b))
19 (: = (? e n d a) (? e n d b)))))
20
21 (o v e r l o a d : * ((1 t) ((L i n e ? 1) (T r a n s f o r m ? c))
22 (@L i n e (: * (? s t a r t 1) t) (: * (? e n d 1) c))))
23
24 ; ; ; B a s e d o n s o l u t i o n i n [r e f z e i d] [p 2 4 4 - 2 4 5]
2 5 ; T h e r e i s a d e g e n e r a t e c a s e i f 1 l i n e i s i n t h e p l a n e f o r m e d b y t h e o r i g i n
2 6 ; ; ; a n d t h e o t h e r l i n e . T h i s i s d e a l t w i t h i n t h e ' i f ' .
2 7 (o v e r l o a d : i n t e r s e c t
2 8 ((a b) ((L i n e ? a) (L i n e ? b))
2 9 (l e t ((b x (: c r o s s (? s t a r t b) l ? e n d b)))
3 0 (d a (: - (? e n d a) (? s t a r t a))))
31 (i f (= (: d o t b x d a) 0)
32 (l e t ((s h i f t (: t r a n s l a t i o n 0 0 1)))
33 (: * { : i n t e r s e c t (: ’ a s h i f t) (: * b s h i f t))
34 (: t r a n s l a t i o n 0 0 - 1)))
3 5 (: + (? s t a r t a)
3 6 (: * (- (/ (: d o t b x (? s t a r t a))
37 (: d o t b x d a)))
3 8 d a))))))
39
4 0 (o v e r l o a d . - show
41 ((1) ((L i n e ? 1))
42 (f o r m a t (If " (~ a ~ a) “ (: s h o w (? s t a r t 1)) (: s h o w (? e n d 1)))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

189

B.7 Generalized Physical Parts

1 F i l e P a r t . s cm
2 D e s c r i p t i o n a p h y s i c a l p a r t
3 V e r s i o n k
4 R e v i s e d 1 4 - 0 1 - 9 3
5 C o p y r i g h t 1 9 9 2 b y F i l i p p o
6 N o t e s
7
8 a n n o u n c e P a r t)
9 n e e d s G e o m e t r y)

10
11 m a k e - t y p e - p r e d i c a t e P a r t)
12 d e f i n e P a r t (c l o n e G e o m e t r y))
13 n o c o n s t r u c t o r y e t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

190

B.8 Queues

4
n

6
7
8 (announce Queuej
9 (n e e d s L i s t)

10
11 ; ; ; P r o t o t y p e
12
13 (n i a k e - t y p e - p r e d i c a t e Q u e u e)
14 (d e t i n e Q u e u e (c l o n e L i s t))
15 (m a k e - c o n s t r u c t o r Q u e u e a r g - 1
16 (l e t ((o (c l one Queuel l)
17 (f o r - e a c h (l a m b d a (x) (: p u s h o x)) a r g - 1)
18 o) I
19
2 0 ; ; ; O v e r l o a d i n g s
21
22 (o v e r l o a d : p u s h ((q v) ((Q u e u e ? q)) (: a p p e n d ! q v)))
23
24 (o v e r l o a d : p o p ((q) ((Q u e u e ? q))
2 5 (i f (: e m p t y ? q) (e r r o r ' : p o p " n o t h i n g l e f t t o p o p . "))
2 6 (: c h o p ! q)))

r 1 J *.
Description
V e r s i o n
R ^ v i S Od

C o p y r i g h t
Nodes

v u t i u ' : . o ' - m

F I LO l i s t s
Y.
1 3 - 0 1 - ^ 3
1 9 9 2 b y F i l i p p o A. S a l u s t r i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

191

B.9 Circular Lists

1 ; ; ; F i l e : R i n g . s c m
2 ; ; ; D e s c r i p t i o n : c i r c u l a r l i s t o b j e c t s .
3 ; ; ; V e r s i o n : I:
4 ; ; ; R e v i s e d : 1 3 - 0 1 - 9 3
5 ; ; ; C o p y r i g h t : 1 9 9 2 by F i l i p p o A. S a l u s t r i
6 ; ; ; N o t e s :
7
8 (a n n o u n c e R i n g)
9

1 0 ; ; ; P r o t o t y p e
11
12 (m a k e - t y p e - p r e d i c a t e R i n g)
13 (d e f i n e R i n g (c l o n e O b j e c t))
14 (a d d - s l o t R i n g ' 1 s t ' ())
15 (a d d - s l o t R i n g ' o f f s e t 0)
1 6 (m a k e - c o n s t r u c t o r R i n g 1
17 (l e t ((o (c l o n e R i n g)))
1 8 (: o ' 1s t 1)
1 9 o))
20
2 1 ; ; ; O v e r l o a d i n g s
22
2 3 (o v e r l o a d : f i r s t ((r) ((R i n g ? r))
2 4 (: r ' o f f s e t 0)
2 5 (l i s t - r e f (: r ' 1s t) 0)))
2 6
2 7 (o v e r l o a d : l e n g t h ((r) ((R i n g ? r)) (l e n g t h (: r ' 1 s t))))
2 8
2 9 (o v e r l o a d : a s - l i s t ((r) ((R i n g ? r) ! (v e c t o r - > l i s t (l i s t - > v e c t o r | : r ' 1 s t)))))

3 0
31 (o v e r l o a d : n e x t ((r) ((R i n g ? r))
3 2 (l e t ((1 (l e n g t h (: r ' 1 s t))))
3 3 (i f (= 1 0)
34 (e r r o r ' : n e x t " z e r o - s i z e d r i n g . "))
3 5 (: r ' o f f s e t (m o d u l o (I t (: r ' o f f s e t)) 1))
3 6 (l i s t - r e f (: r ' 1 s t / (: r ' o f f s e t)))))
37
3 8 (o v e r l o a d : p e e k - n e x t ((r) ((R i n g ? r))
39 (l e t ((1 (l e n g t h (: r ' 1s t))))
4 0 (i f (= 1 0)
41 (e r r o r ' : p e e k - n e x t " z e r o - s i z e d r i n g . "))
4 2 (l i s t - r e f (: r ' 1 s t)
43 (m o d u l o (I t (: r ' o f f s e t)) I)))))

44
4 5 (o v e r l o a d : p r e v ((r) ((R i n g ? r))
4 6 (l e t ((1 (l e n g t h (: r ' 1s t))))
47 (i f (= 1 0)
4 8 (e r r o r ' : p r e v “ z e r o - s i z e d r i n g . "))
49 (: r ' o f f s e t (m o d u l o (1 - (: r ' o f f s e t)) 1))
50 (l i s t - r e f (: r ' 1s t) (: r ' o f f s e t)))))
51
52 (o v e r l o a d s p e e k - p r e v ((r) ((R i n g ? r))
53 (l e t ((1 (l e n g t h (: r ' 1s t))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

192

04 (i f (= 1 0)
i ; (e r r o r ' : p e e k - p r e v " z e r o - s i z e d r i n g . "))
00 (l i s t - r e f (: r ' 1s t)
07 (m o d u l o (1 - (: r ' o f f s e t)) 1)))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

193

B.10 Stacks

1 ; ; ; F i l e : S t a c k . s c m
2 ; ; ; D e s c r i p t i o n : F I F O l i s t s
3 ; ; ; V e r s i o n : k
4 ; ; ; R e v i s e d : 1 3 - 0 1 - 9 3
5 ; ; ; C o p y r i g h t : 1 9 9 2 b y F i l i p p o A. S a l u s t r i
6 ; ; N o t e s
7
3 (a n n o u n c e S t a c k)
9 (n e e d s Q u e u e)

10
11 ; ; ; P r o t o t y p e
12
13 (r a a k e - t y p e - p r e d i c a t e S t a c k)
14 (d e f i n e S t a c k (c l o n e Q u e u e))
15 (r a a k e - c o n s t r u c t o r S t a c k a r g - 1
15 (l e t ((o (c l o n e S t a c k) !)
17 (f o r - e a c h (l a m b d a (x) (: p u s h o
18 o))
19
20 ; ; ; O v e r l o a d i n g s
21
22 (o v e r l o a d : p u s h ((s v) ((S t a c k ? s)) (: p r e p e n d ! v s))

t)) a r g - 1)

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

194

B .ll Geometric Transforms

1 } F i l e
2 ; D e s c r i p t i o n
3 V e r s i o n
A ; R e v i s e d
c C o p y r i g h t
6 ; M o t e s
7
8 (a n n o u n c e T r a n s
9

10
11
12
13
14
11
16
17
18
19
20
21
22
23
24
25
26
27
2 8
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 .
45
46
47
48
49
50
51
52
53

T r a n s f o r m . s c m
3 d t r a n s f o r m s (4x 4 m a t r i c e s)
y.
1 4 - 0 1 - 9 3
1 9 9 2 b y F i l i p p o A. S a l u s t r i

; ; ; P r o t o t y p e

(m a k e - t y p e - p r e d i c a t e T r a n s f o r m)
(d e f i n e T r a n s f o r m

(n e w O b j e c t
((m a t v e c t o r ? (v e c t o r 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1)))))

; ; ; n o c o n s t r u c t o r - - p r o b a b l y u s e l e s s a n y w a y s .
; ; ; m a y b e c o u l d u s e L o c i a s a r g u m e n t s i n a c o n s t r u c t o r i n t h e f u t u r e .

; ; ; O v e r l o a d i n g s

(o v e r l o a d : s h o w ((t) ((T r a n s f o r m ? t)) (f o r m a t ftf ” ~ a “ (? m a t t))))

(o v e r l o a d : a s - v e c t o r s ((A) ((T r a n s f o r m ? A)) (v e c t o r - c o p y (?mat . A))))

(o v e r l o a d : * ((A B) ((T r a n s f o r m ? A) (T r a n s f o r m ? B))
(n e w T r a n s f o r m ()

(ma t (m a t r i x 4 4 - x - m a t r i x 4 4
(: a s - v e c t o r s A) (: a s - v e c t o r s B))))))

(o v e r l o a d := ((A B) ((T r a n s f o r m ? A) (T r a n s f o r m ? B))
(e q u a l ? (? m a t A) (? m a t B))))

; S u b t y p e s ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; : ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; i

(d e f i n e I d e n t i t y T r a n s f o r m (c l o n e T r a n s f o r m))

(o v e r l o a d : s c a l i n g ((x y z) ((n u m b e r ? x) (n u m b e r ? y) (n u m b e r ? z))
(n e w I d e n t i t y T r a n s f o r m ()

(ma t (v e c t o r x 0 0 0
0 y 0 0
0 0 z 0
0 0 0 1)))))

(o v e r l o a d : t r a n s l a t i o n I (x y z) ((n u m b e r ? x) (n u m b e r ? y) (n u m b e r ? z))
(n e w I d e n t i t y T r a n s f o r m ()

(m a t (v e c t o r 1 0 0 0
0 1 0 0
0 0 1 0
x y z 1)))))

(o v e r l o a d : x - r o t a t i o n ((x) ((n u m b e r ? x))
(n e w I d e n t i t y T r a n s f o r m ()

(mat (v e c t o r 1 0 0 o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

195

5 4 0 (C O S X) I S i l l X ' 0

55 0 (- (s i n x i ! (c o s x) 0
56 0 0 0 >) n)

57
58 (o v e r l o a d : v - r o t a t i o n ((y) | (n u m b e r ? y))
59 (n e w I d e n c i t y T r m s f o r m (!
60 (mac . v e c t o r (c o s y) 0 (- (s i n y) ' o
61 0 1 0 0
62 (s i n y ' 0 (c o s y) o
63 0 0 0 1)))))

64
65 (o v e r l o a d : z - r o t a t i o n (i z) ((n u m b e r ? z l)
66 (n e w I d e n t i t y T r a n s f o r m ()
67 (m a t (v e c t o r (c o s z) i s i n z) o 0
68 I - (s i n z)) (c o s z) 0 n
6 9 0 0 1 0
70 0 0 0 1)))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Bibliography

|1) Patrick Suppes. Axiom atic Set Theory. D over Publications, Inc., 1972.

[2 1 S. J. Fenvcs and W. J. Rasdorf. Treatm ent o f Engineering Design C onstraints in a R elational Data
Base. Engineering with Computers, 1(1):27—37,1985 .

[3] Kenneth J. W aldron. Secret Confessions o f A Designer. M echanical Engineering , 114(1I):60 -62 ,
1992.

[4] John R. Dixon. T he State o f Education. M echanical Engineering, pages 6 4 -6 7 , Feb 1991.

[5] R. M . Patel and A. J. McLeod. The Im plem entation o f a M echanical Engineering D esign Interface
Using Engineering Features. Computer-Aided Engineering Journal, pages 2 4 1 -2 4 6 , Dec 1988.

[6] Eugene S. Ferguson. Designing the World We Live In. Research in E ngineering D esign, 4(1):3—11,
1992.

[7] Suresh Konda, Ira M onarch, Philip Saigent, and Eswaran Subrahm anian. Shared M em ory in
Design: A Unifying Them e for Research and Practice. Research in E ngineering D esign, 4(1):23—
42. 1992.

[8] Theodore Bardasz and Ibrahim Zeid. Proposing Analogical Problem Solving to M echanical Design.
In G. L. K inzel and S. M. Rohde, editors. Proceedings o f the 1990 A SM E C om puters in Engineering
Conference, pages 181-186. ASM E, Am erican Society o f M echanical Engineers, 1990.

[9] M. R. Duffey and J. R. Dixon. A Program o f Research in M echanical Engineering: Com puter-Based
M odels and Representations. M DA Technical Report 11-88, M echanical D esign and A utom ation
Laboratory, U niversity o f M assachusetts a t Am hert, Am hurst, M A , 1988.

[10] Com m ittee on Engineering Design Theory and M ethodology, M anufacturing S tudies Board, Com ­
m ission on Engineering and Technical System s, and National R esearch C ouncil. Im proving E ngi­
neering D esign - D esigning fo r Com petitive Advantage. National A cadem y Press, 1991.

[11] John R. Dixon. New G oals for Engineering Education. M echanical E ngineering, pages 5 6 -62 ,
M ar 1991.

[12] John E. Lockyer. Educating for Awareness: An A lternative to a Five-Y ear C urriculum , to be
presented at the E igth Canadian Conference on Engineering E ducation, 1992.

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

197

[13] J. R. Dixon, C. D. Jones, E, H. Nielson, S. L. Luby, and E. C. Libardi. Knowledge Representation in
Design. M DA Technical Report 1-86. Mechanical Design and Autom ation Laboratory, University
o f M assachusetts at Am hert, Amhurst, MA, 1986.

[14] Aart Bijl. An A pproach to Design Theory. In H Yoshikawa and E. A. W arman. editors. Design
Theory f o r CAD, Proceedings from 1F1P W G 5.2 Working Conference on Design T heory for CAD.
pages 3 -3 1 , A m sterdam , 1987. North-Holland.

[15] Frank G. Pagan. Form al Specification o f Programming Languages: A Panoram ic Primer. Prenticc-
Hall, Inc., 1981.

[16] W illard Van O rm an Quine. M athem atical Logic, Revised Edition. Harvard University Press, 1981.

[17] Zhentao Zhang and Stephen L. Rice. Conceptual Design: Perceiving the Pattern. M echanical
Engineering, pages 58 -6 0 , Jul 1989.

[18] T hom as W. M alone and John F. Rockart. Computer, Networks and the C orporation. Scientific
Am erican, 265(3): 128-136, Sep 1991.

[19] Robert Fulton. 1991 Show s Increased Attention to Engineering Database M anagem ent, in ASME
Engineering Database Program Newsletter, Spring, 1992.

[20] C hristopher Farrell and Micheal Mandel. Call It W hat You Will, The N ation Needs A Plan To
Nurture Grow th. Business Week, page 70, A pr 1992.

[21] Thom as G. D ietterich and David G. Ullman. FORLOG: A Logic-based A rchitecture fo r Design.
In John S. Gero, editor. Expert System s in C omputer-Aided D esign, Proceedings from IFIP WG
5.2 conference on Expert System s in Com puter-Aided Design, pages I—17, Am sterdam , 1987.
North-Holland.

[22] K. Ishii and P. Barkan. Rule-based Sensitivity Analysis. In John S. Gero, editor. Expert Systems
in C om puter-A ided D esign, Proceedings from IFIP WG 5.2 conference on Expert System s in
Com puter-A ided Design, pages 179-198, Am sterdam , 1987. North-Holland.

[23] Peter Stress. M ultiple Representation o f Structure and Function. In John S. G ero, editor, Expert
System s in C om puter-A ided Design, Proceedings from IFIP W G 5.2 conference on E xpert System s
in C om puter-A ided Design, pages 57 -8 4 , Am sterdam , 1987. North-Holland.

[24] Douglas S. G reen and David C. Brown. Qualitative Reasoning During D esign about Shape and
Fit: a P relim inary Report. In John S. Gero, editor. Expert System s in C om puter-A ided Design,
Proceedings from IFIP W G 5.2 conference on Expert System s in C om puter-A ided Design, pages
9 3 -1 1 2 , A m sterdam , 1987. North-Holland.

[25] G regory L. Fenves. Object-Oriented Program m ing for Engineering Software D evelopm ent. Engi­
neering w ith Com puters, 6(1):1—15,1990.

[26] Suad A lagic. O bject-O riented D atabase Programming. Springer-Verlag, New York, 1989.

[27] Stanley B. Z donik and David Maier. Fundam entals o f Object-O riented D atabases, pages 1-36.
T he M organ K auftnann Series in Data M anagem ent System s. Morgan Kaufm ann, 1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

198

[28) Joan Pcckham and Fred Maryanski. Semantic Data Models. AC M Computing Surveys, 20(3): 153—
189, 1988.

[29] J. R. Dixon and M. R. Duffey. The Neglect o f Engineering Design. California M anagem ent Review,
32(2): 1-19, 1990.

130| D. L. Hawla and H. Ncishlos. Knowledge Acquisition for Effective and Efficient Use o f Engineering
Software. Engineering with Computers, 6 (2) :6 7 -8 0 ,1990.

13 1 [Nani P. Suh. The Principles o f Design. Oxford Unniversity Press, 1990.

13 2 1 Stephen R. Bradley and Alice M. Agogino. Design Capture and Inform ation M anagem ent for
Concurrent Design. International Journal o f System s Autom ation: Research a n d Applications,
1(2): 117-141,1991.

[33] J. R. Umaretiya, S. P. Joshi, and S. B. Joshi. An Intelligent Specifications E xtraction Interface for
Structural Design. Engineering with Computers, 6(3): 153-165 ,1990 .

[34] George N. Sandor and A rthur G. Erdman. Advanced M echanism D esign: A nalysis and Synthesis.
Prcnlicc-Hall, Inc., 1984.

[35 | M. F. Orclup and J. R. Dixon. Computer-Based M odels o f M echanical D esign Processes: A
Sum m ary o f Current Research. M DA Technical Report 9-88, M echanical D esign and A utom ation
Laboratory, University o f M assachusetts at Am hert, Am hurst, M A, 1988.

[36] John R. Dixon. W hy We Need Doctoral Programs in Design. M echanical E ngineering, pages
75-79 , Feb 1992.

[37] J. R. Dixon, M. R. Duffey, R. K. Irani, K. L. M eunier, and M. F. Orelup. A Proposed Taxonom y
o f M echanical Design Problem s. In V. A. T ipnis and E. M. Patton, editors, Proceedings o f the
1988 A SM E C omputers in Engineering Conference, pages 4 1 -4 6 . ASM E, A m erican Society o f
M echanical Engineers, 1988.

[38] John R. Dixon. On Research M ethodology Towards a Scientific T heory o f E ngineering Design.
MDA Technical Report 8-88, M echanical Design and A utom ation Laboratory, U niversity o f M as­
sachusetts at Am hert, Am hurst, MA, 1988.

[39] Tetsuo Tom iyam a and H iroyuki Yoshikawa. Extended General D esign Theory. In H. Yoshikawa
and E. A. W arman, editors, D esign Theory fo r CAD, Proceedings from IFEP W G 5.2 W orking
Conference on Design Theory for CAD, pages 95 -130 , Am sterdam , 1987. N orth-H olland.

[40] Allen C. Ward. A Recursive M odel for M anaging the D esign Process. In Jam es R. R inderle
and David G. Ullman, editors, Design Theory and M ethodology, A SM E D esign A utom ation
Conferences, pages 4 7 -5 2 , New York, 1990. ASM E.

[41] Owen R. Fauvcl. Expanded Use o f Function Language in M echanical D esign. In N. Popplewell
and A. H. Shah, editors, Proceedings o f the Thirteenth Canadian Congress o f A pp lied M echanics,
pages 692-693 , W innipeg, M an., 1991. Print M anagem ent, Ltd.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

199

[42] J. J. Cunningham and J. R. Dixon. Designing W ith Features: The Origin o f Features. MDA Tech­
nical Report 3-88. M echanical Design and Automation Laboratory. University o f M assachusetts at
A m hert. Am hurst. MA, 1988.

[43] J. R. Dixon. E. C. Libardi, and E. H. Nielsen. Unresolved Research Issues in Developm ent of
D esign-W ith-Fcaturcs Systems. MDA Technical Report 2-89, M echanical Design and Autom ation
Laboratory, University o f M assachusetts at Amhert. Amhurst, MA, 1989,

[44] J. R. D ixon, J. J. Cunningham , and M. K. Simmons. Research in D esigning with Features.
M D A Technical Report 4-87, Mechanical Design and A utom ation Laboratory, University o f M as­
sachusetts at Amhert, Am hurst, MA, 1987.

[45] John R. Dixon. Designing with Features: Building M anufacturing K now ledge into M ore Intelligent
C A D System s. M D A Technical Report 2-88, M echanical Design and A utom ation Laboratory,
U niversity o f M assachusetts at Amhert, Am hurst, MA, 1988.

[46] Raghu K arinthi and Dana Nau. An Approach to Addressing G eom etric Feature Interactions. In
G. L. Kinzel and S. M. Rohde, editors. Proceedings o f the 1990 A SM E Com puters in Engineering
Conference, pages 243-250 . ASME, American Society o f M echanical Engineers, 1990.

[47] K osuke Ishii. Role o f Com puterized Com patibility Analysis in Sim ultaneous Engineering. Inter­
national Journal o f System s Autom ation: Research and Applications. 1(4):325—345, 1991.

[48] Jam al A. Abdalla. Version M anagem ent Needs for Structural Engineering Design. Engineering
with Com puters, 7(3): 131—143,1991.

[49] M, K. Zam anian, S. J. Fenves, C. R. Thcw alt, and S. Finger. A Feature-Based Approach to
Structural D esign. Engineering with Computers, 7(1):1—9, 1991.

[50] R. E. da Silva, K. L. Wood, and J. J. Beaman. Interacting and Intcrfeaturc R elationships in
Engineering Design for M anufacture. International Journal o f System s A utom ation: Research and
Applications, 1 (3):263—286 ,1991 ,

[51] Jam i J. Shah and M aryT . Rogers. Functional Requirem ents and C onceptual Design o f the Feature-
Based M odelling System. Computer-Aided Engineering Journal, pages 9 -1 5 , Feb 1988.

[52] Frdddric G iacom etti and Tten-Chien Chang. Fram ework to M odel Parts, Assem blies, and Toler­
ances. In ternational Journal o f System s Autom ation: Research and A pplications, I (2) :1 6 1 -I8 I ,
1991.

[53] P. H. G u, H. A. ElM araghy, and L. Ham id. FDDL: A Feature Based Design D escription Language.
In W. H. ElM araghy, W. P. Seering, and D. G. Ullman, editors. Design Theory and M ethodology,
A SM E D esign A utom ation Conferences, pages 5 3 -64 , New York, 1989. ASM E.

[54] M ing-T zong Wang, M anjula B. Waldron, and R. Allen Miller. Prototype Integrated Feature-Based
D esign and Expert Process Planning System for Turned Parts. In ternational Journal o f System s
A utom ation: Research and Applications, 1(1):7—32, 1991.

[55] Jam es B ow en and Peter O ’Grady. A Technology for Building Life-Cycle Design Advisers. In
G. L. Kinzel and S. M. Rohde, editors, Proceedings o f the 1990 A SM E C om puters in Engineering
Conference, pages 1 -7 . ASM E, Am erican Society o f M echanical Engineers, 1990.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

200

[56) M artin Hardwick and Blair R. Downie. On Object-Oriented Databases, M aterialized Views, and
Concurrent Engineering. In V. Saxcna, editor. Engineering Databases: An E ngineering Resource,
pages 9 3 -97 . ASM E, American Society o f M echanical Engineers, 1991.

[571 G. Edward Barton Jr., Robert C. Berwick, and Eric Sven Ristad. C om putational C om plexity and
N atural Language. M IT Press, 1987.

[581 A. M. Agogino and A. S. Almgrcn. Symbolic Com putation in Com puter-A ided Optim al Design.
In John S. Gero, editor. Expert System s in Computer-Aided D esign, Proceedings from IFIP WG
5.2 conference on Expert S i m is in Com puter-Aided Design, pages 2 6 7 -2 8 4 , A m sterdam , 1987.
North-Holland.

[5 9 | D. Navinchandra and D. H. M arks. Design Exploration Through Constraint R elaxation. In Jo h n S .
Gero, editor. E xpert System s in Computer-Aided D esign, Proceedings from IFEP W G 5.2 conference
on Expert System s in Com puter-Aided Design, pages 481-509 , Am sterdam , 1987. North-H olland.

|6 0 | David A. Hoeltzel and Wei-Hua Chieng. System s fo r Unified L ife-C ycle M echanical E ngineer­
ing Design: Shared-Tool Architectures Versus Distributed Tool A rchitectures. E ngineering with
Computers, 6 (4):211-222 ,1990 .

[6 1 1 John Rasm ussen. Shape Optim ization and Com puter-Aided D esign. In ternational Journal o f
System s A utom ation: Research and Applications, 1(1):33—4 5 ,1991 .

[62) J. K. Wu, F. N. Choong, K. K. Choi, and E. J. Haug. Data M odel fo r S im ulation-B ased D esign o f
M echanical System s. International Journal o f System s Autom ation: Research a n d A pplications,
1 (1):67—87,1991 .

[63 | George J. Friedm an and Cornelius T. Leondes. Constraint Theory, Part I: Fundam entals. IE EE
Transactions on System s Science and Cybernetics, s s c -5 (l) :4 8 -5 6 ,1969.

[64] George J. Friedm an and Cornelius T. Leondes. Constraint Theory, Part II: M odel Graphs and
Regular R elations. IE EE Transactions on System s Science and C ybernetics, ssc-5(2): 132-140,
1969.

[65] George J. Friedm an and Cornelius T. Leondes. C onstraint Theory, Part III: Inequality and D iscrete
Relations. IE EE Transactions on System s Science a n d Cybernetics, ssc-5(3): 191-1 9 9 ,1 9 6 9 .

[661 Panos Y. Papalam bros and Douglass J. Wilde. P rinciples o f O ptim al D esign: M odeling a n d
Com putation. Cam bridge University Press, 1988.

[67] David Serrano. M anaging C onstraints in Concurrent Design: F irst Steps. In G . L . K inzel and
S. M. Rohde, editors, Proceedings o f the 1990A SM E C omputers in E ngineering Conference, pages
159-164. ASM E, Am erican Society o f M echanical Engineers, 1990.

[68] Susan Darling Urban and Lois M. L. Delcambre. C onstraint A nalysis: A Tool fo r E xplain ing the
Sem antics o f Com plex Objects. In K. R. D ittrich, editor. Advances in O bject-O riented D atabases
(Proceedings o f 2nd In ternational Workshop on Object-O riented D atabase System s), num ber 334
in Lecture Notes in C om puter Science, pages 156-161, Berlin, 1988. Springer-Verlag.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

20!

[69] I. R. G rosse and K. Sahu. Extending the M anufacturability Approach to 3-D C onfiguration Designs.
In G. L. Kinzel and S. M. Rohde, editors. Proceedings o f the 1990 A SM E C om puters in Engineering
C onference . pages 2 5 -32 . ASM E. Am erican Society o f M echanical Engineers. 1990.

[70] Janies R. R inderle and V. Krishnan. Constraint Reasoning in Concurrent D esign. In Jam es R,
R inderle and David G. U llman, editors. Design Theory and M ethodology. A SM E Design A utom a­
tion Conferences, pages 53 -6 2 , New York, 1990. ASME.

[71] W alid H abib and A llen C. Ward. Proving the Labeled Interval C.-lculus for Inferences on Catalogs.
In Jam es R. R inderle and David G. U llman, editors. Design Theory and M ethodology. ASME
D esign A utom ation Conferences, pages 6 3 -68 , New York, 1990. ASM E.

[72] John D. W atton and Jam es R. Rinderle. Im proving M echanical Design Decisions with A licm aic
Form ulations o f Constraints. In Jam es R. Rinderle and David G. U llm an, editors. Design Theory
a n d M ethodology. ASM E Design A utom ation Conferences, pages 6 9 -7 5 , New York, 1990. ASME.

[73] Peter J. G . Ram adge and W. M urray Wonham. The Control o f D iscrete Event System s. In
P roceedings o f the IEEE, volum e 77, pages 81-98. IEEE, 1989.

[74] B, A. Brandin, W. M. W onham, and B. Benhabib. M anufacturing Cell Supervisory Control - A
T im ed D iscrete Event System. In International Conference on R obotics and A utom ation, pages
53 1 -5 3 6 . IEEE, 1992.

[75] M artin A. Fogle and J. K iik Wu. A R elative Coordinate Form ulation for Variational Solid M odeling.
In Jam es R. R inderle and David G . U llm an, editors, D esign Theory and M ethodology, ASM E Design
A utom ation Conferences, pages 11-18, New York, 1990. ASME.

[76] E w ald Lang, Kai-Uwe Carstensen, and Geoffrey Sim mons. M odelling Spa tia l Knowledge on a
Linguistic Bases. N um ber 481 in Lecture Notes in Artificial Intelligence. Springer-Verlag, 1991.

[77] G regory P. Luth, Deepak Jain, H elm ut Krawinkler, and Kincho H. Law. A Form al Approach to
A utom ating Conceptual Structural Design, Part I: M ethodology. E ngineering with Computers,
7 (2) :7 9 -8 9 ,1991.

[78] R. H. C raw ford and D. C. A nderson. A C om puter Representation for M odeling Feedback in Design
Processes. In G. L. Kinzel and S. M . Rohde, editors. Proceedings o f the 1990 A SM E C omputers
in E ngineering Conference, pages 165-170. ASM E, Am erican Society o f M echanical Engineers,
1990.

[79] D eborah L. Thurston and Tiefti Liu. Design Evaluation o f M ultiple A ttributes under Uncertainty.
In terna tional Journal o f System s Autom ation: Research and A pplications, 1(2): 143-159 ,1991 .

[80] Irving M . Copi. Sym bolic Logic. M acm illan, 1979.

[81] K osuke Ishii. T he Role o f Com puters in Sim ultaneous Engineering. In G . L . Kinzel and S. M.
R ohde, editors. Proceedings o f the 1990 A SM E C omputers in E ngineering Conference, pages
21 7 -2 2 4 . ASM E, A m erican Society o f M echanical Engineers, 1990.

[82] Ravi M. Rangan. U sing Inform ation Theory to Model Design Processes Supported by Inform ation
System s. In V. Saxena, editor. E ngineering D atabases: A n Engineering Resource, pages 79 -8 6 .
A SM E, A m erican Society o f M echanical Engineers, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

202

[83] A. J. M edland. The Computer-Based Design Process. Springer-Verlag. 1986.

[84] Joseph Constance. DFMA: Learning to Design for M anufacture and A ssem bly. M echanical
E ngineering, 114(5):70-74, M ay 1992.

[85] Steven Ashley. Applying Taguchi’s Quality Engineering To Technology D evelopm ent. M echanical
E ngineering, 1 14(7):58—60, July 1992.

[86] David G. Ullman. The M echanical Design Process. M cGraw-Hill, 1992.

187] W ojcicch Gasparski. Understanding D esign: The Praxiological-System ic P erspective. T he Sys­
tem s Inquiry Series. Intersystem s Publications, 1984.

[88] Steven D. Eppinger, Daniel E. W hitney, Robert P. Sm ith, and David A. G ebala. Organizing the
Tasks in Com plex Design Projects. In Jam es R. Rinderle and David G . U llm an, editors. Design
Theory and M ethodology. ASME D esign A utom ation Conferences, pages 3 9 -4 6 , N ew Yoik, 1990.
ASME.

[8 9 1 R. M. Patel and A. J. McLeod. Engineering Feature D escription in M echanical Engineering Design.
C om puter-A ided Engineering Journal, pages 180-183, Oct 1988.

[90] Srikanth M. Kannapan and Kurt M. M arshek. Design Synthetic R easoning: A M ethodology for
M echanical Design. Research in Engineering D esign, 2 (4) :2 2 1 -2 3 8 ,1991.

[91] Richard Sause and Graham H. Powell. A Design Process Model for C om puter Integrated Structural
Engineering. E ngineering with Computers, 6(3): 129-143,1990.

[92] W illiam H. Slauttcrback. T he M anufacturing Environm ent in the Year 2000. In A utofact 6
Conference Proceedings, pages 21 :1-21 :9 , M ichigan, U.S.A. 1984.

[93] Charles M. Eastm an. T he Contribution o f Data M odeling to the Future D evelopm ent o f CAD/CAM
D atabases. In V. Saxena, editor, Engineering Databases: A n E ngineering Resource, pages 4 9 -5 4 .
ASM E, A m erican Society o f M echanical Engineers, 1991.

[94] Charles M. Eastm an, Alan H. Bond, and Scott C. Chase. A Form al A pproach fo r Product M odel
Inform ation. Research in Engineering D esign, 2 :6 5 -80 ,1991 .

[95] Charles M . Eastm an. A Data M odel Analysis o f M odularity and Extensibility in B uild ing Databases.
Building and Environm ent, 27(2): 135-148 ,1992 .

[96] C. M. Eastm an, A. H. Bond, and S. C. Chase. A Data M odel fo r D esign D atabases. In J. S.
Gero, editor. Proceedings o f Artificial Intelligence in Design '91, pages 33 9 -3 6 5 . Butterworth
Heinem ann, 1991.

[97] Charles M . Eastm an, Alan H. Bond, and Scott C. Chase. A pplication and E valuation o f an
Engineering D ata M odel. Research in Engineering D esign, 2 :1 8 5 -2 0 7 ,1 9 9 1 .

[98] A lan H. Bond, Charles M. Eastm an, and Scott C. Chase. Theoretical Foundations o f E D M Product
Design M odels, w orking paper, 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

203

[99] Bertrand M eyer. Introduction to the Theory o f Programming Languages. Prentice Hall International
Series in C om puter Science. Prentice Hall Inc.. 1990.

[100] Saiyid Z. Kamal, H. M. Karandikar. Farrokh M istrce. and Douglas Muster. K now ledge Repre­
sentation for D iscipline-Independent Decision M aking. In John S. Gero, editor. E xpert System s
in C om puter-A ided D esign, Proceedings from IFIP W G 5.2 conference on Expert System s in
Com puter-A ided Design, pages 289-318, Am sterdam , 1987. North-Holland.

[101] R. H. Crawford and D. C. Anderson. M odular Environm ent for Integrating Prelim inary M echanical
Design Software. International Journal o f System s Autom ation: Research and Applications.
1(2): 183-202 ,1991 .

[102] Tetsuo T om iyam a and Paul J. W. Ten Hagen. O rgan iza tion o f Design Know ledge in an Intelligent
C AD Environm ent. In John S. Gero, editor. Expert System s in Com puter-A ided D esign, Proceedings
from IFIP WG 5.2 conference on Expert System s in Com puter-A ided Design, pages 119-147,
A m sterdam , 1987. North-Holland.

[103] B. T. David. M ulti-Expert System s for CAD. In P. J. W. ten Hagen and Tetsuo Tom iyam a, editors.
Intelligent CAD System s I (Theoretical and M ethodological Aspects), E urographicScm inar Series,
pages 5 7 -6 7 , Berlin, 1987. Springer-Verlag.

[104] J .F . Koegel. A Theoretical M odel for Intelligent CAD. In P .J .W . ten Hagen and Tetsuo Tom iyam a,
editors, In telligent CAD System s I (Theoretical and M ethodological A spects), EurographicScm inar
Series, pages 20 6 -2 2 3 , Berlin, 1987. Springer-Verlag.

[105] Y. E . Kalay, L. M. Swerdloff, and A. C. Harfmann. A Know ledge-based Com putable M odel o f
Design. In John S. Gero, editor, Expert Systems in Com puter-Aided D esign, Proceedings from IFIP
W G 5.2 conference on Expert System s in Com puter-Aided Design, pages 2 0 3-223 , Am sterdam ,
1987. North-H olland.

[106] K incho H. Law, Thierry Barsalou, and G io Wiedertiold. M anagem ent o f Com plex Structural
Engineering O bjects in a Relational Frameworic. Engineering with Computers, 6 (2) :8 1 -9 2 ,1990.

[107] G uidong Han, Setsuo Ohsuga, and H iroyuki Yamauchi. T he A pplication o f K now ledge Base
Technology to CAD. In John S. Gero, editor. Expert System s in Com puter-Aided D esign, Proceed­
ings from IFIP W G 5.2 conference on Expert System s in Com puter-A ided Design, pages 25-51,
A m sterdam , 1987. North-Holland.

[108] E. F. Codd. The Relational M odel fo r D atabase M anagem ent: Version 2. Addison-W esley, 1990.

[109] Ronald G . Ross. Entity M odeling: Techniques a n d Application. Database R esearch Group, Inc.,
1987.

[110] Jam es J. Odell. M odelling Object Using Binary- and E ntity-R elationship M odels. Journa l o f
O bject-O riented Program ming, 5(3):12—18, Jun 1992.

[111] R ichard Hull and R oger King. Sem antic Database M odeling: Survey, A pplications, and Research
Issues. A C M C omputing Surveys, 19 (3):2 0 1 -2 6 0 ,1987.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission

www.manaraa.com

204

11 12J Kincho H. Law, G io W iederhold, Niki Siambela, W alter Sujansky, David Zingm ond, and Harvinder
Singh. Architecture for M anaging Design Objects in a Shareable R elational Fram ework. In terna­
tional Journal o f System s Autom ation: Research and Applications, 1(1):47—65,1 9 9 1 .

[113 | David Stem ple, Adolfo Socorro, and Tim Sheard. Form alizing Objects for D atabases using AD-
ABTPL. In K. R. Dittrich, editor. Advances in Object-O riented D atabases (Proceedings o f 2nd
In ternational Workshop on O bject-O riented D atabase System s), num ber 334 in Lecture N otes in
C om puter Science, pages 110-128, Berlin, 1988. Springer-Verlag.

[114] David L. Stubbs and P. Derek Ernes. M odularization: Prefabricating a Process Plant. M echanical
Engineering, pages 6 3 -6 5 , Nov 1990.

1115] no author given. O bject Oriented Databases: An E ngineer’s Perspective, in A SM E Engineering
Database Program Newsletter, Spring, 1992.

[116] staff. Objective Data. Scientific American, Science and Business D epartm ent, M ar 1992.

[117] Johnathan S. Colton and John L. Dascanio, II. An Integrated, In telligent D esign Environm ent.
Engineering with Com puters, 7(1): 11—22,1991 .

[118] Won Kim. Introduction to Object-O riented Databases. T he M IT Press, 1990.

[119] Herbert B. Voelcker. M odeling in the Design Process. In W. Dale C om pton, editor. D esign and
Analysis o f In tegrated M anufacturing System s, pages 167-199, W ashington, DC, 1988. National
A cadem y Publishing.

[120] G. Sunde. A CA D System with Declarative Specification o f Shape. In P. J. W. ten H agen and
Tetsuo Tom iyam a, editors. Intelligent CAD System s I (Theoretical a n d M ethodological Aspects),
EurographicSem inar Series, pages 90 -103 , Berlin, 1987. Springer-Verlag.

[121] S tuart W atson. R elational G eom etry - a New G eneration o f Tw o-D im ensional CAD. Computer-
A ided Engineering Journal, pages 169-172, Aug 1988.

[122] Walid Keitouz, Jah ir Pabon, and Robert Young. Integrating Param etric Geom etry, Features and
Variational M odeling for Conceptual Design. In Jam es R. R inderle and D avid G. U llm an, editors,
D esign Theory a n d M ethodology, ASM E Design A utom ation C onferences, pages 6 9 0 -691 , New
York, 1990. ASM E.

[123] Xin D ong and M icheal Wozny. M anaging Feature Type Dependency in a Feature-Based M odeling
System . In G. L. Kinzel and S. M. Rohde, editors. Proceedings o f the 1990 A SM E C om puters
in E ngineering Conference, pages 125-130. ASM E, A m erican Society o f M echanical E ngineers,
1990.

[124] U. Roy and C. R. Liu. Establishm ent o f Functional Relationships betw een Product C om ponents in
Assem bly Database. C om puter-A ided D esign, 20 :570-580, Dec 1988.

[125] Uwe Weissflog. CIM D ictionaries: An Evolutionary A pproach to C IM D ata Integration. In V. Sax-
ena, editor. Engineering D atabases: An Engineering Resource, pages 7 1 -7 8 . A SM E, A m erican
Society o f M echanical Engineers, 1991.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

205

[126] Ravi M. Rangan and Robert E. Fulton. A Data M anagement Strategy to Control Design and
M anufacturing Information. Engineering with Computers. 7(2):63-78. 1991.

[127] G erald Jay Sussm an and G uy Lew is Steele Jr. CONSTRAINTS - A Language for Expressing
A lm ost-H ierarchical Descriptions. Artificial Intelligence. 14:1-39. 1980.

[128] G len M ullineux. A Blackboard Structure for Handling Engineering Design Data. Engineering with
Com puters. 7(3): 185-195,1991.

[129] Philip M . Sargent. M aterials Data Interchange lor Component M anufacture. Engineering with
C om puters. 6 (4) :2 3 7 -2 4 7 ,1990.

[130] David Serrano. Constraint-Based Concurrent Design. International Journal o f System s A utom ation:
Research a n d Applications, I (3):287—304,1991.

[131] Ju lian Jaynes. The Origin o f C onsciousness in the Breakdown o f the B icam eral M ind. University
o f Toronto Press, 1976.

[132] Yogesh Jaluria and D. Lombardi. Use o f Expert Systems in the Design o f Therm al Equipm ent and
Processes. Research in Engineering D esign, 2 (4):2 3 9 -2 5 3 ,1991.

[133] I. Popescu and M. B. Zaremba. An Efficient Search M ethod for Expert Robot C ontrol. International
Jou rn a l o f System s Autom ation: Research and Applications, l(4) :3 6 9 -3 8 6 ,1991.

[134] Enn H. Tyugu. M erging Conceptual and Expert K now ledge in CAD. In John S. Gero. editor.
E xpert System s in Computer-Aided D esign, Proceedings from IFIP W G 5.2 conference on Expert
System s in Com puter-A ided Design, pages 423-431 , Am sterdam , 1987. N orth-H olland.

[135] John C. Tang and Larry J. Leifer. An Observational M ethodology for S tudying G roup Design
A ctivity. Research in Engineering D esign, 2 (4):2 0 9 -2 1 9 ,1991.

[136] M. R. C utkosky and J. M. Tenenbaum . Providing Com putational Support for Concurrent Engi­
neering. In ternational Journal o f System s Autom ation: Research and A pplications, 1(3):239—261,
1991.

[137] Avron B arr and Edward A. Feigenbaum , editors. The H andbook o f Artificia l Intelligence, Volume
1. H eurisTech Press, Stanford, California, 1981.

[138] Avron B arr and Edward A. Feigenbaum , editors. The H andbook o f A rtificial Intelligence, Volume
2. HeurisTech Press, Stanford, California, 1982.

[139] Paul R. Cohen and Edward A. Feigenbaum , editors. The H andbook o f Artificial Intelligence,
Volume 3. HeurisTech Press, Stanford, California, 1982.

[140] Steven Ashley. T he Battle to Build Better Products. M echanical E ngineering, pages 34-38 , Nov
1990.

[141] Steven Ashley. DARPA Initiative in Concurrent Engineering. M echanical E ngineering , 114(4):54-
57, A pr 1992.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

206

[142] M artin Cwiakala. Using Hyperm edia Concepts to Enhance CAD. In G . L. K inzel and S. M. Rohde,
editors. Proceedings o f the 1990 A SM E Computers in Engineering Conference, pages 131-137.
ASM E, A m erican Society o f M echanical Engineers, 1990.

[143] M ark H. Chigncll. A Taxonom y o f U ser Interface Term inology. AC M SIGCH1 B ulle tin , 21 (4):27 -
34, 1990.

[144] Christoph Hubei and Bemd Sutter. Supporting Engineering A pplications by N ew D ata Base
Processing Concepts - An Experience Report. Engineering with Com puters, 8 (1):3 1 -4 9 ,1 9 9 2 .

[145] Katia P. Sycara and C. Micheal Lewis. M odeling G roup Decision M aking and N egotiation in Con­
current Product Design. International Journal o f System s Autom ation: R esearch a n d Applications,
I (3):217—2 3 8 ,1991 .

[146] D. Sriram , R. Logcher, A. Wong, and S. Ahmed. Com puter-Aided C ooperative Product D evelop­
ment: A Case Study. International Journal o f System s A utom ation: Research a n d Applications,
1 (1) :8 9 -U 2 ,1991.

[147] George J. K lir and T ina A. Foiger. Fuzzy Sets, Uncertainty, and Inform ation. P rentice-H all, 1988.

[148] Lotfi A. Zadeh. Knowledge Representation in Fuzzy Logic. IE E E Transactions on K now ledge and
D ata Engineering, 1(I):89—99. M ar 1989.

[149] D ouglas R. Hofstadter. Godel, Escher, Bach: A n E ternal Golden B raid. V intage B ooks, 1979.

[150] Joe H alpem . Reasoning about knowledge, class notes for CS2422S, U niversity o f Toronto, 1990.

[151] R ichard Sause and Graham H. Powell. A Design Process Model for C om puter Integrated Structural
Engineering: Design Phases and Tasks. Engineering with Computers, 7 (3) :1 4 5 -1 6 0 ,1991.

[152] Clive L. Dym and Raymond E. Levitt. Toward the Integration o f K now ledge fo r Engineering
M odeling and Com putation. Engineering with Computers, 7 (4) :2 0 9 -2 2 4 ,1991.

[153] Abraham A. Fraenkel, Yehoshua Bar-Hillel, and Azriel Levy. F oundations o f S e t Theory. North-
HoIIand, 1973.

[154] M orris Kline. M athem atics: The Loss o f Certainty. Oxford U niversity Press, 1980.

[155] Gerald D. Fischbach. M ind and Brain. Scientific Am erican, 267(3):48-57 , Sep 1992.

[156] Geoffrey E. Hinton. How Neural Netw orks Learn from Experience. Scientific American,
267(3): 144-151, Sep 1992.

[157] Francis C rick and C hristof Koch. T he Problem o f Consciousness. Scientific A m erican, 267(3):152-
159, Sep 1992.

[158] John D. W atton and Jam es R. Rinderle. A M ethod to Identify R eform ulations o f M echanical
Param etric Constraints to Enhance Design. In Jam es R. R inderle and D avid G . U llm an, editors.
D esign Theory and M ethodology, ASM E D esign A utom ation Conferences, pages 7 7 -8 4 , New
York, 1990. ASM E.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

207

[159] B jam e Stroustrup. W hat is Object-Oriented Program m ing? IEEE Software, pages 10-20, May
1988.

[160] Jo h n B . Sm ith and Stephen F. Weiss. Hypertext. CACM . 3 1(7):816—819. Jul 1988.

[161] J. Wade and J. S. Colton. A Framework for Feature-Based Representation o f the D esign Process.
Engineering with Computers, 6(3): 185-192, 1990.

[162] Sonia Enand. Dan Sm all, and Keith W illiamson. D eveloping Core Language Constructs for
K now ledge-Based Engineering Systems. International Journal o f System s Autom ation: Research
a n d A pplications, 2 (4):319-333 .1992 .

[163] K. G. Sw ift. K now ledge-Based Design fo r M anufacture. Prcntice-Hall, Inc.. 1987.

[164] Peter Wegner. C oncepts and Paradigm s o f Object-Oriented Program ming. A C M O O PS M essenger,
pages 8 -8 7 , Jun 1990.

[165] J. M. Spivey. Understanding Z : A Specification Language and its F orm al Sem antics. Cam bridge
U niversity Press, 1988.

[166] W ill D urant. The S tory o f Philosophy. Pocket Books, 1961.

[167] K irk M artini and Graham H. Powell. Geom etric M odeling Requirem ents for Structural Design.
E ngineering with Computers, 6 (2) :9 3 -1 0 2 ,1990.

[168] Jin tae Lee and T hom as W. Malone. Partially Shared Views: A Schem e for C om m unicating am ong
G roups that Use D ifferent Type Hierarchies. A C M Transactions on Inform ation System s, 8(1): 1-26,
Jan 1990.

[169] Steven J. Fenves. personal com m unication, 192.

[170] John Bell and M oshe M achover. A Course in M athem atical Logic. E lsevier Science Publishers,
A m sterdam , 1977.

[171] M icheal J. Wozny. Beyond Com puter Graphics and CAD/CAM . In Tosiyasu L. Kunii, editor.
Proceedings o f C om puter G raphics International '87, pages 3 -9 , Tokyo, 1987. Springer-Verlag.

[172] Stefan Dessloch, C hristoph HCbel, Nelson M endonca M attos, and Bem d Sutter. H andling Func­
tional C onstraints o f Technical M odeling System s in a KBM S Environm ent. In terna tional Journal
o f System s A utom ation: Research and Applications, l (4) :3 4 7 -3 6 7 ,1991.

[173] P. B em us and Z. Letray. Intelligent System s Interconnection: W hat Should C om e A fter Open
System s Interconnection? In P. J. W. ten Hagen and Tetsuo Tomiyama, editors. In telligent CAD
System s I (Theoretical and M ethodological Aspects), EurographicScm inar Series, pages 4 4 -5 5 ,
Berlin, 1987. Springer-Verlag.

[174] D ragan D. Djakovic. RASP - A Language w ith O perations on Fuzzy Sets. C om puter Languages,
13(3): 143-1 4 7 ,1 9 8 8 .

[175] A llen C. Ward. Som e Language-Based Approaches to Concurrent Engineering. In ternational
Journa l o f System s A utom ation: Research a n d Applications, 2(4):335—351,1992 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

208

[176] Samuel N. Kamin. Programming Languages: An Interpreter-Based Approach. Addison-W esley,
1990.

[177] Ravi Sethi. Programming lan g u a g es: Concepts and Constructs. Addison-W esley, 1990.

1178] Terrence W. Pratt. Program ming Languages: Design and Im plem entation. Prentice-H all, Inc.,
1975.

1179] Robert R. Kessler. LISP, Objects and Symbolic Programming. Scott, Foresm an and Company,
1988.

[180] A nthony J. Field and Peter G. Harrison. Functional Program ming. International C om puter Science
Series. Addison-W esley, 1988.

[181] John W. Baugh Jr. and Daniel R. Rehak. Applications o f Coarse-G rained Dataflow in Com putational
M echanics. Engineering with Computers, 8(1): 13-30 ,1992 .

[182] David A. Watt. Program ming Language Syntax and Semantics. Prentice Hall International Series
in C om puter Science. Prentice Hall Inc., 1991.

[183] R evised3 Report on the A lgorithm ic Language Scheme. AC M Sigplan N otices, 21(12), Dec 1986.

[184] IEEE Standard for the Schem e Program m ing Language. IEEE Std 1178-1990 ,1991 . Institute o f
Electrical and Electronic Engineers.

[185] K entD ybvig . The Schem e Program ming Language. Prentice-H all, Inc., 1987.

[186] O liver Laum ann and Carsten Bormann. Elk: The Extension Language Kit. w orking paper, included
with source, 1992.

[187] G uy Argo, John Hughes, Philip Trinder, Jon Fairbaim , and John Launchbury. Im plem enting
Functional D atabases, chapter 10, pages 165-176. ACM Press Frontier Series. Addison-W esley,
1990.

[188] O scar N ierstrasz. A Survey o f O bject-Oriented Concepts, chapter 1, pages 3 -2 1 . A C M Press
Frontier Series. Addison-W esley, 1989.

[189] K enneth Kahn, Eric Dean Tribble, M ark S. M iller, and D aniel G. Bobrow. Vulcan: Logical
Concurrent Objects, pages 75-112 . Com puter System s Series. T he M IT Press, 1987.

[190] Gio W iederhold. Views, O bjects, and Databases. IE E E C omputer, 19(12>:37—44, D ec 1986.

[191] H. H. Lee and J. S. Arora. Object-Oriented Program m ing for E ngineering A pplications. Engineering
with C omputers, 7 (4) :2 2 5 -2 3 5 ,1991.

[192] Bruce W. R. Forde, R icardo O. Foschi, and Siegfried F. Stiemer. Object-O riented F in ite E lem ent
Analysis. Com puters a nd Structures, 3 4 (3):3 5 5 -3 7 4 ,1990.

[193] Gail M. Shaw and Stanley B. Zdonik. A Query A lgebra for O bject-O riented D atabases. Technical
Report C S-89-19, Departm ent o f Com puter Science, Brown University, Providence, R hode Island,
M ar 1989.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

209

[194] M icheal Kifer, Georg Lausen, and Janies Wu. Logical Foundations o f O bject-Oriented and Frame-
Based Languages. Technical Report 90/14(2nd revision), Departm ent o f C om putcrSciencc. SUNY.
Stony Brook, NY, Aug 1990.

[195] Josd M eseguer. A Logical Theory o f Concurrent Objects. In N onnan M cyrow itz, editor. Conference
on O bject-O riented Programming: System s, Languages, and A pplications. New York, 1990. ACM
Press.

[196] Various authors. X3/SPARC/DBSSG/OODBTG Final Report. Technical report, Accredited Stan­
dards C om m ittee X 3 ,1991.

[197] A deie G oldberg and David Robson. Smalltalk-80: The Language and Its Implem entation. Addi.wn-
W esley, 1983.

[198] B jam e Stroustrup. A C++ Tutorial. C om puter Science Technical Reports 113, AT&T Bell Labs,
M urray H ill, NJ, Sep 1984.

[199] R alph E. Johnson and Jonathan M. Zweig. Delegation in C++. Journal o f Object-O riented
Program m ing, 4 (7):31 -3 4 ,1991 .

[200] Various Authors. T he SELF Papers. Technical Report CIS 209, S tanford University, Stanford, CA,
1991.

[201] W olfgang K reutzer and M alcolm Stainmand. C-Flavours: A Schem e-B ased Flavour System with
C oroutines and its Applications to the Design o f Object-Oriented Sim ulation Software. Com puter
Languages, 1 5 (4):2 2 5 -2 4 9 ,1990.

[202] Stephen Slade. The T Programming Language: a dialect o f LISP. Prentice-H all, Inc., 1987.

[203] Joseph A. G oguen and Jose Meseguer. Unifying Functional, O bject-O riented and Relational
P rogram m ing with Logical Sem antics, pages 417-477. C om puter System s Series. T he M IT Press,
1987.

[204] C hristian Queinnec. M eroon: A Sm all, Efficient and Enhanced O bject System , unpublished book
chapter, July 1992.

[205] Sho-H uan Sim on Tung. M erging Interactive, M odular and O bject-O riented Program ming. PhD
thesis. D epartm ent o f C om puter Science, Indiana University, 1992.

[206] K am ran Parsaye, M ark Chignell, Setrag Khoshafian, and Harry Wong. Intelligent D atabases:
O bject-O riented, D eductive H ypermedia Technologies. John W iley and Sons, Inc., 1989.

[207] N orm an A dam s and Jonathan Rees. Object-Oriented Program m ing in Schem e. In Jerom e Chailloux,
editor, Proceedings o f the 1988 A C M Conference on U S P a n d F unctional Program m ing, pages
2 7 7 -2 8 8 , N ew York, 1988. ACM .

[208] U day S. Reddy. Objects as Closures: A bstract Semantics o f Object O riented Languages. In Jerom e
C hailloux, editor, Proceedings o f the 1988A C M Conference on U S P a n d F unctional Program ming,
pages 2 8 9 -297 , New York, 1988. ACM .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

210

1209} Luca Cardelli. A Sem antics o f M ultiple Inheritance, pages 59-83 . The M organ K aufm ann Series
in Data M anagem ent Systems. Morgan Kaufm ann. 1990.

[210) Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and Polym orphism .
ACM Com puting Surveys, 17(4):471-522 ,1985 .

|2 1 1] Alan Snyder. Inheritance and the Developm ent o f Encapsulated Softw are C om ponents, pages
165-188. C om puter Systems Series. The M IT Press, 1987.

[212] Ibrahim Zeid. CADICAM: Theory and Practice. M cGraw-Hill, Inc., 1991.

[213] Richard P. Paul. Robot M anipulators: M athem atics, Program ming and Control. M IT Press, 1981.

[214] William C. Reynolds and Henry C. Perkins. Engineering Therm odynam ics. M cG raw -H ill, 1977.

[215] W illiam H. Beyer, editor. CRC Standard M athem atical Tables. CRC Press, Inc., 27 edition, 1984.

[216] Brent H ailpem and Van Nguyen. A M odel f o r O bject-Based Inheritance, pages 147-164. Com puter
System s Series. T he M IT Press, 1987.

[217] Rom an Cunis. A Package for Handling Units o f M easure in Lisp. A C M LISP P ointers, 5 (2):2 1-25,
1992.

[218] Edward Sciore. Object Specialization. AC M Transactions on Inform ation System s, 7(2): 103—122,
A pr 1989.

[219] Shinn-D er Lee and Daniel P. Friedman. First-C lass Extents. Technical R eport 350, C om puter
Science Departm ent, Indiana University, B loom ington, Indiana, M ar 1992.

[220] M icheal Puttrd. Virtual Prototypes M ove Alongside T heir Physical Counterparts. M echanical
Engineering, pages 5 9 -6 1 , Aug 1992.

[221] H. N. A n-N ashif and G. H. Powell. An Object-Oriented A lorithm fo r A utom ated M odeling o f
Fram e Structures: Stiffness M odeling. Engineering with Computers, 7(2):121—128,1991 .

[222] Ham ideh Afsarm anesh. The 3Dis: An Extensible Object-Oriented Inform ation M anagem ent E n­
vironm ent. A C M Transactions on Inform ation System s, 7(4):339—377, O ct 1989.

[223] Grady Booch. Object Oriented Design with Applications. B enjam in/C um m ings Publish ing Com ­
pany, Inc., 1991.

[224] Steve Ford, John Joseph, David E. Langworthy, David F. Lively, G irish Pathak, Edw ard R. Perez,
Robert W. Peterson, Diana M. Sparacin, Satish M. Thatte, David L. Wells, and Sanjive Agarwala.
Zeitgeist: Database Support for Object-Oriented Program ming. In K. R. D ittrich, editor. Advances
in O bject-O riented D atabases (Proceedings o f 2 n d International W orkshop on O bject-O riented
D atabase System s), num ber 334 in Lecture N otes in C om puter Science, pages 2 3 -4 2 , B erlin, 1988.
Springer-Verlag.

[225] Setrag Khoshafian and Dan Frank. Im plem entation Techniques fo r O bject O riented D atabases. In
K. R. D ittrich, editor. Advances in Object-O riented D atabases (Proceedings o f 2 n d International
Workshop on Object-O riented D atabase System s), num ber 334 in L ecture N otes in C om puter
Science, pages 6 0 -80 , Berlin, 1988. Springer-Verlag.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

