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ABSTRACT

There is mounting evidence in the current literature which suggests that our collective understanding of
engineering design is insufficient 1o support the continued growth of the engineering endeavor. Design
theory is the emergent research field that addresses this problem by sceking to improve our understanding
of, and thus our ability to, design. The goal of this author’s work is to demonstrate that formal techniques
of logic can improve our understanding of design. Specifically, a formal systewm called the Hybrid Model
(HM) is presented; this system is a sct-thcoretic description of engincering design information that is
valid independent of (a) the processes that generate or manipulate the information and (b) the role of the
human designer. Because of this, HM is universally applicable to the representation of design-specific
information throughout all aspects of the engincering enterprise. The fundamental unit in HM is a design
entity, which is defined as a unit of information relevant to a design task. The axioms of HM define
the structure of design entities and the explicit means by which they may be rationally organized. HM
provides (a) a basis for building taxonomies of design entitics, (b) a gencralized approach for making
statements about design entities independent of how the entities are gencrated or used, and (¢) a formal
syntactic notation for the standardization of design entity specification. Furthermore, HM is used as the
foundation of DESIGNER, an extension to the Scheme programming language, providing a prototype-based
object-oriented system for the static modeling of design information. Objects in the DESIGNER language
satisfy the axioms of HM while providing convenient programming mechanisms to increase usability and
efficiency. Several design-specific examples demonstrate the applicability of DESIGNER, and thus of BM

as well, to the accurate representation of design information.
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List of Symbols

The notation presented in this section is drawn from accepted systems of notation in predicate calculus
and axiomatic set theory. In addition, a number of symbols used exclusively by the author for the Hybrid
Mode! (Part III) are also included. Usage of these symbols is restricted to Part 111, wherein the formal

statement of the Hybrid Model in the language of mathematical logic is presented.

Basic logic and set theoretic symbols are:

€ Set membership; for example, x € I is read “z is @ member of I"". This is taken to be
primitive to the Ist order predicate calculus and so is considered an undefined primitive

in axiomatic set theory.

= The identity operator, which is transitive (z)(y)(((z = y) 0 (y = 2)) = (z = 2)),
symmetrical (z){y)((z = y) = (y = z)) and totally reflexive (z)(z = z). For
example, z = yiff every attribute of z is an attribute of y, and conversely. This is taken
to be primitive to the Lst order predicate calculus and so is considered an undefined

primitive in axiomatic set theory.

=qf Read as ™. .define as. .. ", this symbol is used to introduce definitions (e.g. X =g {z :
(z € Y) e (z € Z)}, which defines X to be the sct of elements occurring in both ¥ and
Z) and is distinct from the identity operator (above).

C Subset relationship; for example, z C y is read “'z is a subset of y”.

v The universal qualifier, read as “for all ...". Statements using V are composed of

three parts: the V symbol, the specification of a variable or variables over which the

8
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9

quantification is performed. and a statement which is true for the variable(s). The parts
are separated by parentheses. Forexample, V(z)(x € I)isrcad “for all x, x is a member
of I, Also, if [ is the set of all integers, V(x € /){(z > 0) defines all positive integers,

and is read “for all z in I, x is greater than 0",

E| The existential qualifier, read as “there exists...”. Statements using 3 have the same
form as statements using the universal quantifier. Forexample, 3(+ € I)(x = 1)is read
as “there exists an x in I, such that x equals 1", It is gencrally unclear whether this
qualifier should be read as “‘there exists at least one z in I..." or as “there exists exactly
onez in I...". A distinction is made in [1] between the fwo by using 13 to indicate
the latter and 3 for the former. We adopt this distinction here because the semantic

difference is relevant to the development of the Hybrid Model.

1]

Logical equivalence. This rule of inference is defined by the statement (x = y) = (2 =

y)N(y = z).

"

- Logical not operator, read as “..not...", and resulting in the logical negation of its

immediate consequent. For example, if z is true, then -z is false.

n Intersection operator, read as “...and...". The result of this operation s the setintersection
of its antecedent and consequent. For example, z N y results in the intersection of the
set entities = and y. This form is used exclusively for set operations. Also, the form

(N; X; means the intersection of all X;.

. Boolean “and” operator. The result of this operation is true iff both its antecedent and

consequent are true. For example p e ¢ is true iff both statements p and ¢ are true.

U Inclusive union operator, read as “...or...". The result of this operation is the set union of
its antecedent and consequent. For example, z U y is the set containing all the members

of both set z and set y. Also, the form | J; X; means the union of all X;.

+ The boolean inclusive “or” operator. The result of this operation is true iff either or both
of its antecedent and consequent are true. For example, p + ¢ is true iff (a) p is true,

or (b) g is true, or () p and ¢ are true. The exclusive union operator (i.e. the operator
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the result of which is true if only one but not both of p or ¢ is true) is defined by the
cxpression (p + q) e =(p e q).

= Material implication, read as “...implies...". Classically, this is the only kind of impli-
cation used in formal logic. The antecedent of = implies the consequent; that is, if the

antecedent is true, then the consequent is also true. This operator is used when only the

truth value of the antecedent is known and the value of the consequent is unknown.

(...) Angle brackets denote ruples, which are short ordered lists treated as single units. For

example, V({z,y))((z € I) o (y € I))denotes an ordered pair of integers.

o Superset operator. Equivalent to =>.

2 Superset-or-cquality operator.

0 The empty (or null) set.

P(X) The power set of X; i.e. the set containing all subsets of X (including the empty set).

A function is denoted by its name followed by arguments. The arguments are in parentheses. For
cxample, VIEW( X, ¢) is a function whose name is VIEW, and whose arguments (in this case) are X and
. Functions may have no arguments. A function with one argument is called a unary function; a function
with two arguments is called a binary function; a function with more than two arguments is called an

n-ary function. A function retumns some data entity. In general, a function is written f(z).
Function variables (i.c. variables that represent functions) arc written in greek characters, for example ¢.
A predicate is like a function, but it can only retum one of two values, true or false.

The following symbols are used exclusively in the Hybrid Model.

X,Y,Z individual objects.

Ci A collection ¢ of objects.
a, b, ¢ attributes of objects.

0] The set of all objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

T The set of all object types.

T,U,V types.

C The set of all classes of objects.

A The set of all attributes.

D The set of all attribute domains.

R The set of all attribute ranges.

r The set of all view definitions.

- A view definition.

IS.A The typing predicate, read as “...is a...” and used to relate objects to types. For

example: IS_A(X,T')is true if object X is of type 7', and false otherwise.

INHERITS The inheritance predicate, read as “. . .inherits from. . .” and used to relate object types.
For example: INHERITS(T, U) s true if type T inherits from (ic.is specialized from)
type U or, similarly, if type U is inherited by (i.e. is generalized from) type 7.

A The set of all aggregate predicates.

) An aggregate predicate.
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Glossary

This glossary contains terms relevant to the work presented herein that are not commonly used in
engineering, but that are quite common in other fields. For each term in the glossary, the page where the

term is first used is given in parentheses.

Abstraction Mechanism: A device or technique whereby details are removed from some collection of
information leaving only that which is considered essential. Abstraction mechanisms permit the

ordering, or organization, of information. (page 19)

Cartesian Product: The cartesian product of two sets A and B is defined as the set of ordered pairs
such that the first element of every ordered pair is 2 member of A and the second element of every

ordered pair is a member of B. (page 85)

Completeness: The property of a formal system wherein exactly all true statements can be proven true

and exactly all false statements can be proven false. (page 48)

Consistency: In logic, the state of a formal system containing no contradictions; that is, a formal system
is consistent if all axioms and theorems in the system are valid (see below) with respect to each

other. (page 48)

Design Entity: A unit, not necessarily realizable in and of itself, of relevance in design; an information
model of real world structures of use in a design process, but not including the design process itself.

(page 74)

Dynamic Data Modeling: The modeling of semantic properties and the manipulation of data structures,

often in reference to database transactions. (page 157)

12
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Encapsulation: The discretization of a quantity of information into @ meaningful structure that can be

treated as a single unit. (page 76)

Epistemology: The study of a theory of the nature and grounds of knowledge, especiatly with reference

to its limits and validity!. (page 81)

Formal System: A system consisting of a set axioms taken as premises, and a sct of rules by which

theorems may be proven by application of the axioms. (page 19)
Heuristic: Something valuable for empirical rescarch, but unproved or incapable of proof. (page 34)

Isomorphism: In logic, the relationship between a formal system and some perceived aspect of reality.

A formal system is isomorphic to some real-world phenomenon if it models it correctly. (page 40)

Ontology: A branch of metaphysics relating to the nature of being; a particular theory about the nature

of being or the kinds of existence?. (page 90)
Paradox: In logic, a statement that can be proven both true and false in a given formal system. (page 48)

Static Data Modeling: The description of data objects and their relationships without considering of the

operations in which such structures may be used. (page 111)

Universe of Discourse: The domain about which ali interesting arguments arc made. For example, in

set theory, the universe of discourse is that of all sets. (page 74)

Validity: In logic, the state of being true under any interpretation; that is, a statement or formula is valid

if it can never be false. (page 38)

'From Webster's 7th Dictionary.
*From Webster's 7th Dictionary.
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Chapter 1

Introduction

1.1 Preamble

What is engineering design?

In the broadest sense, the issue addressed by this work is that humanity lacks a sufficient understanding
of the process of engineering design. Although simple enough to phrase, this problem has been an issue
of contention for years, and the sometimes very emotional arguments made by various proponents of one
viewpoint or another, methodology A or B, system X or Y, have possibly done more harm than good.
It has always struck this author as highly suspicious behavior when one is unable to refrain from oven
generalization and emotional rhetoric to convince an audience. Unfortunately, members of all the various
schools of thought involved in the debate may be accused of this kind of behavior, leaving one with the

distinct impression that no one is completely right.

However, the unavoidable facts are these: engineering design has existed in one form or another since
ancient times. In this interval, design has changed — evolved — not only in response to our ever-increasing
understanding of the physical universe, but also in other, relatively arbitrary ways, responding to forces
not particularly natural: sociological, psychological, environmental, governmental, and political. All
these forces have had a hand in shaping design as it is now, and their continued influence has required

designers and design researchers to adapt to their exigencies.

15
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The one constant throughout the history of engineer.  acsign has been that the requirements placed on
designers and on the products they design have continually increased in complexity. Similarly, as we gain
more knowledge about the universe, that much nore information can be applied to the problems we have
1o solve. The complexity of most current-day design problems is many orders of magnitude greater than
that of problems faced by the designers of the last century, and there is no reason to suspect that this trend
will change in the future. Correspondingly, in order to meet the challenge of today's design problems, we

must leam to manage all the information at our disposal in an efficient, concise and timely manner.

Design rescarchers are thus faced with the task of dealing with this complexity; simply ignoring it is
unacceptable. In response to this chatlenge, a new field of research has emerged: design theory. Its goals
are (a) to respond to the increasing complexity of engineering design problems, (b) to increase confidence
in our solutions to the design problems of the future, and (c) to overcome limitations and difficulties
associated with the process of design by providing more consistent, logically structured methodologies

and techniques.

Furthering our understanding of design is a worthwhile goal because it leads to verifiable explanations
of the phenomenon of design. Historically, explanations of this kind in other fields (such as physics,

medicine, etc.) have led to progress, advancement, and new insights into the nature of the phenomenon.

Many segments of the design process are still based in large measure on arbitrary, ad-hoc decisions and
processes. Still, design theory has provided a focal point for the efforts of hundreds of researchers, and
their work has already made notable contributions towards the goals stated above. It marks the beginning
of a new stage in the evolution of design, a renaissance of sorts; we, as designers, are collectively and for
the first time attempting to examine our role in society, and to examine design itself critically, objectively,
logically. Holding design theory as a central concept. researchers are striving toward a level of formal

rigor in engincering design, a certain scientific legitimacy that has, to date, been rather elusive.

In the recent past, engineering design has been considered largely an *“art” or even a “skill”, an endeavor
not amenable to formalization and scientific scrutiny. This is changing: the introduction of expert
and automated systems, quantitative cognitive design research, new methodologies such as concurrent
engincering, new forms of mathematics (for example, fuzzy logic) and other technological and scientific
innovations are permitting a new view of design to develop, a view in which technology and creativity,

science and intuition are linked in a symbiotic relationship, forming a whole that is greater than the sum of
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its parts. It is not unlike the Renaissance, during which time science grew from a highly mystical practice
to the much more rational. reasonable, and far more usctul endeavor. it is today. As this maturation
process continues, we will have to cxamine the engineering design entemprise and possibly change our
ideas about what it really is. In order to be successful. every effort must be made to maintain a flexible

yet definitive framework within which design and design theory can evolve in a formal manner.

It is this author’s humble desire to contribute to this endeavor, and to help the engineering profession

develop to its next plateau.

1.2 Premises

The relevance of the work presented herein depends on the acceptance of certain premises. These premises
cannot be proved in any mathematical or logical sense of the word because they are extralogical, that is,
they are empirical, deriving directly from observation of the state of design and of reality. As such, the
most that can possibly be expected is to provide sufficient empirical evidence to suggest an acceptable

degree of confidence.

These premises are discussed here, at the outset, so as to define the boundaries within which the rest of

this work exists.

Design is not well-understood. There s no clear, precise definition of what design is. Ithas, forexample,
been referred to in the recent literature as “..the evaluation and satisfaction of many constraints....”
[2); “...planning for manufacture...” [3]; a largely intellectual, cognitive process [4]; an “...ill-defined
art...which lacks formal definition..." [5]; a somewhat “mystical” process [6]; a “...socially mediated
process...” {7]; and many others. All these descriptions are, to be sure, partly right. But the totality
of what is involved in design is lost in each case. Certainly, many researchers have been motivated to

perform design research expressly due to the apparent lack of current understanding (8,9].

Design is not currently efficiently performed or taught. In a recent report [10], the National Rescarch

Council (USA)' has taken the position that engineering design education is weak, and that this weakness

!in collaboration with the National Science Foundation and other bodies
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is preventing the best available design practices from reaching industry. This point of view has been
advocated widely, both in the United States, and in Canada [11,12]. Educators must find new ways to
communicate cffectively to students if thesc students are to someday design effectively. But without a good
understanding of what design is and how it is performed, such necessary communication is impossible.

Thus, the burden finally lies with rescarchers, who must advance our basic understanding of design.

Formal theories of design would lead to improved practical methodologies. A formal theory is a
logical, objective system for the maintenance of knowledge and the investigation of phenomena. Formal
theories arc the comerstone of both the natural and engineering sciences. The establishment of formal
theories of design may provide the benefits to designers that they have provided to scientists. This notion

has been echoed by other researchers (e.g. [13,14]).

It is possible to formalize at least segments of the design process. A number of methodologies and
techniques already exist, defined in at least informal terms, that have provided considerable insights, if not
into the nature of design itself, then at least into the more practical aspects of the engineering endeavor.
The structure currently used every day in design processes all over the world did not exist a century, or
cven a decade, ago. There is no indication that we have yet exhausted all the directions in which such
a structure can extend. Whether the design process as a whole can be entirely automated remains an
open question; still, there are many areas where increased formalization is possible and desirable. The
advantages are numerous: improved communications and tools for teaching, more reliable analysis of

designs for correctness, information integrity and shorter development times are but a few [15].

1.3 Statement of Thesis

The thesis of this work is: axiomatic set theory provides a basis whereby design information can
be rigorously specified independent of design processes giving rise to or otherwise manipulating that

information.

This statement captures the essence of a number of arguments, all of which will be presented and

examined in this document. Such terms as axiomatic set theory, design information, design process and
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so on will be defined where possible in accordance with commonly accepted priactice; in some Cases,
where conventional definitions arc vague or imprecise, an attempt will be made o specity them more
fully. Some terms, such as isomorphism, have specific denotations in logic: since this work focuses on
the use of logic, we will use the logical rather than engineering definitions, A glossary of important tens

is provided at the beginning of this document.

The heart of the work focuses on the derivation of a formal system called the Hybrid Maodel of design
information (HM); the system consists of nine axioms and various definitions and theorems. The axioms
capture essential properties of design information within a logical framework, including five abstraction
mechanisms that permit the organization of information according to various criteria. The axioms will be

presented in the notation of mathematical logic; explanation and discussion will be presented in English,

In order to demonstrate the application of formal systems to practical issues in engincering design, a new
programming language for engineering computation, called DESIGNER, shall be presented. DESIGNER
relies on HM for rigor. It represents a computational model that captures arbitrary information about
specific design cntities and permits the organization of that information; it is not intended to capture
methodological or procedural information about the design process itself. 1t will be shown that a strong
continuity of logical rigor exists from HM through to the implementation £ DESIGNER. Various examples

specific to engineering are included to demonstrate DESIGNER's capabilitics.

Given the novelty of design theory as a field of research, a significant body of fundamental work docs
not yet exist. This is indicated in the premises (Section 1.2). The author’s work must remain somewhat
general, if for no other reason than this. In the process of developing the theories and ideas presented
herein, the author has also developed a number of collateral notions which, though not directly associated
with the precise topic of this work, impact upon it in an ancillary capacity. This material is nonctheless
relevant and original, and is included in this document for the sake of completeness.

With this in mind, the author also defines the thesis of this work in a broader sense; namely that the use
of formal logic can significantly improve our understanding of design, and provide a framewaork within
which highly effective tools for managing the complexity of design can be generated, The answer (o

the question of the specific thesis of this work, stated at the beginning of this Scction, will be used to

corroborate this more general statement.

It is noted that this dissertation directly addresses what is given in [4] as the first mistake of current
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design education; “We have done very little rescarch to develop a fundamental scientific understanding

of engincering design processes.”

1.4 General Remarks

As design theory continues to gain acceptance and popularity, the organizational aspects of these research
cfforts will become increasingly impoitant. Successful organizational technia ies rely on the detection of,
and accommodation to, the structure that exists within information available to designers. The creation
of these techniques must occur in a logical fashion. Paraphrasing Quine [16], the truths of logic may be
reckoned among the truths of design, thus making logic an essential basis of its formal understanding.
Throughout this work, arguments will be structured in as logical 2 manner as is possible, and logic will

be invoked often as the basis upon which we will make our observations.

Efforts in design theory have rightly depended on the use of computers for their capacity to store
information accurately and to calculate and maintain the complex relationships that exist between data.
As is noted in [17], *...the human brain is better able to recognize than recall....” Computers, with their
relatively infallible memories, are of great assistance in this regard. Furthermore, as the world economy
continues to move from a product and service base to an information base, information management issues

in design will become more important [7, 18-20]).

Design research in the recent past has examined the use of databases, application-specific languages and
cxpert systems, as well as more theoretical studies in such areas as <onstraint satisfaction and symbolic
computation. These tools have been applied with varying degrees of success to component assembly [21],
design cxploration [22,23], solid modeling [24], finite element analysis {25], etc. The unique nature of
design suggests that generalized information management approaches will not necessarily support all of

its aspects [26-28].

Currently, however, there is growing concern regarding the semantics of engineering design. Many recent
rescarch cfforts have met with limited success because not enough is understood about the meaning of
the information we use. The understanding we do have tends to be empirical and intuitive [29,30] and its
organization is neither particularly structured nor logical. In response to this, researchers have begun to

backtrack, seeking a return to sound, logical first principles in design. Two notable examples of this trend
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are [4,31]. The notion of the existence of formal first principles for design has guided the author’s work

presented herein as well.

The importance of the organization of design information cannot be overemphasized. This issuc is
strongly tied to the search for semantic formalization. To organize information means to order it. The
imposition of order on information is identical to the extraction of meaning (rom it, and makes explicit
such information as would otherwise be implicit only. Increasing the amount of explicit information
present in a collection of data decreases the amount of interpretation that must be performed to extract its
semantics {32,33]. Therefore, the study of organizational schemes for design information is synonymous

with the study of its semantics. The theme of organization pervades the author’s work.

The search for a formalization for engineering design must necessarily be conducted in a logical, scientific
and internally consistent manner [4]. For this purpose, the author has selected axiomatic set theory and
discusses it briefly in Section 8.2. The role of logic in design is critical to the development of the author’s

theory, and will be discussed in detail before the actual theory is presented.

This document is arranged in five Parts. The central three Parts form the body of the work, beginning
with the most general and theoretical remarks, and proceeding towards more specific matters. Part I will
focus on the role logic plays in design, indicating some of the short-comings of the current understanding

of design and indicating how logic can help resolve these problems.

Part I1I deals with the central thesis and presents the Hybrid Model (HM) of design information. Naturally,
no discussion about design information can be carried out without some reference to the design process,
but the author will demonstrate that it is both reasonable and advantageous to scparate information about
a design artifact from the actions carried out on or with this information. It is essential to understand
what forms of information are available before any meaningful discussion regarding design processes can
occur. Thus, the theory deals specifically and only with design information. The design process will be
discussed only insofar as to define the design information management problem. Issues such as concurrent
design are not addressed because they are aspects specific to the design process; that is, they affect how

information is manipulated, but not the information itself.

Part IV will describe a new programming paradigm devised by the author, built upon HM. The intention
is to indicate the immediate benefits that can be reaped from a formal theory such as HM, and to provide a

testbed with which further research in design theory may be conducted. Various design-specific examples
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will demonstrate the capabilities of the resulting computational system.
Finally, Part V will conclude the work with a general discussion of results and directions for future
research.

A glossary of important terms and a list of symbols are provided at the beginning of the document.
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Chapter 2

Literature Survey

2.1 Introduction

This Chapter will present a survey of recent literature examined in the course of performing the work
reported herein. Due to the relative youth of design theory as a research tield, literature directly within
the field is not abundant. However, the author has found a great deal of information in the peripheral
areas of formal logic, computer-aided engineering, concurrent engineering, and computer science which

is relevant to the matter at hand.

Because this dissertation is squarely within the field of design theory, comments that will appear in this
Chapter shall be biased in that directicn. In other words, the primary criterion for the evaluation of other
research shall be the degree to which it contributes to the overall understanding of design. In some cases,
this contribution will be slight; this does not mean that the surveyed work is of no value, but only that it is
of limited use strictly within design theory itself. Given the nature of this survey, literature dealing with
theoretical aspects of computer programming, as well as fields such as formal logic and others will not be

dealt with directly.

The author has found that the existing literature can be divided coarsely into three categories: design
theory, computer-aided engineering, and cognitive and concurrent design research. These three categorics

are not decoupled; some cross-over is bound to occur as lechniques are applied to various domains
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(for example, the application of a specific design theory to the generation of a computerized designer’s
aide). However, principal contributions by various researchers can be categorized on the whole using this

scheme; it shall be used here to help organize this survey.

2.2 Design Theory

Surveyed work which the author classifies as design theoretic in nature is hallmarked by three properties.
First, computer technologies are not essential to the contribution of the work; that is, the principal
contribution is not simply a new computerized designer's aide. database, or other program. Second,
design theoretic work aims at a unified view of design in the most global sense, not only as it affects some
very specific task within design (for example, synthesis and analysis of mechanisms [34]). Although such
work may contain strong theoretic elements, it is not design theory because it deals with specific tasks and
cxcludes issues of integration with other aspects of the design endeavor. Third, the role of the designer is

not central to the development of the work; this excludes issues of cognition, intuition, judgment, etc.

The cfforts of two researchers in particular are exemplary of the work currently being done in design

theory:

Nam P. Suh has recently published a text [31] wherein he sets forth an axiomatic theory of design. Suh
assumes that a design problem can be stated in terms of functional requirements (FRs) and that its solution,
a design artifact, is defined in terms of a number of design parameters (DPs). He argues for this approach
bascd on the empirical evidence of how design problems are commonly stated, and how their solutions

arc commonly specified.

Based on this assumption, his theory contains only two axioms, eight corollaries and sixteen theorems.
We will examine only the axioms here, since the corollaries and theorems may be derived from them. The
first axiom is that the FRs of a design problem should be independent of each other (i.e. uncoupled). He
argues that coupled functional requirements indicate some misconception of the design problem; several
cxamples are provided to support this notion. The second axiom of Suh'’s theory is that the information
content of a design specification should be minimized. The intention here is to ensure that there is no
duplicated information or information arising from coupling between FRs. It is shown that, all else being

cqual, a set of uncoupled FRs leads to a “'simpler” design (i.e. having a minimum required information
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content) than an equivalent set of coupled FRs.

Suh’s theory does not formaily define an exact procedure to be followed in an arbitrary case in order to
find an appropriate solution, but rather defines a coflection of rules that a designer can usc o analyze
a design problem and guide evaluation and subscquent iterative redesign of a solution until it becomes

satisfactory.

Although the theory is for the most part presented in English, a chapter is reserved near the end of the
book for a restatement of the theory in the language of predicate logic. This author notes that though
the statement of Suh’s theory is amenable to representation in predicate logic, a number of important
concepts are defined as primitive predicates only informally (such as feasibility, measure of information
content, and coupling). Since logic is a field wherein an argument is only as strong as its weakest link,

such informality at the very outset of the presentation can only be taken as a shortcoming of the theory.

Nonetheless, the text is replete with examples ranging from the design of a can opener to the re-organization
of the Engineering Directorate of the National Science Foundation, and is an ideal vehicle for the
introduction of logical structured thinking processes into the field of design, both as an educational tool

and as a general reference.

The second principal contributor to design theory is John Dixon (et /) who, in numerous papers and articles
(e.g. {9, 13,29, 35, 36]) strongly advocates a more “scientific” approach to design and design rescarch.
Rather than the generally philosophic approach taken by Suh, Dixon’s work centers on experimentation
with computers o prove or disprove general notions relevant to design. In [9], for example, a taxonomy
for various kinds of design problems is described. The criterion for ascribing a particular problem to one
kind or another is based on the nature of the initial state of knowledge when the problem is defined, and the
final state of knowledge at the problem s solution. For example, phenomenological design is characierized
by a function to be supplied and a physical phenomenon that will provide that function. Each kind of
design problem thus recognized, argues Dixon, suggests a class of solution methods. Thus the taxonomy
of design problems is seen as leading to a corresponding taxonomy of design methodologies. As these
taxonomies become more detailed, Dixon also reports on various software systems devised to satisfy
taxonomic and other requirements. The systems are then used to determine what advantages are provided,
if any, by the approach. The main contribution of Dixon's work is seen by this author as the explanation of

the nature of various kinds of design problems and the classification of known and newly devised solution
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techniques based on experimentation using computers. Many of Dixon's classifications are quite coarse,
but since no other taxonomic systems have yet been widely accepted, he has little alternative. Two other
classifications that he and his co-workers have advocated include: the separation of design into (a) design
problems, (b) the people who perform design and (c) the environment within which design occurs [37];
and categorization of design theories as prescriptive! (tending to describe fow design should be carried
out), cognitive-descriptive (describing what design seeks to achieve) and computational (formalization
through computerization) {38]. These systems all seek to provide flexible tonls to guide researchers
towards a better understanding of the nature of design, rather than a series of rigid, inflexible structures

defining exactly the nature of design as a process.

Insofar as purely theoretic research is concemed, special comment should be also made of three other

cfforts:

The first is the Extended General Design Theory proposed by Yoshikawa in [39]. The importance of this
work is three-fold: firstly, it was a fairly early attempt to employ some techniques of logic to discuss
the nature of design; secondly, it sought to place design in a more global framework and discussed the
relationship between design and such fields as physics, philosophy, and technology, by representing the
universe as perceived by man as divided into three distinct domains: legical, conceptual and physical;
thirdly, Yoshikawa was one of the first to advocate the distinction between whar design is versus how
design is performed. From this starting point, Yoshikawa began investigating the nature of design, thus
including from the very outset the notion that design must occur within an environment, by which it is
affected and which it affects. This view of engineering as part of the human experience has more recently

become quite relevant in nationally mandated efforts to improve design as an endeavor [10].

The second is the notion of recursive design as proposed by Ward [40]. Design is seen as recursive (rather
than iterative) in cases where the design problem may be broken down into smaller and smaller components
by the recursive application of some single methodology. This differs from the more conventional iterative
approach in that an iterative design process is applied many times to a detailed design alternative, its goal
being convergence of successive solutions when compared to an externally defined set of criteria. The
advantage of recursive design is its ability to implicitly handle a wide number of design altematives,

something that typical iterative techniques do not do well. However, if the resulting tree structure of all

!sometimes referred (o as normative.
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alternatives in a recursive design process is not carefully “pruned™ to climinate unacceptable designs as
early as possible, it can lead to an intractable number of solutions. The notion of recursive design is quite

new, but shows some potential, especially in concurrent engineering environments.

The third and last nc*able theoretic effort is that of Fauvel [41]. In his approach to modeling design, no
emphasis is placed on any one aspect. Rather, two abstract notions, embodiment and activiry, are used 10
model any design entity. An activity is any procedure or methodology used by a designer; an embodiment
is the resulting effect of that procedure or methodology on a design. This essentially functional approach
is particularly flexible and capable of providing an integrating framework for the overall design endeavor.

It is also reminiscent of the model developed in this thesis (see Section 8.1).

Dixon is also a leading proponent of so-called feature-based design (c.g. [42-45]). A [cature is gencrally
considered to be a modeling entity more immediately relevant to design and manufacturing than a simple
solid or other geometric model. It is often used in connection with cfforts to intcgrate design and
manufacturing. However, even Dixon himself states that the exact nature of a featurc has yet to be
defined [42], and other researchers (e.g. [46,47]) have demonstrated that feature-based approaches are
not computationally feasible over large feature sets. Nonetheless, the importance of features as modeling
structures makes it worthy of note here. Unfortunately, researchers have almost invariably treated features
as the basis for the construction of software systems rather than legitimate conceptual structures to aid in
the generation of design theories; nonetheless, since we are interested in design theory and not engincering
computation, we discuss features in this survey only insofar as they represent a conceptual tool useful in
design theory. Dixon is one of the few who have used the notion of a feature to guide the development
of his design research. Features have found use in the study and generation of taxonomies of design
entities (48,49], formal languages for the specification of spatial relationships [50,51], and the integration

of design and manufacturing [52-54).

Another area wherein a great deal of work of a design theoretic nature has been done is the area of
constraints. A constraint is generally defined as some kind of relationship between variables or parameters
that restricts the set of acceptable values that the variables may have assigned to them. Constraints capture
a restriction placed on a design by the nature of the design problem; thus all constraints on a particular
design must be satisfied for the design to represent a possible solution. The constraint satisfaction

problem has been determined in the general case to be NP-complete [55,56); that is, all but trivial cases
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are computationally intractable [57]. Constraints also affect design optimization and simulation [58-62].

Thus, finding altemnative strategies for dealing with constraints remains an active research area.

The first real attempt to treat the notion of “‘constraint™ as a modeling tool mathematically appears to have
been by Friedman and Leondes [63-65], wherein not only a general mathematical treatment of constraint
theory was given, but various kinds of constraints relevant to the engineering domain were examined.
Since then, work in the theory of constraints has continued in two principal directions: computation and
theory. The computational aspects of constraints will be discussed in the next Section. Insofar as the
theoretic aspects of constraints as concemed, many efforts have been directed in the use of constraint
theory to optimize design; notably, the work of Wilde [66] who introduced the notion of monotonicity
and established several principles by which monotonicity can be used to optimize mathematical models
of design artifacts. All this work has been continued by many others, including [2, 22, 58, 67-72].
Also, various specific aspects of constraint theory as applied to design have attracted the attention of
researchers: the role of constraints in discrete event systems for modeling design processes [73, 74];
the representation of spatial constraints to model shape and physical structure [75,76]; categorization of

constraints types [77]; and the use of constraint networks as models of design processes [78].

There are many other research efforts that have contributed to the development of design theory; to even
mention them all is an intractable proposition. However, a glimpse of a few can indicate the depth and

richness of ongoing research of potential relevance:

Various mathematical and logical forms have found their way into design theory, with the goal of advancing
the integration of otherwise disjoint aspects of design, including: probability and fuzzy logic applied to
the representation of uncertainty in the design process, especially in top-down approaches [47, 79];
predicate calculus [80] applied to the capture of design knowledge [14]; and integration through the use

of information management techniques and information theory [81-83].

The development of general methodologic frameworks for particular sub-domains of the general design
process has attracted considerable attention, including Design for Manufacture (and Assembly) [84],
design for quality [85]. generalized techniques to assist in the organization of design knowledge for
the sake of simplifying its complexity [86-88], and efforts to create viable taxonomies or classification

systems for design problems, methods or entities [17, 89, 90].
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2.3 Computer-Aided Engineering

Into this category falls the majority of the work (over 50%) of which the author is aware, and consists of
models and actual implementations of computerized design aides. Efforts in computer-aided engineering
often have implicitly defined within them models or portions of models of design in general. This has
been necessary because formal bases for design do not yet exist. Indeed, the need for formalisms for
design information and processes is often regarded as an essential prerequisite for achieving integrated
computerized design systems [91,92]. Such conceptual models and formalisms guide the development
of software systems. The motivation for the development of the conceptual model arises primarily from
the requirements of software design, rather than from the requirements of design in general.  In many
cases, this has resulted in confusion between the modeling requirements of design and the exigencies
of computer programming. We defer a detailed examination of this issuc to Section 4.3; here, we shall
examine the breadth and nature of recent work by other researchers. As indicated in the introduction o
this Chapter, emphasis shall be placed on contributions to design theory rather than to computer-aided

engineering.

The most noteworthy effort is that of Charles Eastman et ! {93-98]. This work presents a new conceptual
data model, called the Engineering Data Model (EDM), that defines classes of designed products called
product models. The content of a product model corresponds to a design databasc schema (i.c. the
organizational structure of a design database, not necessarily the actual data within it). One of the major
advantages of EDM is that it is entirely independent of both hardware and software considerations; this
separation greatly simplifies the system, permitting clearer definition of important notions for design
without the need for actual computation. Additionally, notions of formal logic are used as the base upon
which EDM is built; this provides rigor to permit the “correctness™ of a particular product model to be
investigated. EDM product models are defined entirely in terms of three primitive constructs (domains,

aggregations and constraints) plus several higher level constructs built up from the primitives.

The important contribution of Eastman’s work from the point of view of design theory is that EDM
provides a formal structure for design information, albeit for the express reason of generating database
schema. This structure could be used to examine the nature of design information itself. In this regard,

EDM is unique in all the work of which this author is aware for its completeness and rigor.
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However, there are two shortcomings in EDM that this author feels are significant. Firstly, EDM is a
descriptive (or declarative) form, as opposed to an axiomatic form. EDM is meant to permit, among
other things, reasoning about product models, but a descriptive form does not provide the apparatus
to perform this reasoning in a formal manner [99). As well, descriptive forms have been found to be
domain-dependent, which can lead to difficulties in computability [100]. Axiomatic systems, on the other
hand, inherently provide all the apparatus needed to check for correctness (i.e. the notion of “proof™ of a

model) and systematic model construction.

Sccondly, although EDM remains quite detached from the exigencies of computer programming, the
fact that it is a data model requires it to trcat such issues as identity (i.e. naming, equality, etc.) from
a computational point of view. This introduction of computational issues can unnecessarily complicate

investigations geared to the study of design information in general.

Another notable contribution is that of Crawford and Anderson [78,101], in which a computerized system
for gencral modeling of design is presented. The key advantage is that the system is capable of modeling
solution processes as well as design problems themselves. In this way, a higher level of unification is
achicved than in other cfforts, and different categories of solution techniques can be established to assist
in solving novel design problems. However, as is typical in these efforts, the strictly descriptive attitude
taken in the work limits the use of the proposed system to the study and analysis of designs. Also, the
connection between the proposed system and formal bases (e.g. logic) are not examined, thus raising

questions as to whether the validity of the system can be demonstrated.

The neced to express structure as an essential property of data in a computational environment has
encouraged the development of various taxonomies, including taxonomies for design decisions [100],
for mechanical systems [17], for design tasks [102], and for semantic operations on design knowledge
(29, 103]. As well, to capture the procedural aspects of design, numerous models of design have been
suggested, including meta-model evolution [102], the molecular data model [104], the state/transition
model [105], the structural data model [106), and multi-layered logic [107]. These are noteworthy because
they all represent modificarions or extensions of existing data models (e.g. predicate calculus [80], the
relational model [108], the entity-relationship model [109, 110], semantic data models [28, 111], etc.)
leading to the conclusion, supported by many, that conventional data modeling techniques are insufficient

for design. This underscores the need for additional design theoretic research, since we cannot depend on
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existing schemes to provide the necded structure.

One data modeling technique deserves special mention because it was originally designed to provide
support especially for non-conventional applications such as engincering. and because it has become the
most popular approach to managing information: object-orientation. Though a detailed discussion of the
nature of object-orientation is unwarranted here, it is quite relevant to distinguish it as possibly the most
promising approach 1o design information management yet devised. In particular, the object-oriented
approach specifically addresses the short-comings of its predecessor, the relational data model [ 108]. The
relational model was conceived to address the needs of business and commercial applications, but as
many design researchers have indicated, design’s data modeling requircments are quite different from
those of other application domains [25,93, 1 12-118]. In particular, object-oricntation is seen as providing
a far richer set of abstractions for the construction and organization of design models, independence from
implementation issues, reflection (for automatic analysis of design models), unitied language definition
for both programming and database applications, and so on. From a design theorctic point of view,
object-orientation can permit the computer to become a more useful tool for investigative studies into the

nature of design by hiding many of the more mundane and irrelevant issues of computation from the user.

It must be noted here that of all aspects of design, conceptual design, arguably the most important aspect
of the design process, is the least well understood of all. This is made abundantly clear by the failure of all
attempts to computerize it [17,60, 119, 120]. One tool has been indicated, however, as a possible solution
to this particular problem: parametric design. In parametric design, details of various components,
assemblies, etc. are ignored for the sake of capturing in parameterized form the essential attributes of
design entities. In this sense, this author suggests the term schematic design may be more appropriate as
it carries a more direct connotation of an abstract naturc and of the intention to capture only thosc aspects
that are essentially representative of the entities being designed. Parametric design has buen investigated
in detail by others, including [61,75, 121, 122]. We note, however, that two issues regarding parametric
design remain problematic, especially from the point of view of design theory. First, parametric design
does not permit cyclic relationships to exist between data; yet the existence of such structures has been
indicated in constraint networks, especially in conceptual design [122]. Second, though parametric design
may solve the problem of conceptual design, it has been demonstrated to be too restrictive for use in

optimization [61]. Whether these problems indicate a shortcoming in parametric design, or a decper
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inadequacy in our understanding of conceptual design, has yet to be determined. One possible alternative
is variational design, which adopts a different mathematical formulation than does parametric design, and

which has been shown to manage cyclic constraint networks well.

Many other computational approaches have also led to insights into the nature of design. Efforts making
use of systems engineering [83. 101] have demonstrated the usefulness of modular approaches to control
complexity. Various research projects involving the construction of database systems for design have in-
troduced the notion of abstraction mechanisms as techniques to organize and integrate our understanding
of design in general; these include structural entities like features [2, 123], task-specific views of informa-
tion [56, 112], and hicrarchies, aggregations and other classification forms [106, 124-126]. Research into
the practical aspects of constraint management have provided numerous approximations for the solution

of the constraint satisfaction problem (see previous Section) (23,24, 105, 127-130].

2.4 Cognitive and Concurrent Design Research

The third category of research is distinguished by a concem for understanding, in whole or in part, the role
of the human in design; that is, rather than being concemed directly with design itself, workers in this area
are concerned with the mental functions of human designers when they perform design tasks. Similarly,
some researchers (c.g. [39, 120]) have distinguished between how design is performed (by humans) as
opposed to what design is. Although not commonly considered together, cognitive design research and

concurrent design do share an interest in the actions of the designer.

Cognitive design research is concemned with what might be referred to as the psychology of design, and
seeks to explain, or at least quantify in some manner, the particular mental processes a designer may
use. The author also includes expert (and other knowledge-based) systems research in this category, since

these systems model the designer’s ability rather than design itself or some aspect of it.

Concurrent engineering, on the other hand, is concemed with sociological issues. The principal tenet
of concurrent engineering is that the involvement of all interested parties in a design process from the
outset can markedly improve the decision-making abilities of the group as a whole. This kind of design is
far more information- and coordination-intensive than conventional, purely sequential design phocesses

and thus requires a much more refined strategy to assure efficient, accurate and timely communication
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between team members. This requirement has led to great activity in the use of computer tools to help
documnent design processes and communicate information between designers. Thus, again, the role of the

human in the design process is the central concem.

24.1 Cognitive Design Research

This author has several reservations as to the relevance of cognitive design rescarch to design theory. This
issue will be dealt with in depth in Part II. For the current discussion, an abbreviated version is sufficient.
Very little is understood of how the human mind functions; additionally, the outward signs of mental
function (speech, gestures, etc.) do not necessarily relate directly to underlying cognitive process. Indeed,
there is some evidence to suggest that “thinking” as we nomally consider it is a purcly unconscious
process that we may never directly observe or cven experience [131]. This detachment suggests that
too much may interfere with any attempts to control the cognitive function so that it may be observed
in a scientific manner. One is therefore left doubtful of cfforts involving the use of antificial intclligence
techniques to create expert systems and other knowledge-based systems for design which are all rooted

in the presumption of some basic understanding of the human cognitive function.

However, it must also be said that there have becn notable contributions to design theory made not
necessarily from individual efforts in cognitive design research, but rather by the whole of the endeavor.
Specifically, the various efforts of which the author is aware in the recent literature [8,21,24, 102, 103,

132-136] are supportive of the following observations:

First, expert systems suffer from a phenomenon called combinatorial explosion when applied to very wide
application domains. This means that the amount of information that must be managed by these systems
becomes intractably large as more and more different kinds of problems are included. However, for
very specific domains, expert systems have been known to generate reasonably efficient solutions. This
suggests, as has been noted in [102, 103, that though the original goal of expert systems as the ultimate
design tools may never be achieved, they may be very useful as smaller components of large, integrated
design systems (e.g. the design of cams [21]). As well, a very significant dependence on the structures

used to represent information is indicated.

Second, expert systems, like human designers, require a certain period during which they are “trained-up”
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for the kinds of tasks they are to perform. During such training periods, the system will not perform
correctly since it is still leaming. The resource drain that must necessarily occur during training of
cxpert systems has not been addressed in any of the efforts of which this author is aware. As well,
the information base upon which expert systems draw during this period is often heuristic. Heuristic
knowledge is empirical in nature, often unprovable and usually based on the knowledge of particular
experts in a ficld. So, while expert systems may perform more rapidly than humans, and are less likely
to be the source of simple mechanical errors, they will carry with them all the inaccuracies of a human

designer.

Third, the notion of knowledge is not precisely defined. The term has been associated with both the
act of leaming and its results®. This author is surprised that such a vaguely defined notion has been
used to motivate the creation of so many computer software systems (i.e. knowledge-based systems). A
fundamental aspect of these systems is that they can operate in various “intelligent” ways on information;
one might suppose that knowledge is then tied to the process of using information. But again, we lack
understanding of how the mind acts on information; we must therefore suspect any effort to mimic this

behavior computationally as being based on rationalizations rather than real scientific understanding.

Fourth, as indicated in {24], most design “knowledge™ imparted to expert and other such systems tends
10 be routine knowledge. This would seem to indicate, then, that expert systems wou'd be unable to cope
with new kinds of design problems. This has been indicated not only in the existing clesign research, but

also in a more general sense in artificial intelligence [137-139].

2.4.2 Concurrent Engineering

Concurrent engincering has enjoyed significantly more success than has cognitive design research. As
stated above, the goal of concurrent engineering is to parallelize the design process, bringing upstream
various functions normally left until late in the design process (e.g. assembly planning). Engineering
cstablishments that have adopted concurrent techniques have boasted marked savings in time-to-market,
development and production costs, and wastage {100, 117, 140, 141], in some cases exceeding 50%. The

degree of savings has surprised many, and caused a number of researchers to investigate concurrent

*Based on Webster's 7th Dictionary.
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engineering with the aim of identifying exactly how these savings are achieved. This work is on-going
and very few results of consequence have been reported.  However, rescarchers have identificd that

communization of information is likely the key to effective concurrent engineering.

Effective communication in a technical field such as design requires a formalized notation for the specifi-
cation of information (i.e. a Janguage) and a flexible yet strict framework within which information can
be arranged and organized [107]. This has led to the adoption of Aypertext (also called nudti-media) as a
key computational tool for concurrent engincering rescarch 32,135, 142-144}. In essence, hyperiext is a
modeling technique for information upon which no organizational schema is available a-priori. Thus users
of hypertext systems not only supply the information but also the various “hooks™ by which the system
can organize the information. The important contribution of such systems is that information that would
otherwise have been only implicit (because no schema exists to capture it) can be made explicit [81). Here
is one possible use of expert systems to aid designers, though indirectly. A suitably trained system could
examine a hypertext database and organize it according to various other schema identified as significant

in a design environment. This idea has yet to be researched.

Finally, because concurrent engineering places great importance on the conceptual stages of a design
process, a number of cognitive researchers have investigated the nature of communication between group
members in concurrent engineering teams [7,47, 135, 145, 146), and have identificd various techniques
of “negotiation” and sharing of knowledge whereby group decision-making can be assisted by various
formal techniques (e.g. case-based reasoning [145]). It is noted in closing that cognitive rescarch has
had a more noticeable impact on concurrent engineering, possibly because of the increased availability of

externalized evidence (communication between group members) of the design process.

2.5 Summary

This Chapter has presented a survey of recent literature on design theory and the associated fields of
computer-aided engineering, concurrent engineering and cognitive design rescarch. On the whole, the
body of work, though not particularly voluminous due to the relative youth of the field, clearly indicates a
preoccupation with the integration of the various aspects of design. Some research has dealt with specific

theoretical aspects of design (such as constraint satisfaction), whereas other efforts have been larger and
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less detailed in scape, seeking a general framework where particular efforts may be seamlessly combined.
Some successes have been demonstrated as the results of this research percolate from research institutions
into industry, but there is as yet no consensus as to the final form of a fully integrated design endeavor.
Nonetheless, the successes achicved to date indicate that the principle of an integrated view of design is

worthy of further study.
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THE ROLE OF LOGIC IN DESIGN
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Chapter 3

Introduction

The approach used in this work is quite novel: though tools of logic — such as set theory and predicate
calculus — have often been invoked in supporting roles in design theory, there is no evidence of any work
in design that takes logic as its sole foundation. The author finds that the uniqueness of this approach
warrants some explanation, and that the explanation itself can go a long way to clarify the nature of

engineering design, and indicate ways in which more robust formalisms can be achieved.

The purpose of this Part is twofold. First, the general role of logic in design theory will be discussed.
Some of the problems confronting design theorists will be examined, and possible solutions based on the
application of logic will be considered. A fairly wide range of topics will be covered, but the underlying
notions are few and distinct. Second, a number of terms and notions of logic that are not particularly
well-known in design — but that will be used extensively in the Parts to follow — will be introduced and

discussed in detail.

Some important notions should be introduced before any other consideration, because of their importance
in the sequel. First, we define logic as *...the study of methods and principles used in distinguishing
conéct (good) from incorrect (bad) arguments [80].” Indeed, a definition of logic that is both precise
and compact is difficult to find since such a definition would to some degree depend on logic itself for
correctness, and, as shall be shown, the validity of such self-dependent definitions is suspect. Fortunately,
great cffort has been expended by philosophers and other thinkers to resolve this problem; the interested

reader is referred to the introduction in [16], where the overall nature of logic is discussed very clearly if
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The notion of proof is also important. In logic, a proposition is proved if a valid argument can be
constructed so as to demonstrate that the proposition is true. This is a well-accepted. conventional
definition of the term for classical formal logic. Variants exist, depending on the form of logic used. For
example, in fuzzy logic [147, 148], there arc gradations of truth; thus it is possible to hiave propositions
that are more or less true than others. However, for the current work, classical two-valued (i.c. true and

false) logic is sufficient.

Another important notion is that of validity. Validity refers to the correctness of an argument, but not to
the truth-hood of its premises. Thus the classical example “If every man is mortal and Socrates is u man,
then Socrates is mortal” can be shown to be valid without making any statements about the premiscs
“...every man is mortal...” and “.Socrates is a man...”. The advantage is that we can distinguish clearly
between the premises of an argument and the procedures used to reach conclusions. Also, logic provides
the means to check those procedures for incorrect intermediary steps. Although logic may also assist
in determining the correctness of the premises of an argument, this is a separate consideration. Often,
premises of arguments are based on observed facts, which are by definition empirical and which usually
cannot be proved in the technical sense of the word. Although this restriction may appear to limit the
applicability of logic — especially with respect to a domain with such strong physical ties as design — the
notion of validity lets us prove or disprove arguments, which are the building blocks of reasoning; and

reasoning is an essential component in design.

The issue of validity of particular formal systems is problematic; this was established by G6del in his
work on incompleteness. However, insofar as formal systems may be considered valid, they offer a far
more rigorous means of treating phenomena such as design than any other available technique. It thus

remains advantageous to employ formal techniques in design theory.

Logic is considered to be independent of the physical universe; it is for this reason that truth of statements
such as “...Socrates is a man. .." cannot be decided. Indeed, it is possible to generate formal systems
that are in no way related to any aspect of physical existence. However, some formal systems have been
found to be very useful in explaining and predicting the behavior of physical (extralogical) phenomena.
As engineers, we are particularly interested in formal systems that do relate in some way to the physical

universe. These formal systems are our logical models of phenomena. The success or failure of a particular
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logical model depends on its perceived correspondence to the phenomenon being studied. Logicians call
the correspondence between a model and an observed part of reality an isomorphism [149]. The more
accurate and complete the isomorphism is between a model and a phenomenon, the better the model. The
notion of isomorphisms will also play a role in determining the extent to which formal theories for design

can be considered valid; this will be explained in the following Sections.

Furthermore, logic is, on the whole, objective. It is considered to be valid regardless of human cognitive
function. It is interesting to note, however, that there does exist work in logic meant to formalize such
naturally subjective domains as belief systems [150); such work has found technological application (for
example, in the treatment of distributed systems such as computer and communication networks). It
would appear, then, that if we are to maintain a certain objectivity in design research, logic should be

considered a very important and useful tool.

To motivate the discussions to follow, the presentation in this Part will begin with an examination of
terminologic and taxonomic issues, and the inherent vagueness with which notions and concepts in design
are currently defined. This view has been expressed by others in the field, especially Dixon, in [4]. Next,
a distinction is drawn between the conceptual models that we use to understand design phenomena, and
the computational models we use to implement our conceptual models as design aides. This distinction
is important because it can significantly simplify the complexity of design theories. We then examine the
concept of “self-reference” in the context of design theory. Self-reference can prevent valid formalizations
in any domain; the author argues that it should be avoided in design theory if valid formalizations are to
be found. Next, the notion of design as an artificial science is introduced as a means of discussing the role
that formal logic plays in the establishment of useful frameworks within which design can be studied. The
conclusions of these discussions motivate the formulation of two conceptual design theoretic tools. The
first, a layered logical structure for design, outlines a technique whereby different degrees of abstraction
in design information may be identified and classified. The second, called a design space, is meant to

help study the relationships between various notions, methodologies and approaches to design.
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Chapter 4

Motivating Discussion

4.1 Terminologic Considerations

There is no rigorous terminology or nomenclature for important concepts and notions in engineering
design. Terms that designers and design researchers use are often defined in whatever fashion is most
convenient to them (e.g. the various definitions attributed to the term feature in [13,51~53]). This is not
an indictment of the abilities of these persons or the quality of their work, but rather an indictment of our

collective ability to define the nature of design itself.

The nearest convention we have in this regard is the engineering drawing. Although the graphical nature
of engineering drawings can capture some information efficiently, drawings alone, cven if computerized
(via CAD systems), cannot capture all the information necessary to represent the nature of a design in an

efficient and usable way [32,94].

A lack of standardized nomenclature results in bad communication. Between designers, this can have
disastrous consequences. In computerized systems, it can lead to inefficient, incompatible softwarc

systems that stymie rather than stimulate the abilities of designers.

At a deeper level, this indicates a significant disagreement on the limits or boundaries of various notions
and concepts. What is engineering design? What is a solid model? At what point does a geometric model

become a solid model? Should a finite element mesh be considered an analytic model parallel to a solid
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model, a particular manifestation of a product model, or an entirely separate kind of model? To what
extent are constraints a valid modeling form? Is constraint theory a modeling technique or a technique
of analysis? These questions indicate just how vaguely design is defined, a notion echoed in the work
of many researchers (29, 31,39, 151]. They cannot be answered because there is consensus neither of

nomenclature nor of the associated underlying concepts and notions.

The importance of this problem is underscored by its impact on our ability to teach design. In order
to teach, we must communicate effectively. Without effective communication, the imprecision and
inconsistencies of the teacher will tend to be passed on to the student. Thus, the problem perpetuates
itself. The relationship between design theory and teaching design is discussed in some detail in [4,10,36].
Recognition of key primitive notions is essential to attain a more formal understanding of design. The
establishment of more precise conceptual definitions and their corresponding terminologies would assist

us to resolve many difficultics now being experienced.

By simple analogy, consider the nomenclature of chemical compounds. For example, a sulfite is different
than a sulfide, which is different than a sulfate. At once, these terms concisely and exactly capture
significant differences in composition and behavior of these various classes of distinct, yet related,
compounds. The importance of this nomenclature is not so much that it accurately differentiates between
various classes of compounds, but that it represents a collection of very precise definitions and notions

that are consistent with the rest of the formal structure called chemistry.

This kind of precision is missing in design and design research. As things stand today, it is difficult — if
at all possible — to generate a nomenclature of design parallel in precision to that of chemical compounds.
However, if this were possible, the benefits to be reaped would be great. Of primary importance is the
increased efficiency and security of information transfer. A universally recognized nomenclature would
virtually eliminate the subjective interpretation of engineering information and thus greatly diminish
the chances of misinterpretation of that information. Designers will then be able to spend more time

discussing the nature of their designs and less time arguing over how the designs are presented.

Also, increased efficiency in communication can have important consequences to the development of
software systems meant to assist the designer. Specifications for software systems will be more robust
because the models they implement will be more precisely specified. Computers are not yet able to deal

well — if at all — with vaguely defined data. Implementation details would be easier to manage if the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



43

computational models of the problem domains included precisely defined notions.

In searching for a nomenclature for design, it will be up to design theory researchers to provide the formal
systems and methods needed to assure the validity of the nomenclature. The tool they will use to provide

it will have to be logic. The author's propositions in this regard are discussed in Sections 5.1 and 6.2.

4.2 Taxonomic Considerations

A taxonomy is an orderly structured system of classification based on presumed or observed propertics.
Taxonomies are used to classify entities and thus pemmit their study at higher (i.c. more general or abstract)
fevels than that of individual entities. Taxonomics arc also very uscful in systems containing many
individuals and many different kinds of individuals; being able to classify individuals can be a great tool

to assist in the management of information about the individuals and how they relate to cach other.

This problem is nicely stated by Chignell et al, in [143]:

“One of the most annoying things . . .is the feeling that onc cannot keep up with this broad
literature of things that one should know about. Drawing on psychological theory, it seems
that the task of the researcher might be simplified somewhat by providing a framework or
organizing schema within which to understand and absorb the frightening amount of possibly
relevant material that should be dealt with.”

One of the important aspects of taxonomies is that they need not be complete and entirely correct to
provide valuable assistance to researchers. The taxonomy used for the classification of living organisms
is a good example of this. Though it is not perfect (some disputes still go on as to the naturc of certain
organisms), it is for the most part a highly useful tool in such areas as the study of evolution, animal and

agricultural husbandry, teaching, and so on.

Taxonomies could help design theory in many ways and at many levels. At a practical level, they could
assist in standardizing parts and components, leading to universally compatible pant catalogs, annotated
libraries, etc. They could be used to classify design processes and so provide a framework within which
designers can select appropriate methods for different kinds of design problems. Also, they could assist

in the classification of manufacturing techniques, promote modular construction and thus help not only in
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product manufacturing, but also in the design of the plants and assembly facilities used.

In design theory itself, taxonomies could help us understand differences and similarities in various
theoretical systems, which in tum provide a means to cvaluate new ideas. We could also use this
knowledge to identify classes of problems that require more research, and criteria that can be used to

optimize their solutions.

Taxonomies for design and design research have not yet been developed, though there have been various
attempts (77,87, 152]. In many cases, the taxonomies are derived in a generally ad-hoc manner [52). A
good taxonomy must be based on formal reasoning, and the principal criterion used in the search must be
that of validity. The premises of taxonomic arguments are those notions for which taxonomies are sought:
these notions are captured by a nomenclature. Demonstrating validity of the taxonomy does not include

demonstrating validity of the premises.

Insofar as taxonomics are ordering mechanisms, we can look to logic to provide a number of tools to
facilitate their generation. In Chapter 10, five specific mechanisms by which design information can be
ordered will be discussed and demonstrated to be sound with respect to their logical foundation. These

mechanisms can be taken as general principles with which taxonomies of design entities can be formed.

4.3 Computational Considerations

The author has noted that many suggested models of design inherently involve computational aspects.
Examples of this are: [117], where little distinction is made between the conceptual problems of classifying
design function in mechanical design and the computational issues surrounding the implementation of
their classifications in computer systems; [126]), wherein the factors affecting data flow in a design
activity are suggested to arise both from design requirements and from the requirements of computerized
implementation of their system; [77], wherein computational models of knowledge engineering are used
as a basis for formal design process models; [123], where integrity of stored information is seen as an
important aspect of design; and [125], where a relationship is indicated between the “business process” of
computer-integrated manufacturing and the maintenance of software. It is noted that all these efforts fall
at least nominally within the domain of design theory, and thus indicate a possible relationship between

design theory and computer science.
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The author suggests that a distinction must be made between conceptual and computational models. None
of the above-noted models actually require implementations., Each presents a certain view of design, and
contributes to our understanding of it. regardless of how the systems are implemented. The distinction
between implementation of a tool and the mode! upon which it is based is termed by the author as the
distinction between computation and conceptualization. Models can and do exist as formal theories,

independent of their implementations.

In general, a conceptual model might provide formal descriptions of the kinds of information that must
be present, the kinds of operations that arc defined on the information, integrity and other constraints
that are to be satisfied, as well as the gencral philosophic background. A computational model defines
the implementation of the conceptual model, and might specify the kind of scoping' to be used, atomic
data structures, type-checking semantics, transaction control and so forth. An appropriatc computational
model is based in part on the requirements of the conceptual model. Problems arising from differences
between the two are often referred to as impedance mismatches [27]; but the problems themselves are all

computational problems, and do not necessarily reflect the nature of the conceptual model itself.

Issues of implementation— such as the selection of a base programming language (e.g. C versus Smalltalk)
— can greatly affect the success of a particular model of design. Also, computational theory can be a
useful tool in design theory for its ability to formalize actions and procedures that manipulate information.
But in the purely theoretic arena, any mechanism could be used, albeit awkwardly. This is due to the
deterministic nature of the computer itself, In other words, the implementation does not affect the validity

of the conceptual model itself.

The converse of this is also true: given a panicular implementation, any valid conceptual model can
be captured. To be sure, the efficiency of a particular implementation does depend on the relationship
between the model and implementation techniques. However, it is noted that the term “efficiency” in this

case denotes efficiency of the implementation and not of the model.

Therefore, the evaluation of implementations of models does little to effectively compare the underlying
conceptual models, which should be evaluated on logical grounds based on their ability to explain and
predict phenomena of interest. The inclusion of issues pertaining to the implementation of a formal

conceptual system in a computerized environment can unnecessarily increase the system’s complexity by

The scope of a data structure is the region of program code in which it is active or accessible,
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introducing a false coupling between the model and the implementation. This does nothing to increase
the robustness and sccure validity of the model, nor does it verify or increase the efficiency of the

implementation,

Itis, in fact, possible to scparate issues of conceptualization from those of computation: [31,40,52] and the
work presented herein all achieve this separation at least to a degree, and still make meaningful statements
about design. Although these and other related efforts can be used to develop design software systems,
the fact that they are not directly tied to the development of software permits them to be used for a variety

of other reasons, such as teaching aides and research tools, in non-computerized arenas.

The author finds it curious that model generation for design should have become so tightly connected to the
development of software systems, but believes that the connection arose from the historical roots of design
theory in the development of the first CAD systems. Computers, being deterministic machines, cannot
deal well with the arbitrary nature of the way design was once conducted. Hence, techniques were sought
that made design more amenable as an application for the then-emergent computer technologies. Graphic
rendering technology is a direct progenitor of today's solid modeling programs [121]; constructive solid
geometry itself eventually led to features [5,51]. Since then, our understanding of both design and the
underlying logic of computation and information theory have led to the realization that formal models are

useful and important tools independent of their use in computational tasks.

4.4 Summary

In this Chapter, the author has presented a discussion intended to motivate the pursuit of a more complete,
formal understanding of design. In this regard, we have examined terminologic, taxonomic and compu-
tational considerations. There is currently no consensus regarding the definition of important terms and
notions that are often used in design research and practice. Without such a consensus, misinterpretation
of design information and incompatibilities between subsystems cannot be avoided or even controlled.
Furthermore, there exists little coordinated organizational structure for design information (taxonomies,
etc.) that can streamline the specification and communication of information vital to the design endeavor.
Finally, the coupling of design with computational considerations unnecessarily complicates investiga-

tions of design. In order to improve the state of our understanding of design, all these issues must be
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addressed.
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Chapter 5

A New View of Design

§.1 The Notion of Self-Reference

Hofstadter, in [149), states “It is very important when studying formal systems to distinguish working
within the system from making statements or observations about the system.” Hofstadter is writing
about the concept of self-reference', and though it may seem simple enough in this short quotation, the
concept is one of the most complex and consequential of this century. It is a notion fundamental to all
the arguments present in the above-cited, Pulitzer Prize winning work. The problem of self-reference is
defined formally by G6del's Incompleteness Theorem, which states that no system can reference itself
and be proved valid. A system without self-reference will not be able to prove some statements that are
nonetheless valid; a self-referential system, on the other hand, will permit the proof of all valid statements
plus certain invalid ones as well (i.e. a paradox). Put another way, no system that can be proved valid can
be complete. No other notion of logic has had more important consequences, and yet been so universally
accepted as necessary. For example, in classical set theory [153], the existence of the universal set cannot
be demonstrated without appealing to self-reference; yet set theory with self-reference and the universal
set is easily proved inconsistent (i.e. containing invalid parts). Moreover, it can be shown that any formal

system that corresponds to number theory through an isomorphism is incomplete; i.e. there are some

'Self-reference is also known as reflection; however, the author prefers the former term for its direct denotation of systems
that are aware of, or act upon, themselves.
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truths that cannot be proved [149, 154].

Although mathematics and logic is limited in rigor duc to incompleteness, the fact remains that both
these disciplines have contributed inestimably to our undemstanding of the physical universe. There is no

a-priori reason to think that similar contributions to our understanding of design are not possible,

The kind of paradox that can occur in sclf-referential systemsis exemplified by the sentence “This sentence
is false.” In fact, self-reference abounds in the English language (c.g. “This is an english sentence.™),
indicating that english cannot be proved valid. The fact that such self-referential english sentences can be
quite meaningful to humans does not bode well for the validity of the human mind. In fact, the mind itself’
is self-referential: how else can we think about the mind? The mental processes that we call “thinking™
are part of an entity capable of self-reference, and the concemn with logic of scholars through the ages
is an effort to justify our thinking processes and validate the results thereof. Indeed, self-reference. or
self-awareness, appears to be a property unique to the mind among all natural phenomena; it is difficult
to think of gravity, DNA, or a airplane as being self-aware. While the author is not suggesting that the
mind will forever elude formal understanding, we do suggest that any formal understanding of the mind
will be of a different order than our understanding of other natural phenomena because of the mind’s

self-referential nature.

Because english, and other natural Janguages, are so often used in design to communicate information,
self-reference can also appear in our ideas about design. A statement such as “Conceptual design is a
component of the design process” is self-referential; a design process that takes into account propertics of
itself is self-referential. Design itself tends to be self-referential, as is evidenced by existing research: “A
major part of the design activity is concemed with the development of the design process itself [101].”
Any self-referential system that seeks to formalize design will be logically inconsistent, Furthermore, it
is impossible to determine the extend of the inconsistency working within the system itself. If we arc to
find a reliable, logical system with which to model design, we must ensure that it dees not contain the

notion or self-reference.

The issue of self-reference is perhaps one of the greatest stumbling blocks facing design rescarchers, if
for no other reason than that it is human nature to treav ne universe in 2 <elf-referential way. However, it
does seem possible to the author that beginning carefully from first principles, and striving to avoid the

designers’ self-referential mental processes (e.g. intuition, opinion, etc.), design can be at least partiully
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formalized into a system that is valid with respect to its logical foundation. In the Sections to follow, the

author will present the beginnings of such a formal system for design.

The author has found the use of the terms subjective and objective to provide a useful viewpoint in this
regard. The term objective is defined as existing independent of the mind, betonging to the sensible world,
being observable or verifiable especially by scientific methods®. Insofar as design is (at least in part) a
function of the human mind, there is obviously a subjective component to it. The subjective aspects of
design are all prone to self-reference by their very nature. However, not all of design is subjective. Any
objective component of design may be treated formally. Moreover, as research into design progresses, it

may be found that aspects of design considered heretofore subjective can be treated quite objectively.

5.2 Design as an “Artificial” Science

5.2.1 The Scientific Approach

A number of researchers have suggested recently that a more “scientific” approach should be employed
in the study of engineering design. Two noteworthy examples of this point of view are [11] and [31]. The

argument for pursuing such a scientific approach generally proceeds as follows:

o The objective of science is to provide a precise and logical understanding of natural phenomena.

o Design as an endeavor is currently not precisely defined, and tends to be highly subjective, much
as science was before the Renaissance.

o Therefore, those mechanisms that provide precision and structure for science may also be able to

do so for design.

T.e relationship between science and design theory will be discussed in this Section. The author postulates
that there is a part of design that can benefit the most from an approach based on logic rather than science.
Whereas logic is seen as a necessary progenitor of both the “natural” sciences and design theory, science
and design theory themselves are seen as equals related through logic. Because of the egalitarian nature

of this relationship, the author introduces a new term, artificial science, which is intended to connote

*Paraphrased from Webster's 7th dictionary.
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the formal nature of design theory while distinguishing it from the natural sciences. The essence of this

relavionship is depicted graphically in Figure 5.1.

Design .
Theory Science
the study of the study of
. 1
: Natural
Design Phenomena

Figure 5.1: Relationship between design theory and science.

The techniques espoused by supporters of a scientific approach to design research generally seek empirical
data about design (e.g. {117,122, 126, 135]). The scientific method is used as the basic methodology in
such projects: observations are made of designers at work; then, formal models are sought that can predict
(at least to a degree) the behavior of designers when confronted with particular situations. Some call this
kind of research cognitive design research, and the procedure used is in essence the same as that used by

scientists to investigate natural phenomena.

Although the current literature indicates that cognitive design research has yielded many useful results,
the author views such research as being targeted not at design per se, but rather at the mental processes
of the designer, and as such tends to the subjective. This view has been espoused by at least one major
proponent of new fundamental research into design ( [4]). The distinction is important because statements
about how designers think do not necessarily relate to design itself. We have stated carlier that mental
processes occur within a self-referential system (the mind) and thus are unprovable by conventional logic
techniques. However, these mental processes can be rationalized as soon as they are cxtemalized; that
is, as soon as these mental processes become manifested outside the mind — be it in the form of a CAD
drawing, an english sentence, or a mathematical formula - they leave the realm of the self-referential mind

and can be analyzed logically to a greater extent than if the designer’s cognitive functions were included.

In this way, the author differentiates between those parts of design that cannot (currently) be formalized,
namely the subjective mental processes of designers, and those that can (and should) be formalized,
namely all externalizations of those processes. We note that our intention is not to remove the creative,

cognitive components from design, but rather to provide the means by which to analyze the results of these
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processes in a logical manner, thus helping the designer to channel his/her imagination and creativity in
directions that will maximize results. Many of the best mathematicians and :cientists throughout history
have been very creative and intuitive people, and have used these characteristics in their work to great
advantage. This should be the case in design as well. Also, formalization of the non-mental segments
of design can be beneficial to cognitive design researchers by providing them with a yard-stick against

which to make observations and compare theories.

5.2.2 Design Versus Natural Phenomena

The scientific method is a trial and error technique, the goal of which is the creation of models based on
observations that let us understand a given phenomenon. The logical and mathematical models created by
scientists have provided excellent isomorphisms to various natural phenomena. Based on these successes,
it could be argued that logic in some way reflects an essential property of the universe. However, this
proposal begs the question of whether the universe is deterministic [16]. In order to avoid this contentious
and rather philosophical issue here, the author adopts a somewhat less aggressive position: that formal

models approximate some underlying structure of the observed phenomenon.

An important assumption is built into the scientific approach to design theory; namely, that there is a
correspondence between design and natural phenomena, and that this correspondence allows researchers
to treat design as a natural phenomenon. In other words, the same isomorphisms are relevant to both
design and natural phenomena. The author contends that this assumption is misleading; we make our case

with the following argument:

Design, unlike natural phenomena, is “contrived” in that it is a purely human invention. While nature may
be considered as existing without any action on the part of humans, design is not independent of human

beings; in fact, the designer is the only agent by which design is manifested at all [14].

Also, the evolution of design has proceeded over the years in a more or less ad-hoc manner, respending not
only to the emergence of new scientific and technological understanding, but also to various sociological,
cconomic and govemnmental pressures, none of which can be said to be particularly natural (in the scientific

sense of the word).

It may be argued that since the human mind is a natural phenomenon, processes that occur within the
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mind (such as design) should be considered likewise. The author argues against this position. There is no
dependence of natural phenomena on human beings. However, design requires the existence of the mind.

This distinguishes design from natural phenomena.

Science has had little success in understanding the human mind so far [ 155—-157]. much less success than
it has had in understanding natural phenomena such as gravity, nuclear reactions, and DNA. Onc possible
explanation is that the isomorphisms that have successfully been applicd to natural phenomena are not
accurate with respect to the human mind. and because design is a construct of the mind, we may say
the same about design. If we cannot understand the mind, how can we understand design, which is an
invention of the mind? The author is forced to conclude, then, that it is inappropriate to treat design as a

natural phenomenon that can be studied scientifically, because it is a mental process.

5.2.3 The Role of Design Theory

Having apparently comered ourselves in this way, we are left asking whether any formalization of design is
possible at all. The solution to this quandary lies in recognizing that we do not need the same isomorphisms
to apply to design as apply to natural phenomena. Because design is a mental process, it can benefit from
the same logical thinking that permits scientists, mathematicians and logicians to solve problems more
complex than they could if they had only their intuition and creativity to guide them. But because design

is not bound by the structure of nature, we are free to make of it whatever we choose.

Though relatively unconstrained by nature, design theorists should nonetheless seck as formal and objec-
tive a definition of design as possible. We are free to do so without being constrained by the influence of
science because design is not a natural phenomenon. No formal system is related de-facto to reality; it is
the discovery of isomorphisms between the formal system and reality that makes it relevant. Any system
for which an isomorphism to a phenomenon can be found becomes a candidate model that can be used
within the scientific method. The use of logic is required because it is the only tool mankind has devised
so far to reason in a reliable and repeatable way. Design theory should thus depend on logic, but not on
science, for rigor. Hence, the author views design theory as a sibling, or equal, of the natural sciences,

sharing with them a dependency on logic (see Figure 5.1).

This is not to say that design is not related to nature at all. Usually, the ultimate result of design is an
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antifact having some physical existence; thus it must relate to nature in some way. But this is what design

does; here we are concerned with what it is.

In summary, the author contends that design theory should be concemed with finding logical systems
that can formalize design without necessarily relying on the isomorphisms of the natural sciences. In an
cffort to emphasize this notion, the author introduces the term arvificial science to describe design theory.
This term has been chosen to distinguish clearly between design theory and the natural sciences while

preserving the idea of some commonality between design and natural phenomena.

The author notes that there is already a tendency to consider design in some way artificial; for example, the
term synthesis is often used to describe the methodical generation of a désign artifact, even in conventional
design contexts (e.g. (34]). While synthesis is often taken roughly to mean creation, it has a connotation

of artificiality that is generally missing in contexts where creation is used>.

Since design is something that begins in the human mind but ends in the real world, there are some aspects
of design that logic cannot be expected to capture on empirical grounds. In addition to creativity, intuition
and opinion, “facts™ from the real world cannot be dealt with using logic alone, in the same way as the
atomic premises of the syllogism about Socrates in Chapter 3 cannot be dealt with using logic alone;
here is another region where natural phenomena influence design, and where the conventional scientific
mecthod may be used. Still, there remain many aspects of design that are candidates for formalization

through logic.

To this end, the author postulates that a logical system to model engineering design can be achieved. The
system would be used to represent facts and to reason about design. Theories about design and design
information may be derived within the model! and eventually supported or disproved by logical analysis,

cxperimentation (i.e. application of the theory to test situations), and observation of the resulting systems.

The derivation of a logical system for design as an artificial science is the principal goal of the author’s
work. The first concem is to identify tools of logic that provide good isomorphisms. In seeking such a
system, a retumn to first principles has been found necessary to limit empiricism, self-reference and the
influence of the designer’s mental processes. The result of the author’s efforts in this regard is presented

in Part I11.

3Based on definitions for synthesis and creation in the Oxford English Dictionary.
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5.3 Summary

This Chapter has discussed the advantages and problems associated with the use of formal systems indesign
theory. While they represent the best understanding mankind has of logical, structurcd argumentation,
formal systcms are inherently limited by Gédel's Incompleteness Theorem. Noncetheless, no superior
approach to systematic, formal reasoning exists, so in order 1o maximize the degree of rigor in any

attempted formalization of design information, formal systems should be considered an essential tool.

Furthermore, the author introduces the term artificial science to describe design theory as a sibling of
the natural sciences, sharing with them a dependence on logic for formal rigor. It is unreasonable to
expect our understanding of natural phenomena (the domain of the natural sciences) to contribute to
our understanding of design, because design is manifested as a construct of the human mind rather than
being a natural phenomenon independent of human cognition. Although we lack a good understanding
of the human mind. the externalizations of our thought processes can, and should, be subjected to logical
analysis. Such analysis can identify inconsistencies that might otherwise escape detection. Furthennore,
the formal techniques of logic can help a designer channel his/her creative and intuitive energics in

directions more likely to lead to successful design solutions.
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Chapter 6

Logical Solutions

6.1 Limiting Self-Reference in Design

In preceding Sections, it has been suggested that it is possible to construct a valid formal system for those
parts of design that are independent of human mental function. Such a system should be able to deal
not only with specific information regarding a particular design artifact, but also with various degrees of
abstract information that are equally essential to the design endeavor. However, we must impose a certain
structure upon the system to avoid self-reference. The structure is such that the total system is composed
of logical sub-systems of increasing degree of abstraction. Each sub-system is capable of referring to
other, lower layers, but not to itself, or to higher (more abstract) layers. This is in essence the solution
suggested by Bertrand Russell to a large class of paradoxes ir the original derivations of classical set
theory [153] that arose due to self-reference. The resulting layered structure consists of one layer for
cach degree of abstraction. In the general case, where the domain of a logical system includes the entire
universe, an infinite number of layers would be needed to capture all possible abstractions. Fortunately,
due to the relatively restricted domain of design (with respect to the general case), and because each
layer would have a distinct meaning in design (via the isomorphism), a layered system of logic should be

tractable.
In this Section, the author presents the beginnings of such a layered system. The presentation is necessarily
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quite general, but it does suggest the overall structure of the system, and indicates how the various degrees
of abstraction are delimited based on the notion of avoiding sclf-reference!. The structure is depicted
graphically in Figure 6.1. The relationship between the Hybrid Model (HM) and the rest of the layered

structure is also shown in the figurc. HM is presented in Part 111

oo T |

| | Statements | | Abstract
Layer 3 | about ! - Functional

i | Statements | ! Hybrid Information

! | Model

i i

i i

i 1

: | Statements ! Functional
Layer 2 I labout Artifact | | Breakdown

leomanes e 2
Layer 1 Design

Artifact
STRUCTURAL FUNCTIONAL

Figure 6.1: Logical structure for removal of self-reference

At the lowest (least abstract) level of the system, is the design artifact itself; this is the actual part/object
that is the goal of a design process, an actual physical entity. We immediately divide the system into two
different but complementary branches, On the one hand, there are all the statements that can be made
about the artifact at any instant in its existence (or even before or during its creation); on the other hand,
there are all the actions that are required to create the artifact, to use it, to maintain it, etc. The separation
is essentially one of structure (description) versus function (procedure). The branches are complementary
in that they both relate to the design artifact. The structural branch is static, time-independent and

prescriptive, while the functional branch is dynamic, time-dependent and descriptive. Furthermore, the

Mt is interesting to note that though the system described in this Section is not self-referential, the description itself presented
herein depends on self-reference to achieve its end.
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structural branch addresses the issue of what design is, whereas the functional branch deals with the how

of design’s occurrence and procedure,

At higher levels of abstraction, the functional branch captures the design process used to create the artifact
and issues of cognition by the designer. Thus, the functional branch may exhibit self-reference. The
structural branch exhibits no self-reference because it does not consider the role of the designer. Thus in

this framework, we can identify and limit the effects of self-reference.

The structural branch captures the state of information pertaining to a description of the artifact at various
degrees of abstraction. Since this description is independent of the actions that caused the information
to be discovered or generated, it is applicable uniformly throughout the design process. Also, since the
description is independent of the agents responsible for those actions (the designers). it is also applicable
to any design process; that is, the information description is independent of the design process. Thus, it
is possible to control self-reference in the structural branch. HM, which is the heart of the author’s work,

is contained cntirely in the structural branch.

Each layer in the proposed system makes statements about the preceding layer; this is the case in both
branches. Thus, the first layer beyond the design artifact in the structural branch contains statements
about the artifact, capturing concrete facts about it. The second layer contains statements regarding the
classification of these facts, and by extension, the classification of different artifacts. The next layer (not

shown in the figure) contains statements about different classification schemes and mechanisms.

Similarly, in the functional branch, the first layer beyond the design artifact contains functions provided
by the artifact and a functional breakdown of the artifact. The second layer contains actions taken to create
(design or manufacture) the artifact. These actions may be affected by the cognitive processes of the
designer. The next higher level (not shown) contains more abstract information about those instructions.
Classification of actions would also occur in this layer, and can include judgmental and intuitive remarks
about the relative merit of those instructions. The next level (also not shown) would include statements
used to reason about the classifications and would include issues of decision making and negotiation
between designers. This information would be used in the generation of different design methodologies,

their analysis and comparison.

The process of abstraction is used in both branches to move from one layer to the next. Clearly, the

abstraction could continue ad infinitum, gencrating innumerable layers. However, the kinds of statements
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captured by these layers would quickly become so abstract as to be entirely meaningless. At this time,
the author believes that three or four layers should be sufficient to capture all relevant information. 1t is
also noted that this layered structure can be useful in the generation of design taxonomies by providing a

criterion for separating statements (i.c. information) based on the degree of abstraction used.

6.2 Categorization of Design Aspects

In response to the lack of formal terminology and taxonomy for design and design theory, the author
proposes a mechanism that can assist in the organization of relevant notions and their corresponding
terms. The mechanism proposed herein arose from the author’s consideration of many aspects of design,

only one of which is mentioned here, by way of an example.

Keirouz et al {122] discuss the differences between variational and parametric modeling {from the point of
view of constraint satisfaction in conceptual design. The current author considered how best to categorize
the cited work: it did not belong strictly in any one of the three areas mentioned (modeling, constraint

theory and conceptual design) but seemed to relate to the three together.

This kind of tightly interwoven dependency between various aspects of design is indicative of the high
degree of complexity required to accurately model it. Consideration of cach of the aspects alone is not
sufficient because a large part of the complexity arises from the relationships that exist between them. The
author therefore sought some mechanism that could represent the various aspects of design as individual
components while also capturing the relationships that exist between them. The mechanism is intended

primarily as a conceptual tool, an aid to stimulate clear thinking about a potentially confusing problem.

The author’s research suggested that in a real design process, there are a number of different, fairly
independent aspects that interrelate. Due to the richness and complexity of these relationships, a4 multi-

dimensional approach seemed appropriate.

The author thus proposes the use of a design space composed of orthogral axes. Each axis represents
an independent aspect of design. In this system, different relationships, approaches and techniques can
be classified and compared. A particular relationship can be represented as a point, linc or region in the

design space. The author has identified four orthogonal aspects of design: artifact modeling (the A-axis),
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behavioral modeling (the B-axis), meta-modeling (the M-axis), and model implementations (the I-axis).
Each aspect is assigned to an axis in the space, each of which is discussed briefly below. Figure 6.2
represents the four dimensions of the design space as two three-dimensional spaces sharing two axes, and

includes a shaded arca representative of the “locus™ of the work described in [122).

6.2.1 Artifact Modeling

The ultimate goal of a design process is the production of an artifact or product. Thus, one aspect of
design is the ability to state in precise terms the nature of the artifact, that is, the generation of a model
of the artifact itself. Information from this model is eventually used in a number of other areas (analysis,

manufacturing, etc.).

For this rcason, one axis in the design space is allocated for design artifact modeling techniques, including
the physical aspects and the physical relationships between components in the artifact. Variational and
parametric modeling, as well as various solid modeling techniques, would all be represented on this axis.

In Figure 6.2, artifact modeling is represented by the A-axis.

It is interesting to consider the role of constraints in artifact modeling. Are constraints, vis-a-vis constraint

satisfaction, a necessary part of artifact modeling? Or are they essentially orthogonal to artifact modeling?

There are ongoing efforts in the field to investigate “constraint-based design™ from points of view ranging
from knowledge-based systems [23,55] to altemate parameterization schemes [72, 158] and constraint-
based design [67]. These efforts have all had at least some success in embedding constraints into other
design aspects. However, constraint theory is in the most pragmatic sense an analytic technique and not a
modeling technique: it permits the mathematical study of the capability of an artifact to provide a given
functionality [63] (this notion is discussed in more detail in the next Section). The author recognizes that
constraints can also be used to analyze and study modeling techniques; but in such cases, the constraints
apply to the model, not to the artifact being modeled, and so must be regarded separately. The design
space being discussed in this Section is meant to study design; hence, constraints are not involved in the

antifact modeling axis.
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Figure 6.2: Graphical representation of the 4D Design Space as two 3D spaces
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6.2.2 Behavioral Modeling

Bcehavioral modeling capturcs the other side of the artifact modeling coin. This aspect of design is con-

cemed with modeling the response of the antifact to stimuli provided to it from its operating environment.

Constraint satisfaction is a primary technique with which to model system behavior. In many cases, a
design problem begins with the specification of some objective function to be met by a design. This
objective function is derived from issues conceming the environment within which the design is to
function, and takes the form of a constraint. Other constraints, including those internal to the artifact

itself, arc usually derived in some fashion from the objective function.

Constraints permit the creation of mathematical models of artifact behavior. Mathematical modeling of
systems (c.g. finite clement or kinematic analysis) is therefore also included in this aspect of design.

Optimization and simulation based or the mathematical representation of behavior are also included.

Constrai: s capture the relationships between form and function, and also between the artifact and the
cnvironment within which the artifact is to function. They thus represent the link between an artifact’s
structural model, which is usually represented as being isolated from its environment, and the rest of the

world in which it is intended to function.

A second axis of the design space is used to represent behavioral modeling, and is labelled the B-axis in

Figure 6.2.

6.2.3 Design Evolution, or Meta-Modeling

Such notions as conceptual desigr, detailed Gesign, concurrent desi.., eic. do not relate directly to the
antifact itself, but rather to the system by which the artifact is produced. As discussed in Section 5.1, such
notions exist at a different level of abstraction than those of artifact and behavior modeling. By treating
rore abstract notions separately, we can eliminate a possible source of s:if-reference in our framework.
Conceptual, detailed, strategic, and other “*kinds™ of design are meta-modeling tcchniques that pemit the

study of the models themselves, rather than of the thing that is modeled (the design artifact).

Thus, a third axis is needed to represent these meta-modeling notions f design theory. In Figure 6.2,

meta-modeling informatior * 5 represented by the M-axis.
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6.24 Implementations

In Section 4.3, we incicated that a distinct separation should exisi between models of designs and design
processes. and how we implement those models. [t is appropriate then to propose a fourth aais in the
design space to represent the implementations of the aspects of design represented by the other axces.
Computer imple:nentations of formal models is one component of this axis, but implementations need not
be depcndent on the use of computers. Whenever an idea, formalized or not, is implemented in any way,
a number of other issues that are implementation-specific — issues that are not important at the modeling
level — must be considered. All these implementation issues and the techniques we use to handie them
are represented along the fourth axis of the design space. We have labelled the last axis as the I-axis in

Figure 6.2.

Insofar as computers are concermned, all issues regarding software design, testing and usage would be
represented on the implementation axis; these include matters regarding databases, computer languages,

graphics, etc.

6.2.5 The Example, Revisited

By way of example, Figure 6.2 shows the regions occupied by the work in [122], mentioned at the
beginning of this Section. We may quantify the cited work as a volume in the design space bounded by the
design aspects marked on the axes: parametric and variational modeling, conceptual design, and constraint
satisfaction (also labelled in Figure 6.2); and since the work does not discuss issues of implementation, it

appears as a two-dimensional region in the ABI-space.

The quantification that is possible through the use of the design space can permit a new degree of
organization in the work of design researchers. Its graphical representation permits easy visualization of the
relationships that exist between different research efforts. It could be used to organize individual research
projects within large groups and indicate regions where more work is needed or where different projects
overlap. It may also find use in the organization of engincering corporations and controlling/regulatory
bodies by clearly marking the boundaries of the areas of influence of each body. The design space can even
be used to organize conferences and other meetings by permitting visual identification of areas covered

by each presented work or representative group.
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6.2.6 Relationship to the Layered Structure

There is a relationship between the layered structure in Figure 6.1 and the design space in Figure 6.2.
The layered structure separates degrees of abstraction in design, whereas the design space separates
orthogonal aspects of design. The A (artifact modeling) and B (behavioral modeling) axes of the design
space represent the structural and functional branches of the layered structure respectively. Also, the M-axis
(meta-modeling) captures the increasing degree of abstraction that occurs through the layered struciure.
Since the layered structure does not deal with implementation issues, there is no correspondence with the
I-axis.

Therefore, both the layered structure and the design space capture the same basic philosophical notions,

albeit from different points of view.

6.3 Summary

The author has suggested two possible solutions for addressing problems in design and design theory
caused by logical inconsistency. The first is a logical layered structure that permit‘s the clear distinction
of diffcrent degrees of abstraction (Section 6.1). Being able to classify statements madz about design
according to their degree of abstraction, we may better avoid circular and self-referential arguments that

cannot be validated. In other words, it contributes to clearer thinking about design.

Secondly, the design space described in Section 6.2 permits the visualization of the relationships offered
by various approaches and techniques in design and design theory along four orthogonal (independent)
metrics: artifact modeling, behavioral modeling, meta-modeling, and model implementation. Again, the
principal goa! is to clarify the relationships inherent in our understanding of design so that we may study

and improve that understanding.
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Chapter 7

Discussion

This Part of the author’s work has covered a fairly wide range of topics, but the underlying philosophic

notions are few and distinct. The goal of this summary is to consolidate the matters presented above.

The author has identified some problems in design and design theory that arise from the lack of a formal base
upon which rigorous understanding can be developed. The changing, growing nature of design is in part
responsible for the lack of accurate taxonomics of design components, notions, methodologies, etc. The
fluid nature of design’s development makes finding a correct and meaningful taxonomy quite like hitting
a moving target. The non-logical ad-hoc nature of the evolution of design is also to blame. Its relatively
arbitrary development has led to the introduction into common usage of vaguely and/or inconsistently
defined concepts and terms. Iil-defined classification systems for design artifacts, components, systems,
etc. have hampered the generation of appropriate tools with which design can be studied in an abstract
sense. Subjectivity introduced by considerations of the designer's role in design has introduced scli-
reference, which in tum leads to inconsistent design theories. These shortcomings have harmed our ability
to communicate and have spawned incompatibilities between the various aspects of design, leading to
so-called “islands of automation”. The inability to communicate properly has also affected our ability to

teach design, and thus perpetuates the inconsistencies.

Empi.ical studies are unlikely to lead to a more scientific understanding of design because the influence
of self-reference within such frameworks cannot be dealt with. Of course, existing design theories and

methodologies can be valuable in guiding our search for a logical design theory, but we should not be
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surprised when inconsistencies in our current understanding are found.

Self-reference can be minimized only by forming logical systems for design that do not include the
subjective, cognitive functions of the designer. Logic offers us many techniques that can be used in this
regard. These techniques must be diligently applied throughout our efforts, much as they have been in

the formalization of science.

Theorics of design can be regarded as being either functional or structural in nature. Functional theories
describe artifacts from the point of view of the functions they provide and the actions needed to create
them. These scem most prone to self-reference because the actions can be traced to the cognitive functions
of the designer. Structural approaches can result in formal theories without self-reference; such theories

take the form of prescriptive informative descriptions of design artifacts at various degrees of abstraction.

Some may argue that the intensive use of logic in design can stifle such intangible and qualitative things as
creativity, opinion, intuition and judgment. The author maintains that this is not the case. Logic does not
squelch creativity and intuition, but rather channels it, helping to keep the designer from making errors
that would adversely affect productivity and efficiency. It helps a person have more informed opinions

and make more educated judgments.

Three informal, conceptual tools have been introduced. These tools are meant to clarify and study the
postulated logical structure of design. The notion of design as an artificial science is presented to reconcile
the differences between the “natural” sciences and design theory. and to present a point of view that permits
design researchers to take advantage of the formal tools of logic more fully. The layered logical structure
presented in Section 6.1 permits the modularization of design by degrees of abstraction. It allows for the
identification and subsequent elimination of some occurrences of self-reference from design theory, and
may be useful in the generation of design taxonomies. Finally, the notion of a design space permits the
classification of the various techniques available to designers, and assists in the organization of the efforts

of design rescarchers and theorists.

The intention in this Part has been to introduce in a relatively informal but detailed way the domain
of the author’s work. Having established this definitional framework, we may now proceed to detailed

considerations regarding the structuring of design information.
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Chapter 8

Introduction

This Part of the author's work is devoted to an examination of design information with the aim of
formalizing its structure. This is done by proposing a formal system that relies on axiomatic set theory for
internal consistency. The author calls the resulting model the Hybrid Model (HM) of design information.
The origin of the name “Hybrid model” is in the author’s original research in combining object-oriented
data models [159] with hypentext {160), hence the use of “hybrid”. Since then, HM has evolved into an

cntirely different kind of model.

In keeping with the observations made in Section 6.1 regarding the limiting of self-reference through the
use of logical layers of increasing abstraction, we will present HM in two Chapters. First, matters relating
to actual design information will be dealt with in Chapter 9; then, the organization of that information will

be dealt with in Chapter 10.

As well, it was indicated in Section 6.1 that a distinct separation between structural and functional
descriptions of design antifacts lends itself well to the control of self-reference, an instinctively human
action which has been argued to be detrimental to the development of rigorous design theories. This implies
a separation between design information and processes that manipulate or otherwise use that information.
It has already been suggested [7, 161, 162} that design information can be considered separate from the

engincering design process.

Finally, the author contends that a good understanding of design information must precede any real
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understanding of the design process itself. This issue will be discussed in Section 8.1, and motivates the

central thesis of this work: the search for a formal theory ot design information,

8.1 Modeling the Design Process

In this Section, the author presents a model of the design process with the intention of supposting the
hypothesis regarding the separation of design information and processes. 1t is presented only to the extent
that it provides a reference point for the development of HM, and brings to light several important aspects
of the design process that have affected the development of HM. The model regards the design process
from a functional point of view, and we refer to it simply as the functional model (not to be confused with

the functional branch in figure 6.1).

We begin by making the relatively trivial statement of a generic mathematical function, namely:

y = f(z).

Here, f is some function that maps an input value represented by the variable z to some output vilue
represented by the variable y; indeed, y and f(z) are identical. Now, from the point of view of design,

we rewrite this equation as:
S = d(P).

P represents a design problem, S its solution and d the design process. We may state this in words as:
“There is a design process that operates on a particular design problem and results in a corresponding
design as a solution”. This is not an unreasonable statement 1o make, and though it may stitl appear

trivial, it does carry some important implications:

Clearly, the solution depends on the problem (the output is the dependent variable). Also, as stated above,
S and d(P) are identical.

From a purely mathematical point of view, one may be inclined to stop here. But there is more than one
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way o design a certain entity. That is, given a particular design problem, there may be more than one
design process d that can provide equally acceptable solutions. Selection of a design process depends at
least in part on the kinds of information about the problem that are available to the designer. (It would

also depend on optimization considerations, as well as on the more subjective preferences and judgments

of the designer.)

If the input is badly or incorrectly defined or specified, then selection of an appropriate solution function
may be difficult or impossible. That is, if the design problem is badly stated. or is based on faulty vaguely
or verbosely presented information, then the selection of a design process is prone to error (since, as is
indicated above, the design process is dependent on the problem), and thus reduces confidence in the
solution. Therefore, the problem must be clearly understood and precisely defined before a solution

process can be sclected and applied.

There is another issuc that is an essential component of almost every non-trivial design task: iteration.
That is, a (possibly dynamically changing) design process will be applied iteratively to a design problem

in order to reach a final solution. We can represent this in our mathematical notation by:
Siy1 = d(Si + P).

For cach iteration ¢ 4 1, the design process d is applied to the problem plus the solution, such as it exists,
at itcration 7. Put another way, the solution at iteration ¢ + 1 is based on both the problem and the ith
solution. Without including the solution at iteration 7 in the argument to the design function, convergence
would never occur. So, at each iteration in a design cycle, the existing — though possibly incomplete
and/or incorrect - solution is used to drive the next iteration of the design cycle. The essential observation
here is the “superposition” of the problem with the :th solution: correspondingly, the problem and the

solution must be representable in a compatible way or the iteration process cannot proceed.

In summary, the functional model provides two important insights into the requirements that must be met

by a formal system for design information:

¢ a formal understanding of design state information is necessary before the design process can be

successfully formalized to any significant degree (i.e. design state information is independent of the
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design process);

o the organization of information is relevant both for the problem definition and the solution, and any

theory of this information must be unified over both problem and solution domains.

This approach differs from that taken by other researchers. Suh [31] states design problems in tenns of
functional requirements to be met by successful candidate designs, and solutions are stated in terms of
parametric representations of variables. Another approach is taken in by Yoshikawa [ 39], who defines two
separate spaces — a function space and an attribute space - and each of the design problem and solution
are defined in terms of one of these spaces only. These approaches, among others, arc similar in that both
consider a design artifact (as represented by Suh’s design parameters or Yoshikawa's attribute space) s a

separate entity from the problem that caused it to be designed (the functional requirements or space).

This dual representation of design information by functions on the one hand and parameters on the
other makes unified representation of design problems and solutions much more difficult. As well, it
introduces coupling between the form of the representation of information and the design processes that
use this information. In its favor, such a separation of the domains of functional requirements and physical
parameters is beneficial from a conceptual point of view, permitting modularization of the task into smaller
segments that can be studied individually. However, it can also lead to a divergence at the theoretic level
that will prevent final integration of these domains into a single, global theory. Also, it docs not address
the dependence of iteration on the successful combination of information regarding both problems and

partial solutions.

The approach presented herein by the functional model is superior because it simplifics the management
and organization of design as an endeavor. In an iterative process such as design, the cumulative
information generated from the iteration is an essential component of finding a correct solution. In order
to merge the accumulated information with the design problem for the iteration to continue, a unified
representation of both problem and solution must exist. The functional model of design maintains the
integrity of problem and solution specification while dividing the problem along a different and more
impo: cant boundary between static, passive information and dynamic, active functions that transform the

information.

The author also notes that a number of other researchers have supported the notion of separating rep-
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resentation of information from processes affecting that information, including [14.41,42,87,163]. Of

particular interest is Fauvel’s work [41], which suggests that the relation
(Activity (n), Embodiment (n)) — Activity (n+l)

is representative of the design process. An Activity (i) is some component process of the overall
design process and an Embodiment (i) is the physical manifestation of the result of the completion of
an activity. It is interesting 1o note the shift in point of view between the author’s model and that of Fauvel.
The latter is based on the notion that given some initial design activity, the results of that activity drive the
selection and execution of other activities. The former is based on the notion that an initial embodiment

(in Fauvel's terms) drives the selection and execution of activities that lead to other embodiments.

The author maintains the functional model as presented above because of the observation that reliable,
accurate and usable information must exist prior to the selection of any processes meant to act on this

information; that is, the emphasis should be placed on information as the driving force behind a design
enterprise.

Fauvel rcasons in detail on the role of various kinds of activities that are relevant to design, without
dwelling on the nature of the embodiments. His results are quite clean and elegant; this encourages the
author to believe that the separation of design information from design actions is not only appropriate, but

necessary if design theory is ever to meet with success.

8.2 Basic Structures and Concepts

8.2.1 Basic Aim of HM
8.2.1.1 A Prescriptive, Axiomatic Approach

The aim of HM is to provide a prescriptive, axiomatic theory of the information present during the course
of a design. Naturally, only information relevant to a particular design task is considered, thus restricting
the application domain significantly. This restriction plays an important role in the development of HM;

this is discussed below.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



73

HM is prescriptive in that it prescribes a language for the specification of information for a design task,
The term is not used to prescribe methodologics that should be considered norms (sometimes called a
normative approach). Given the role of human cognitionin design, the author believes that the best results
can be achieved by a symbiotic relationship between the designer’s innate capabilities (including such

intangibles as judgment, creativity and intuition) and some more formal logical system.

The term prescriptive is used to indicate that HM is a system that lies outside the actual thought processes
of the designer; that is, it lies within an objective, logical domain, The author considers this a more
reasonable objective than that of the descriptive school [11), which seeks to quantify and formalize the

actual cognitive functions (i.c. mental content and processes) of the designer.

HM is axiomatic in that it relies on axiomatic set theory as its foundation. The author’s initial attempts
sought a formalization based on existing information management paradigms (object orientation and
hypertext in particular), but the lack of existing formalization in these ficlds was {ound to be insurmount-
able. Object orientation is often referred to more as a philosophy or point of view than an actual formal
paradigm [27, 164]; the status of hypertext is even more tenuous 143, 160]. It became necessary to retum
to more basic first principles, and it was during the author’s study of symbolic logic that axiomatic set

theory presented the necessary isomorphisms upon which to base HM.

Axiomatic set theory has taken on various forms [1, 16, 153], but every form is based on the classical
theory developed by Zermelo and Fraenkel {80] and which is generally referred to as ZF set theory, or just
ZF. This convention is adopted in the sequel, for brevity's sake. ZF requires only the predicate calculus

and is thus derived purely from logic, without any extra-logical or other empirical influences.

ZF deals with groups of completely general entities; a group of entities is called a set. The theory
formalizes the nature of sets to such a degree as to permit the derivation of almost ail the classical
branches of mathematics and logic, including arithmetic, algebra and calculus [153]. The most interesting
implication of set theory as far as the author is concemed regards consistency of theories that are supersets
of classical axiomatic set theory. In [80), it is proved that any axiom system that can be rewritien in terms
of ZF without introducing any new atomic statements, quantifiers or connectives, is consistent (insofar as
ZF is consistent). In ZF, the primitives are = and €; connectives are binary operators such as 0 and U;
and the quantifiers are V and 3. As will be seen, this consistency criterion is satisfied by HM. This mecans

that we know at once that HM is no less consistent than ZF.
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8.2.1.2 Universe of Discourse and Design Entities

The term universe of discourse denotes the overall domain within which all interesting arguments are

made. The entities contained within the universe of discourse comprise a complete vocabulary.

In this work, the universe of discourse is that of design information; that is, the specification of —
or statement of facts about — a design problem and the various components and aspects of its solution,
without consideration o any processes required to generate that solution. Within this universe of discourse,
the entities of relevance are whatever design entities are available to the designer in order that he/she may
fulfill the task at hand. This greatly restricts the space of possible entities (as compared to, for example,
ZF, where any item at all may be considered to fall within the universe of discourse). It is exactly because
of the specific nature of the entities involved that much more can be said about them than is normally
possibie (as, again for example, in ZF). The notion of a restricted uriverse of discourse is essential in

order to be able to derive HM at all.

a design point of view. This unit need not be physically realizable per se: it can be a purely conceptual
item, such as a run of a finite element program or a manufacturing process plan. It can also be a feature,
in that threads, holes, fillets, etc. are also design entities. HM deais, then, with the formalization of design

cntities. In the Sections following, the exact formalization is stated and discussed.

8.2.2 Theory of Logical Types and Set Theory

In ZF, if a universe of discourse consisting of all the possible sets is considered, it is very easy to generate
a number of paradoxes that cause the theory to become inconsistent [80, 153]. A number of schemes
have been suggested over the years to avoid these paradoxes. Two of the classical approaches are the

type-theoretic approach, and the approach of class-inclusion.

Class inclusion assumes a universe of discourse containing both sets and “classes”, the latter being
collections of sets (not sets of sets). The resulting theories are quite powerful, but tend to hide some of
the features of set theory that the author considers important for design. The type-theoretic approach, on

the other hand. tends to be more explicit, but more complicated to manage as well.
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In a type-theoretic set theory, logical paradoxes arc avoided by restricting the kinds of individuals that
can exist in various sets. At the lowest level in the type-theoretic approach exist the individuals in the
universe of discourse and the attributes that can be predicated on them (i.c. acted on by functions). At
the next higher level exist sets (collections of individuals) and the attributes that can act on these sets and
on individuals. At the 3rd level exist sets of sets and the attributes that arc predicable on sets of sets and

entities at lower levels; and so forth. There are an infinitc humber of levels.

Furthermore, equations in a type-theoretic system cannot mix predicates from different levels ad-hoc, but

only according to the following rules:

¢ o= 8.0

z¢ € yi+l 8.2)

where i represents the level of an entity. The first rule states that cntities that arc equal must exist at the
same logical level; i.e. they must be, for example, both sets, or both sets of sets. The second rule states
that if one item (z) is a member of another (y), then the former must be one logical level lower than the
latter. Thus, if we consider that (a) z is a set, and (b) that z € y, then the rules of type theory tell us that

y must belong to the level containing sets of sets (since z is itself a set).

The problem with the type-theoretic approach is that the bookkeeping required to distinguish between the
various levels complicates the notation. Fraenkel's solution is to add an axiom (the axiom of replacement)
that embeds the concept of logica! types, leaving the axiom which defines sets (the axiom of separation)
untouched. Zermelo's (and Suppes’) solution embeds the concept of logical types into the axiom of
separation. Of all the choices, the author prefers Zermelo's for the following reasons. Firstly, it cmbeds
all necessary information without unnecessary additions to the number of axioms or to the notation.
Secondly, in the universe of discourse of design information, as will be seen, only a very few levels of
logical types are needed, and distinguishing between their elements is relatively casy; it scems unnecessary
to include all of the theory of logical types, which is, after all, intended to distinguish between entities
that would be difficult to differenﬁate otherwise. Thirdly, and most importantly from our point of view,

the Zemmelo solution, flows quite naturally from design considerations and is a natural form of expression
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of types of information relevant to design.

8.2.3 Fundamental Structures and Isomorphisms

The fundamental logical structure in HM is an object. An object captures a unit of information that is
meaningful to a designer. Thus, an object is the formal representation in HM of the informal notion of a
design entity. Sets will be used to represent objects. The fundamental isomorphism of HM, then, is that a
design entity corresponds to an object (or set). The isomorphism is not part of HM itself (or ZF for that
matter), but is an extrafogical relationship discerned by the author between design and formal logic, and

which gives meaning to the formal system (HM) from the point of view of design.

A bolt, a truss, an airplane, a hole and a run of a finite element program would all be represented by
objects. Objects may “‘contain™ other objects (this is discussed below). The entity represented by an
abject need not be physically realizable (for example, a hole or a fillet), thus it includes features [42,53].

Objects may represent machining and other manufacturing processes.

The use of objects is important because it permits encapsulation of information, i.c., the discretization
of a quantity of information into meaningful structures that can be treated as single units. Encapsulation
leads to the construction of ordered collections of information. This can greatly simplify manipulation
of the information. For example, the alphabet is a structure containing the ordered sequence of written
expressions of the phonemes that compose the English language. Similarly, a screw is an ordered collection

of information that models a device used in the real world as a kind of fastener.

Let the set of all objects be denoted by 0, and let X, Y, Z be members of this set (i.e. individual objects).
Axiom 1 (Uniformity of Structure) All design entities are represented by objects.
Axiom 2 (Uniqueness of Obhject Identifiers) A unique object has a unique identifier.

Although the relevance of axiom 2 may seem at first glance to be trivial, there is also a more basic,
philcsophical concern. We must be able to identify any design entity if we are to use it. The process of
identification is essential in distinguishing between entities in the universe of discourse. The manifestation
of the process of identification is the artachment of an identifier to an entity. Since objects model design

entities directly. we must also be able to identify objects.
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At a more practical level, an object is a conceptual tool that permits us to abstract, infer, and deduce

information about design entities, and to classify them by their conceptual definitions.

One of the principal concems in any theory of information is that of ordering or organizing the information.
That is, the definition of relationships between entities is of primary importance. It is a mcans of making
explicit information that would be otherwise only implicit within a collection of data. In HM, this is done

with relations and functions as defined in ZF.

A relation is a statement that defines a relationship between entitics.  Given a collection of sets
(A, B,C,...), arelation R applied to the collection yields a set of ordered sequences {a,b, ¢, ...} such
thata € A, b € B and so on. The ordered sequence is often used as a representative notation for the
relation itself. That is, (z,y) (where z € A and y € B) represents all ordered pairs arising from the

application of some relation R on two sets A and B.

A function is defined the same as a relation, with the added restriction that the relation f2 can map a single
value of = € A to exactly one member of y € B. Functions are often written f : X — Y and are read " f

is a function that maps the members of set X to the members of sct ¥ [80].

It is noted that functions and relations as defined within ZF provide the formal grounds not only for
mathematical functions and relations as they are understood outside the field, but also for relations
in relational databases, methods in object oriented systems, procedures and routines in conventional
programming languages and links in hypertext. They are also essential to the development of data
modeling languages such as “Z" {165] and EXPRESS, which is the base language for the PDES/STEP!

project.

Functions and relaticns are used to order members of sets, and their formalization is a key parn of the
author’s work. This further extends the isomorphism between set theory and design information. HM
currently supports five ordering mechanisms for design information based on functions and relations.

They are discussed in Chapter 10.

'PDES is the American Product Description Exchange Standard project; STEP (Standard for the Exchange of Product Model
Data) is its European equivalent.
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8.3 Summary

This Chapter has introduced the fundamentals upon which HM is constructed. An examination of the
design process (Section 8.1) indicates that the separate (reatment of design information and the processes
that act on that information is possible and desirable. Furthermore, an understanding of relevant design
information is a necessary prerequisite before an analysis of the design process itself can be attempted.
Conceptual notions of logic, particularly than of logical types from set theory, are introduced as relevant
building blocks from which HM is developed. The fundamental structures and isomorphisms of HM
arc introduced. In particular, the notions of a design entity and an object are introduced as the atomic

information units from which design models are constructed.
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Chapter 9

The Structure of Objects

9.1 Introduction

In this Chapter the nature of individual objects and their internal structure is explored and defined. The
treatment is analogous to the basic definitions of sets in ZF. Only a few new terms and special sets are
introduced to make the resulting theory specific to engineering design. This too is acceptable from a sct
theoretic point of view. No new primitives, quantifiers or connectives are introduced, thus maintaining
logical validity. The special sets — A, D, O and R — are needed only to distinguish between the various
base entities in HM, they will be defined as they are introduced in the text.

9.2 Definition of Objects

A design entity is defined by its observable, or otherwise known, attributes. Attributes define the structure
of, and function provided by, the entity. For example, a tree is defined by its shape, size, strength of the
wood, etc. In fact, the concept “tree” is really nothing but a label attached 1o a set of observed attributes
that are shared by all trees [131, 166]. Attiibutes are important in design because they model identically

the properties of entities in the real world (as opposed to the perceived, conceptual or other worlds).

Let the set of all attributes be denoted by A, and let a, b, c denote members of that set.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



80

Definition 1 (Definition of an Object by its Structure) An object is a set of unique, identifiable, mea-

surable attributes.

Y(X)[(X € 0) = (SET(X))e (Y(a) [(e € X) = (a € A)])]. (9.1)

Since A is the set of all anributes, we can also write this as:

Y(X)[(Xe0Q)=(XCA). (9.2)

The sct of all attributes A can be regarded as the set of all design variables (like Suh’s design parameters

[31}). Objects may then be seen as a natural form of grouping and treating these parameters.

A unique design entity is one whose attributes differ in some way from the attributes of all other design
entities. If two attributes (from two different design entities) are the same, then any operation that can
be performed on the attributes will yield the same results. Since a design entity is a set of attributes, an
operation applied to a design entity will yield unique results only if there is at least one attribute with
a unique value in that entity. Therefore, design entities may be equated by examining the results of the
application of operations to them, rather than examining their intemnal structure directly. Since objects in

HM model design entities, we have the following axiom:

Axiom 3 (Identity of Objects) If the sets of all attributes of any two objects have identical members,

and if corresponding attributes in each object have equal values, then the two objects are identical.

V(X) [M(Y) [(X =Y) = (W(P)(P(X) = P(Y)))]] (9.3)

where P is any unary predicate.

We note that axiom 3 is the same as the Axiom of Extensionality in ZF [80], i.e.:

(A= B) =¢ V(z)((z € A) = (z € B))
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but is derived from design considerations rather than purely mathematical considerations.

9.3 Views of Objects

A number of properties of objects are very important from the puint of view of design; these propertics
reinforce the isomorphism between set theory and design information. In this Section and those to tollow,

these properties will be introduced and examined.
The first property is termed relevance by the author, and it is manifested as views ol objects.

One of the most useful innate human intellectval abilities is to mask out certain aspects of an object
in favor of other aspects of the object that are of importance to us. For example, a person could very
easily sort a collection of books by their size, though, if asked shortly thereafter, be completely unable to
describe the colors of the books' covers. Being able to selectively ignore or recognize information lets us
isolate and focus our attention only on areas of interest. The importance of filtering information in design

environments has been recognized in the literature [17,31].

A view of an object partitions its attributes, making only some visible and manipulable. Views do not affect
the object itself; but establish a projection of the object wherein only certain attributes are accessible. A
view partitions the attributes of an object according to criteria explicit in the view itself. After partitioning,
the remaining attributes form a subset of the attributes of the object being viewed, that is, a view object.

An attribute may be acti ve in a number of views but need not be active in all views.
Epistermological’y, we can also make the following argument to support this approach.

An “ideal” object is o..e that models a design entity in every detail, property, behavior, etc. Such a detailed
model of reality is unlikely to be possible to construct, yet we can imagine it from a theoretical standpoint.
In fact, we can likely not even form such a model mentally, but we can imagine that such models might
exist. From a design point of view, not only is it likely impossible to construct such ideal models, but it
is also unwarranted. In design, we are specifically concemned with only subsets of all the attributes of a
design entity. Thus, the logical notion of a view permits us to project an ideal model of a design entity

onto a relevant design model of that entity.

We see, then, that the isomorphism between set theory and design forms a connection that extends from
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the very notion of existence to a specifiable formal model of existence.

If we consider a particular object to be a “‘complete™ model of some design entity, then any proper subset

of the rembers of the object can be considered a specific view of the object with respect to the selected

members.

Using the definition of subsets in [80], we can write in the notation of HM:

V(X)) [(X C¥) =y ¥(z) [(z € X) = (z € Y)])).

If (X C Y)but (X # V), the subset is a proper subset. The number of possible views of an object is the
cardinality of the power set P(.X ) of the object.

Many of these views weuld be triviatly unimportant to a designer. But there is no way to define a-priori
only the views that are relevant. Yet, we can restrict our definition of a view in a manner similar to the
way that the definition of a subset is restricted in ZF. This kind of restriction also happily prevents certain

kinds of logical paradoxes that would render the theory as a whole invalid.

We begin with what is generally called the Axiom of Separation.

3(S) Y(z)(z € §) = ((z € A) o (2)))]

where there are no free occurrences of 5 in ¢. This says that for any set A, and any propositional function

(i.c. predicate) ¢, there is a set S that is a subset of A and that contains only members of A that satisfy .

When we say that there can be no free occurrences of S in ¢, we mean only that ¢ must not contain
occurrences of 3(.5) or V(S) since this would imply that § is defined in terms of itself and would lead
to paradoxes. This is not a real problem in HM itself, because it would be meaningless to define a view

with respect to itself, so a designer would likely never attempt it. However, it is enforced in HM for

completeness and consistency.

We refer to the Axiom of Separation as an axiom-schema because the symbol ¢ represents a group of

'The power set is a well-defined entity in classical set theory [80]
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predicates. We may write the set of all predicates o as ®. The equation above therefore actually represents
a group of axioms, each having a different predicate substituted for o € ®. In Scction 8.2.1.2, it was
explained that the restricted nature of the universe of discourse of HM lets us investigate the nature of
entities within that universe much more closely than is possible in ZF. Here is one example of the degree
of detail that is possible: in ZF, little can be said about the actual predicates that can be substituted for ¢
in the Axiom of Separation; but, as we shall sec b low, in HM we can investigate a number of important

groups of predicates that apply to design. Views are the lirst such case.

We interpret the Axior: of Separation for HM views as follows: For an object X and any predicate .
there is another object ¥ whose set of attributes is a subset of the attributes of X, all the members of

which satisfy ¢.

The Axiom of Separation is an axiom schema, in HM the axiom of views is in fact a subsct of that of the

Axiom of Separation. [t can be written as follows:
Axiom 4 (Axiom (Schema) of Views)

3(Y) [V(e)((a€Y)=[(e € X)o(a)])] (9.4)

where « contains no free occurrences of Y .

v is a new symbol, and is used to represent a subset of all possible predicalcsl(,o that satisfy the Axiom
of Separation. In particular, ¥ represents a predicate that “defines” a view; different y predicates will
produce different views. v, then, is the criterion by which a specific view is defined. These criteria
are attribute-specific. For example, if y were such that only attributes that modeled spatial dimensions

satisfied it, the resulting view of an object would be its 3D geometric representation.
Let the set of all views be denoted by T, and let -y be a member of that set.

The notion of a view being a subset of an object is captured by the following definition.

Definition 2 (Views) VIEW() is a binary function whose parameters are an object and a view criterion
specification, and whose result is another object called a view object whose attributes are a subset of the

attributes of the input object selected according to the given criterion.
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Y(X) [V(7)(E(Y) [(Y = VIEW(X,7))e (Y C X)])]. 9.5)
We can write this it a functional notation as
VIEW : 0 = P(0).

Objects that are the same in every regard are identical. This applies to view objects as well. However,
this notion also suggests a relationship between the objects from which the views were generated. If there
cxists a view ooject that can be derived from two non-identical objects through the use of a single view

criterion v, then we define the two non-identical objects as being similar objects.

The inclusion of similar objects in HM is motivated by the observation that for many design tasks, only
4 certain view of an object is sufficient to permit completion of the task. Since views are projections of

objects, it becomes important to be able to make statements about the objects that give rise to such view

objects.

Theorem 1 (Similarity of Objects) Two objects are similar if the application of a given view criterion vy

to the objects produces identical view objects.

V(X) V(1) VY )((X ~ Y) = (VIEW(X, 7) = VEW(Y, 7)))]] . ©.6)

The symbol ~ is used to denote similarity of objects.

The author’s motivation to have views of design informationis five-fold. First, we have the epistemological
argument presented earlier. Secoria. completeness requires that HM extend to cover the entire universe
of discourse; and in a design environment, the universe of discourse includes views as reievant design
entities. Third, from the standpoint of conciseness, views permit a structure to exist in the sitnplest form

that maintains its semantics. Fourth, from an organizational standpoint, views permit information to be
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ordered by its relevance to a task. Fifth, and lastly, views implement information hiding, which is desirable
practically for a number of reasons. The designer will have a simpler task if only relevant information
is visinle. Information selected by view can be presented to the user in a more understandable form.
Superfi:ious information can be excluded to increase efficiency and robustness. More practically, views
can provide uniform interfaces to parts ¢.” - database even though the intemal structure of the objects in

the database may change.

Views are an especially powerful tool when defined as components of attributes. For example, an attribute
occurring in two different views may indicate coupling between the views. Altematively, the sets of views
of two objects can be intersected. whereupon the cardinality of the intersection set can be used to measure
functional or otlier coupling. Similarly, small sets of views can be used in order to study how different

types of attributes affect the coupling of two objects.

9.4 Domains and Ranges of Attributes

9.4.1 Set Theoretic Foundations

The second important property of objects has to do with the structure of the attrisates that compose them.
Here, we introduce the necessary set theoretic background to formalize object atiributes in HM. We begin

by considering the formal definition of a relation on sets.

V(z) [(z € t; = (3(v) [B(v)(z = (u,v))])]

where z is an ordered pair, v € U and v € V (U and V are sets) and £ is a relation.

This is the definition of the cartesian product U x V = R. The domain and range of 1 are given by:

dom{R) =4 {z:3(y)({z,y)€ R)}
ran(R) =g {y:3(z)({z,y) € R)}.
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Let D be the sct of all possible attribute domains and R be the set of all possible attribute ranges. We may

now write:

A=DxR. (9.7)

and dom(A) = D and ran(A) = R. Also, because of definition 1, we can write for an object X:

dom(X) ¢ D 9.8)
ran(X) C R. 9.9)

9.4.2 Domains and Ranges in HM

An attribute representing a property or behavior of a design entity is specified by two pieces of information.
First, the concept that typifies the attribute is needed: its domain. In the most general sense, domains
of attributes can include integers, real numbers, text, arrays, etc. The domains of attributes relevant to
engincering design are discussed below. Second, a specification of how the property is exhibited by a

particular entity is required. The set of possible values that an attribute can have is called the range of the

attribute.

Definition 3 (Domain of Attributes) The domain of an attribute is the abstracted, observable, quantifi-

able property of a design entity that the anribute represents. The domain of an attribute includes an

associated dimensional unit.

Definition 4 (Range of Attributes) The range of an attribute is the set of all values that are meaningful
within the domain of the attribute, and any one of which may be the actual value within an arbitrary object

containing that attribute. The set of values can be discrete or continuous, single-valued or multiple-valued.

The dimensional units mentioned in these definitions are discus:zd below.

Let D be restricted to the set of all attribute domains in HM only, and let R be the set of all attribute ranges

in HM only.
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Definition 5 (Attributes) Anributes are ordered pairs {d,r) where d € D and r € R, und the set of all

antributes is the cartesian product D X R.

The definition of the cartesian product and its relationship to ordered pairs is defined within ZF. We use

ZF here to provide a formal definition of attributes.

Theorem 2 (Identity of Attributes) Two attributes are identical if their domains are identical and their

ranges are equal.

9.5 Dimensions of Measurement

There is an important observation that must be made at this point regarding attributes for engincering
design. To be meaningful, attributes must not only be observable; they must also be measurable 1f an
attribute is not measurable, its value cannot be compared to other values or used in computation, and would
hence be comparatively meauingless. Therefore, the domains of attributes must include dimensions of
measurement against which the attribute can be compared. This is another important property of objects

in HM.

In order to satisfy the condition of measurability of attributes given above, the author has defined the
members of the set of attribute domains D to contain dimensional propertics. The members of D in
HM are: length, mass, time, cost, quantity (or enumeration), NDU (non-dimensional units, for ratios,
etc.) or any combination of these (e.g. velocity, energy, and so on). Although only length, mass and
time are commonly considered, the author has elected to add other dimensions because of their relative
importance in engineering environments. This approach is far more powerful than schemes that only
represent numeric quantities because it is a natural form of expression that is physically meaningful,
and because it captures all the necessary semantics of dimensional standards at the axiomatic level. For
example, correct dimensional analysis becomes an inherent property of HM. Dimensional information

has also been found to be of great assistance in dealing with spatial constraints [167).

The members of R, the set of ranges, in HM are: integers (Z), real rambers (R), boolecan values (3) aud

text (7). The author is undecided as to whether complex numbers should also be included as possible
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range values: though they are of use in many design methodologies (particularly in the area of analysis),

they can also be considered as composites made up of two real numbers.

The author believes this approach to be superior because it is a very natural form of expression that
is physically meaningful, and it captures all the necessary semantics of dimensional standards at the

axiomatic level.

9.6 Constraints and Attributes

Constraints are the principal driving force of the engineering design process. They are manifested as
relationships between information regarding design entities. Insofar as constraints are vital to design

information specification, they must be represented by HM.

As with views (Section 9.3), constraints operate at the attribute level within HM. Both attribute domains
and ranges may be constrained. Attribute domains may be constrained to be of specific types (e.g. modular
assembly components might have a constrained kind of shape or material), and attribute values may be
constrained to be constant-valued, single-valued or multiple-values, continuous or discontinuous, and so

on.

The issue of constraints in design is far more complex than may be implied here. In general, the consiaint
satisfaction problem is characterized as NP-complete [55-57], which means the time required to solve the
problem varies exponentially with the size of the problem. For even small design problems, the required
computation can be intractable. However, the process of constraint satisfaction is a component of the
design process itself, and therefore falls outside the bounds of the immediate concera of the author in
this work. While this simplifies our task, we recognize that more work is needed tcfore HM can support
constraints appropriately. However, it should be clear that the specification of constraints, in the form of

functions and relations that define subsets of attributes and objects, is inherent to HM.

It is noted that the set D x R (discussed above) contains attributes that are meaningless in a design
environment. For example, an attribute with the domain of quantity cannot have a range within the set of
real numbers. Clearly, some constraints will be necessary just to keep a model consistent with respect to

attribute definition.
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9.7 Summary

In this Chapter, the basic structure of individual objects and their intemal structure has been presented
formally. An object models a design entity, and is defined as a set the members of which are attributes.
Each attribute has a domain, a range, and an associated dimension of measurement. A view of an object
is a subsct composed of attributes of the object that satisfy some predicate. Views permit the isolation of
relevant attributes based on externally supphed criteria. Various p:anitive relationships between objects
(e.g. identity, similarity) are also formailized. Three which issues remain for which further research
is indicated. First, the 1ole of views has been identified as key to a number of application domains,
especially that of database design for engineering cnvironments [94, 168, 169]; a dctwled study of views
could be highly beneficial to such efforts. Second, the unique approach taken with regasds to dimensions
of measurement should be investigated more fully. Third, the pivotal role played by constraints in the

design endeavor makes their further study relevant and important.
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Chapter 10

Ordering Mechanisms for Design

Information

10.1 Introduction

In this Chapter, the author identifies various ordering schemes (abstraction mechanisms) that can be
imposed on engineering information to make semantic content explicit. These mechanisms are derived
from considerations of the types of information available to a designer and are defined within a set theoretic
framework (i.e. HM). They represent primitive ontological notions based on how designers regard the
universe. These notions cover the classification of design entities according to various criteria; though
extralogical in and of themselves, these notions are well founded in empirical research in philosophy,

psychology, and artificial intelligence [28, 131, 166).

The maiter dealt with in this and the following Sections occupies a higher level of abstraction than the
matter of Chapter 9: we discuss statements about collections of objects, rather than just individual objects.

These collections are (classical) sets of objects, and they obey all the notions and axioms of ZF set theory.

Objects are organized by establishing relationships between them. The kinds of relationships are inde-
pendent of the objects ihat take past. Consider, for example, X = f(Y'), where X and Y are objects. The
function f may be applied to many objects, and yield many objects. It thus defines sets of objects C; and
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C; suchthat X € C;and Y € C;. The organization of objects, then, proceeds by defining the relations

that in tum define sets of objects.

We recognize now that the set O. the set of all objects, is one of these collections. The relationship
hetween the members of this set is that every member is an object. Similar arguments may be made for

cach of the sets introduced in Chapter 9.

10.2 Types of Objects

Onc of the most natural and useful abstraction mechanisms for ordering (or classifying) entities is by
structura) (as opposed to bchayioral) similarities of the entities. Sometimes called “classification™ or
“typing”, this mechanism is also a basis of human cognitive function in general. Ordering schemes of this
type are only partial because many such schemes may be imposed on the same collection of entities, each
yiclding a differently ordered collection. The human mind thinks about entities so groupad by thinking
about an abstracted (or generalized) entity that captures only that which is common to the members of the
collection and leaving indeterminate (or at least variable) other aspects of the members of the collection.
In HM. the generalized, conceptual entity meant to represent a partially ordered collection of design
entities is called a rype. The partial orders that types impose on collections of entities define relationships
shared by the members of the collections, thus making information regarding the members explicit. Since
objects in HM model real world entities, and since objects are defined in temis of attributes, types in HM

must model relationships between objects by modeling relationships between attributes of objects.

The distinction between a type and the collection of objects that the type models must be kept clear. A
collection of partially ordered objects is, essentially, a set of sets, and hence exists at a different degree of
abstraction (or logical level) than do objects. A type, on the other hand, models a collection of objects, and
therefore exists at the same logical level as do objects. This distinction becomes crucial if we are to insure
that HM is consistent, The notion of logical leveis descends from Russell’s Theory of Logical Types {153}
and is a generalized mechanism to distinguish between sets, based on the degree of abstraction required
to create the sets. The Axiom-Schema of Separation, as it is used in [1,80, 153] and by the author, implies
this same distinction between logical levels. Thus, ZF supports the distinction of logical levels according

to Russell's theory. The distinction is also important to HM.
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The key to providing a consistent theory of design information lics with the Axiom of Scparation, which
we have already seen in Section 9.3. Again, our approach is to interpret the Axiom of Separation in terms
of design considerations and eventually draw forth a group of predicates that can be substituted for  in

the Axiom which has meaning from a design standpoint.

For a given object, we might expect predicates such as “This entiry has a threaded shaft” or “This entity iy
made of cold-rolled steel”. For a type collection, we might expect predicates such as “This entity is a bolt”
or “This entity occupies space and is made of metal”. In considering type collections, we disregard any
predicates that depend on the values of attributes of objects; i.c. we know at once that a predicate such as
“This entity is 3.5 centimeters long plus or minus 1 millimeter” applics to an object, while a predicate such
as “This entity has a dimension that we call its length™ is clearly a predicate on a type. The distinction
is that the former is a predicate on a design entity and the latter is a predicate on an abstract entity that
generalizes some aspect of the former. Also, the former mentions an attribute domain (length) and a range

value (3.5 centimeters . . .) while the latter mentions only a domain.

In other words, the process of generalization of attributes involves neglecting the values of the attributes
and dealing only with their domains. That is, attributes that are predicable on type collections are not

predicable on design entities or the objects that model them, but on generalizations of the design entities.
In a more practical sense, we may state this as follows:

In HM, objects are typed (or classified) by their structure: similarities in structure are expressed by
similarities in the domains of the attributes of objects. Attributes of objects are quantitative measures and

represent in HM only those quantitative aspects of design entities.

The criterion used to define a colleciion of objects is based on attribute domains. An object is included
in the collection if the domains of all its attributes map identically to all the domains in the criterion.

Information defining the criterion is supplied by the type.
Axiom 5 (Abstraction of Structure) Abstraction of object structure is based on generalization of object
attributes and results in types, which are objects that model collections of objects that share structural

features.

Let a type collection be denoted by Cr.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



93

Definition 6 (Type Collections) A rype collection is a set of objects, the domains of the attributes of all

the members of which are the same.

Cp) (VX)) YY) [((X € Cr) o (Y € C7)) = (dom(X) = dom(Y ))]]] . (10.1)

We note that the phrases (X € C) and (Y € Cr) obey the rules of logical types (sce Section 8.2.2).

We can represent all the information necessary to define a collection C for types by means of an object.
Specifically, for a type collection C'r, a type T is defined as an object whose domain is the same as the
domain of every member of C'r. This defines the minimum necessary information to capture the notion
of type collections.

Because types and type collections are based on object domains only (i.e. range information is ignored),
then any member of a type collection Cr can fill the role of type 7. That is, for a type collection Cr.,
we may take any member object from C7 and successfully use it as a type for that type collection. Thus
type objects 7" are not actual objects distinct from other objects, but are rather ordinary objects that we

consider in the role of representatives of their type.
We may denote the set of all types by T, therefore T € Tand T C O.

We define the binary predicate IS_A to capture the type relationship between two objects.

Definition 7 (The Typing Predicate)

V(X) [V(Y) [ISA(X, Y) = (dom(X) = dom(Y))]] . (10.2)

The author notes that if ¥ were defined to be the type for its type collection, then IS_A could be used to

determine if arbitrary objects were “of a given type™.

Furthermore, it is redundant to have more than one type object for a given type collection. However,
nothing has been said yet that would prevent two objects of a given type collection from being considered
types. We can capture the uniqueness of type objects using a notation suggested in [1] to indicate the

existence of unique individuals.
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Theorem 3 (Theorem of Type Uniqueness)

V(Cr) 1I3(THT € Cr)). (100.3)

The notation !3 means “. . . there exists exactly one . ..".

Now let us return to the Axiom of Separation. It is written:

A(S) Mz)((z € S) =((z € A)s ()]

and states that there exists a subset S of aset A all the members of which satisfy ¢ (with no free occurrences

of Sin ).

With regard to types. the author interprets the axiom as follows: there exists a subset X' of the set of ali
objects O all the members of which satisfy a predicate 6. In this case, 8 is the predicate that differentiates
objects by type — in other words, IS_A. We can then write the Axiom of Separation for types in HM as

the following axiom schema:

Axiom 6 (Axiom of Types)

v(Y) 3(Cr) (X)X € Cr) = [(X € O) o ISA(X,Y)])]. (10.4)

The space separating *“V(1”)” from the rest of Equation 10.4 is a convention used in symbolic logic to
indicate the extent of an axiom with respect to a set of entities. In this case, it binds the use of ¥ in the

axiom so as to explicitly define the range of values that Y can attain within the axiom.

Types themselves represent our abstract concepts of design entities based on their quantifiable attributes;
méy define the properties of a set of design entities without defining the degree to which cach real world

entity exhibits those properties.

In attempting to relate objects and types, the distinction between types and the coliections of objects that
types model is essential, Collections of objects are not directly comparable to objects because they are of

different degrees of abstraction (see Section 8.2.2); that is, apparently intuitive statements suchas X N C'p
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and X € T arc invalid, the system resulting from their inclusion would become inconsistent, and there
would be no way of assuring that all statements that can be formulated in HM can be proved. On the other
hand, statements of the form ONT = T.or X € C7T. are acceptable because O and T. and X and Cr.

are of the same degree of abstraction,

This is a good example of the power of set theory: it forces us to think more clearly by giving us a system
wherein logical errors are more casily detectable, without restricting our freedom to express consistent,
relevant information.  The majority of logical errors are detectable because “statements”™ in HM are
theorems; if they can be proved within the system, they are valid (correct). Not all errors can be caught

this way because of the inherent incompleteness of formal systems (see Section 5.1).

The relationship between a type and objects of that type (the rype-object relationship) is a one-to-many
relationship. But the relationship between an object and its type (the object-type relationship) is one-to-
one. We would have to be outside the system to “see” that the current object’s type has more than one
instance; this would introduce self-reference that we want to avoid. Because one-to-one relationships are
dealt with in a straight-forward fashion with functions, and because of the added complexity of dealing
with both objects and type collections of objects, HM models objects as having types, rather than types

as having collections of objects.

Furthermore, types collections (Cr) are not considered to be primary entities in HM. Design entities
are the only entities of primary importance, since they are identified with real-world entities relevant to
designers. Types collections, though essential on the theoretical grounds discussed above, are derived
from objects. They are thus regarded as mutable, built from objects that are known or presumed to exist
in some way. This must be the case because the underlying requirements of the criteria for the formation
of types can change during the course of a design process, or as our collective understanding of design
evolves. If we were to define types as itnmutable structures, we would be locking ourselves in to a

particular viewpoint of the nature of design which might tum out to be insufficient.

10.3 Aggregations of Objects

We have scen that types permit the ordering of objects, using abstraction of the attributes of objects.
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An aggregate is also an ordering device for objects, but it works through a different abstraction mechanism:
recursive containment. Put simply, an aggregate is just a collection of objects. Membership in aggregate
collections is based on entirely arbitrary criteria that depend on the exigencies of the problem at hand.

This distinguishes aggregates {rom types. for which the defining criterion is precise and known a-priori.

Aggregates permit the hicrarchical ordering of objects of the same degree of abstraction (i.c. aggregates
cannot mix objects and types). Design is strongly hierarchical. Parts may be asscmblics of ather
parts. Even processes (for example, a finite element analysis, or a machining process) arc compased of

subprocesses. The larger the design problem, the more important hicrarchical ordering becomes,

Once again, we rely on the Axiom of Separation to guide us in formalizing our notion of aggregates. In

this case, we write the Axiom as follows:

Axiom 7 (Trial Axiom-Schema of Aggregates) There exists a collection of objects C 4, all the members

of which satisfy a particular predicate 6,

CHMXN(XeCa)=[(X €0)e6(X)])]. (10.5)

C4 is an aggregate collection, and § is one of a set of predicates A uscd to define membership in the

aggregate object that model these collections.

However, we observe that (1) C 4 and O are collections of objects; and (2) é applics only 1o single objects
in C4. Defining § in terms of C4 breaks the restriction of free variables on the axiom of separation.

Therefore, axiom 7 itself is not enough to define the relationship between members in an aggregate.

The generally accepted theory of classes of sets [170], which accounts not only for sets but also for
collections of sets, achieves nothing for us except the replacement of predicates like é by classes of

objects that are defined in terms of é.

Altemnatively, we might consider defining & in terms of ); c;(a;) where a; € C4 and ¢; is some predicate
constraining ;. But in this case each constraint depends on only one member of C'4, whereas we need 4

single relationship over all the members of Ca.

To solve this problem, let us begin by saying that a relationship is needed to define the nature of the

components’ use in the assembly. The relationship takes the form of a constraint on the attributes of the
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assembly (an aggregate object). Thus, the constraint is at the same logical level as the aggregate, not at

the level of the objects that compose the aggregate. Let s represent these constraints.
In general, a constraint of this kind on an aggregate will not act on all the attributes in the aggregate. For

example, a constraint defining the relationship between two links in a four-bar linkage need not act on the

other links. So, in gencral, a constraint will act on a subset of the attributes of an aggregate.

Now, a view (sce Section 9.3) is a subset of an object. If we define a certain view of the aggregate
10 contain only the attributes acted upon by some aggregation constraint £, we may then say that the
constraint acts on a// the attributes of the view. Now, we can begin writing another axiom, based on views
of an aggregate. Each constraint x can be used to define a view criterion -y, which in turn defines a view.
Thus a collection of constraints &; for an aggregate leads to a collection of view criteria -y; and a collection

of view objects V;. We now define C 4 more precisely: C4 =4 V.

Axiom 8 (Axiom-Schema of Aggregates) There exists a collection of views C 4 of an aggregate object,

all the members of which satisfy a particular predicate 6.

A MVI(V € Ca) = [(V €Oy o 6(V])] (10.6)

where 6(V') must be true for all views in C 4; that is,

6(V) =4 Ur;;. (10.7)

This equation will be true if at least one «; is true. It is noted that this is counter-intuitive: we might have
assumed that all constraints must be simultaneously true (i.e. [); &;), but this is not the case.

Since attributes appearing in more than one view object of an aggregate are identical (not only equal or
cquivalent — see Section 9.3), we can create the aggregate object itself by simple union: ¥ = |JCy4 =
UV

A graphical depiction of the aggregation of four links to compose a four-bar linkage is given in Figure
10.1, including the link objects ground, input, coupler and output, all views, view criteria v; and

CONStraints x;.
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Figure 10.1: Aggregation of a Four-Bar Linkage in HM.
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The predicate set A is an important one: its elements provide the means of defining all the necessary
relationships in an aggregate object. The consequences of this statement are made quite clear by consid-
ering a simple physical assembly of components. Objects would model each component. An aggregate
object would model the assembly. It would be the role of the é predicate for that assembly not only to
partition objects according to which are needed in the assembly and which are not, but also to provide the
exact relationship that cxists between the components in the assembly. In other words, it is the aggregate
predicates A that permit the definition of how components in a physical assembly mate, the tolerances of

the fit, the manner in which the mating occurs (the assembly process itself) and so forth.

An aggregate object need not contain only other objects, but can itself have attributes. One obvious
example of the kind of attributes that an aggregate itself might have are size and shape. These clearly
cannot be derived from the components of the aggregate alone (e.g. information about a bolt tells us
nothing about the assembly in which the bolt is to be used). This too is permitted by HM. Aggregate

objects, then, are not just sets of objects, but an object with attributes whose values are other objects.

At this juncture, we could begin a detailed study of the properties of the predicates in A, but shall not.
This document is meant to be both an overview of HM and a statement of the fundamental axioms that

compose it. In this spirit, then, we defer such discussions io future work.

10.4 Classes of Objects

In addition to classification by structure using types, objects can be also classified by the function they
arc meant to provide. The importance of capturing semantic content of function is best exemplified by
conceptual design.

Conceptual design is one of the first steps in a design process, and has the greatest impact on downstream
decisions [17.42,171]. In general, conceptual design is considered to be the mapping between the function
provided by some entity and the physical specification of the entity. Very little is known about conceptual
design and we do not presume a simpie solution to the problem here. However, the author has devised a

mechanism to case the development of a system of classification by function.

The mapping between structure and function is not necessarily one-to-one: a particular structural com-
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ponent may provide more than one function, or vice versa. The mechanism of types discussed in Section
10.2 is inappropriate: thc mapping between objects and types is one-to-one. Therefore, the structural
properties of the entity do not capture semantics of function. A mechanism ditferent from ‘yping is

required.

The author defines a c/uss of objects as an aggregate object whose members all represent design entities
that exhibit a given function. HM considers inclusion of an object in a class sufficicnt to establish that the

object exhibits a given function.

It is unclear to the author at this time whether a class should include information for modeling of the
function itself, or whether this information should be contained by the member objects, or by the &
function of the aggregate that reiates them. The relationship modeled by the function would permit access
to the members of the class, much as IS_A provides, but without the constraints that IS_A imposes on the

attributes of member objects.

10.5 Specialization and Generalization of Objects

10.5.1 Specialization of Types

The abstraction mechanism of specialization is implemented in HM by inheritance of type. Inheritance

is a mechanism similar to aggregation, but is controlled by the operation of set union.

The difference between inheritance and aggregation is very important from a semantic point of view. For
example, to say that an automobile inherits the attributes of its engine (c.g. power) is meaningless; the
reason why humans can make sense of such statements is because we can interpret it correctly and extract
the necessary implicit information from the statement. However, this highly informal and subjective
approach is very undesirable. The correct statement that can be supported by a formal theory would
be that the automobile is an aggregate, one component of which is an engine that has a certain power
rating. Because HM is meant to formalize design information, the distinction between aggregation and

inheritance becomes essential.

A type. then, is the union of all the attributes of the types that are inherited by it. Union of sets is very
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well understood in set theory and provides a simple and rigorous way to formalize specialization through
inheritance.

Using the Axiom-Schema of Scparation again, we can write the following.

Axiom 9 (Axiom of Specialization) Fora given type T, if there exists a collection of types C's such that
T contains all the attributes of all the members of C's, then T is said to inherit from the members of C's,

and T is a type specialized from the types in C's.

v(T) HCs) VUV eCs) = [(UeT)o (U CT))]- (10.8)

We can define the predicatec INHERITS as:

Definition 8 (The Inheritance Predicate)

Y(T) [¥(U) [INHERITS(T, U) = (U C T)]] - (10.9)

The phrase INHERITS(T, U) is read “rype T inherits the attributes of type U™

As in the standard definition of the union operation, duplicate elements are excluded from the union set.

The identity axiom (axiom 3) defines the criterion by which duplicates are identified in HM.

In design, specialization is an important mechanism because it permits the creation of specialized types

from a collcction of more general, abstract types. It is, therefore, a top-down procedure,

Design also tends to be a top-down process [43, 49, 69, 106, 126, 167, 172], moving from the general
(conceptual design) to the specific (detailed design). This impacts on how we treat design information.
Because design begins from the general and moves to the specific, we can expect that at an arbitrary point

along the development of a design artifact, information regarding the artifact will be incomplete in detail.

Specialization, then, being a top-down process, is used in HM to permit incomplete information about
design entities to be captured in a consistent manner, and to permit the generation of (application) specific

types from general types.
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10.5.2 Generalization of Types

Generalization is the inverse of specialization, and from the purely theoretic point of view of HM, the
relationship between the two is bidirectional (i.c. specialization and generalization are opposites but

cquivalents). Thus:

Axiom 10 (Axiom of Generalization) [fall the members of ¢ collection of types Ce; have some attributey
in common, then there is a generalized type T that contains those common attributes, and all the types in

Cc inherit the common attributes from T .

AT) Ce) MUN(U € Co) = [(UeT)e(T'CU))]. (10.10)

Gencralization is important to design (00, for two reasons. The first is quite practical: in an envirommnent
where a number of types of design objects have been generated independent of each other, generalization
provides a formal mechanism by which we can unify our models of the objects. This kind of unification
minimizes the amount of information needed to completely specify a design antifact model, making the

model simpler and clearer’.

The second reason that generalization is important has to do with theoretic, taxonomic concemns. One
obviously desirable goal in design theory is the generation of usable, globally applicable taxonomics
of design entities. The issue of taxonomy in design theory was discussed in Section 4.2. Taxonomics
themselves can help standardize our models of design entitics and control the information required for the
models. Generalization in HM gives us a very specific formal methodology for generating design entity
taxonomies. Taxonomies resulting from the application of generalization to types in HM would result in
inheritance networks of types that would permit the classification (at least in theory) of arbitrary kinds of
design entities. The issues involved in generating such taxonomies are interesting and many, and are not

dealt with specifically in this document.

VThis corroborates Suh's second axiom of information minimization {31].
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10.5.3 Relationship Between Specialization and Views

Assume two types, 7" and U, and a view criterion vy that only examines object domains. If the types are
similar under the view criterion, then the view objects formed by application of the criterion to the type
ohjects are identical. Therefore, the view object itself is seen as a type from which types T and U inherit

attributes. This may be written in the notation of HM as
‘Theorem 4 (Similarity of Types)

Y(T) [V(U) [M(1a)  [(VIEW(T,74) = VIEW(U,74) = V) = (10.11)
(INHERITS(T, V') « INHERITS(U, V))]]] -

This further reinforces the importance of views as an organizational mechanism: we see that views can

be used to define the conditions whereby inheritance between object types occurs.

10.6 Summary

The author has presented in this Chapter five ordering mechanisms for objects: typing (by structure),
aggregation, classification (by function), specialization, and generalization. These five mechanisms
provide the means of organizing collections of objects in meaningful ways (in a design context); such
organization of information is essential to maximizing the amount of explicit information a designer has
available to him/her, which in tum can decrease the chances of misinterpreting design information. The
ordering mechanisms are based on ontological considerations of real-world entities, not on the empirical
cvidence as provided by the conventional understanding of design. In this way, independence from design

is maintained; we may then be more confident of the universal applicability of these mechanisms.
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Chapter 11

Discussion

11.1 General Summary

HM is an evolving, growing structure, but the core of the model as presented here is accurate and will not
change as the model develops. HM is a variant of classical ZF set theory, extended and interpreted to suit
engineering design information. HM provides the isomorphisms that permit us to view design information
in an objective, formal way. Specifically, these isomorphisms permit design entities to be represented by
sets that can be grouped into subsets using criteria all finding their roots in the Axiom of Separation as
defined in ZF; that is, the organizational axioms of HM (Chapter 10) are all axiom sub-schema of the

Axiom of Separation.

Other researchers [162, 173] have suggested extending formal systems to suit design, but the author is not

aware of any attempts as detailed or well-grounded in accepted logic systems as is HM.

HM is not intended to automate the design process, but rather to provide a structured notation that makes
information about design entities clearer and thus permits the designer to apply whatever thought processes
he/she prefers. The author perceives the designer as existing in a symbiotic relationship with design tools

such as HM, rather than being replaced by them.

HM is based on a functional model of the engineering design process that views design information as

separate from the various processes that act on this information during the course of design development.
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The key issue that permits HM to be stated at all is that therein the universe of discourse of ZF is restricted
to only those entities pertinent to design. In this way, we can make more specific statements (i.e. axioms)

than ZF alone permits.

The axioms of ZF are not aliered by HM, and no new primitives, connectives and quantifiers are introduced.
Fur these reasons, we are assured that HM represents a valid, consistent formal system of logic [80] (with

respect 1o set theory), specifically geared to design information.

Objects are sets of attributes, and capture meaningful information about design entities. This provides
a natural form of expression for design information because objects are conceptually equivalent to the
cntitics they model. Attributes are defined in terms of domains and ranges; domains of attributes in
HM include generalized dimensions of measurement. Views permit objects to be partitioned according
to criteria specific to particular design tasks. Relations and functions are used to define general classes
of operators on objects, and provide a flexible, extensible mechanism for the logical representation of
various kinds of relationships and constraints. The specific relationships of structural similarity, functional

similarity, aggregation, specialization, and generalization are all captured formally by HM.

Since HM applies to different design tasks, such as solid modeling, analysis, and so on, it presents
an integrated approach to the specification of design information that is extensible: new entities and

relationships can be specified using the model without altering the model itself.

HM provides (a) a basis for building taxonomies of design entities, (b) a generalized approach for making
statements about design entitics independent of how the entities were generated (i.e. independent of the
design process used 1o create them) and (c) a formal syntactic notation for the standardization of design

entity specification.

11.2 Future Weork

There are various fronts on which work on HM can continue. The role of constraints in the hybrid model
must be examined, and suitable theory generated. A review of the current literature indicates that relatively

little work has been done in this area. This may be because the design entities that are constrained have

been vaguely and/or imprecisely defined in the past. The formal understanding of these entities provided
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by HM may also help us understand the constraint satisfaction problem better.

Classification of design entities by function is another area where current understanding can be improved;

emphasis will be placed on this in the future work of the author.

Due to the hierarchical nature of design entities (particularly mechanical design cntitics), aggregation is
a key abstraction mechanism. Further study of the A predicates that HM supports for the definition of

aggregates is warranted.

At the theoretical level, a formal theory of design information will be auseful tool for the study of the design
process itself by providing a uniform lexicon and grammar for information specification. The author notes
that it is possible to blend ZF and first order predicate calculus [80]. The predicate calculus is the formal
basis of such tools as expert and knowledge processing systems. Also, fuzzy logic [147, 148, 174] presents
a unique opportunity for representing the notion of uncerainty in purely formal terms. It is interesting
to speculate on the nature of the combination of these tools with HM. and their possible applications to

design theory.

At a more practical level, application of the theory to real design environments has the potential to improve
communications between designers by providing a common vocabulary, to assist in the standardization of
design specifications, and to lead to new and more powerful software tools to aid the designer. The latter

avenue is explored in the next Part of this document.
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ENGINEERING COMPUTATION
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Chapter 12

Introduction

The work presented thus far has been quite abstract. This has been necessary because little fundamental
work exists in the area. Because of its abstract nature, practicai applications of the author’s work may
seem difficult to identify. In order to address this problem, the author has included a major application: the
impact of HM on engineering computing. The intention is to extend the perspective afforded by HM into
more practical issues of computation in design environments. In particular, a software system developed
by the author, called DESIGNER, will be presented and discussed as a demonstration of the gains that can

be expected from the application of formal techniques.

The influence of computer technology in design has become a strong one. Computers and computer
software systems are used in every aspect of the engineering cnterprise, from concurrent engincering,
to CAD and analysis, simulation, manufacturing and production, and marketing. Although some may
argue that this dependence is somehow detrimental to the profession of engineering, there is little doubt
that computer technology represents the only currently available, feasible means by which to control the

complexity of the engineering enterprise.

The Information Revolution the world is currently experiencing is related to its predecessor, the Industrial
Revolution. “By dramaticaily reducing the costs of coordination and increasing its speed and quality,
these new [information] technologies will enable people to coordinate more effectively, to do much more
coordination and to form new coordination-intensive business structures [18].” Coordination, in this case,

is the ability to organize, or order, what we do, and the information we use to do it. One of the principal
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gains we may expect, then, from formal theories like HM is the ability to generate software systems far
more capable than existing ones to assist designers in their work. Indeed, successful software systems

based on formal theories can provide a strong indication of the suitability of the theories themselves.

Currently available programming and database systems are insufficient for engineering applications [32,
42). The high degree of complexity of modem design artifacts, the richness of the number and kinds
of interrelationships in information, and the imprecision with which terms (such as design intent and
functional description) arc used have all contributed to this problem. Today’s continuing and ever-
increasing rate of new engineering software development makes it evident that these issues have not yet

been addressed properly.

As well, there have been a number of arguments made recently in favor of a “language-based approach”
to design ( e.g. [162,175]). Such an approach entails the development of languages that permit the
expression of design information in a computational environment that do not tie the user to a single
methodology or solution technique. In this way, relatively small languages can permit the capture of
relatively large quantities of information, while permitting the users a certain freedom of expression that
would be missing if a precise methodology had been specified. The author’s approach throughout the work
presented herein has been to separate information from procedures that use the information, at both the
theoretical and practical levels. The language-based approach, then, is quite sympathetic to the author’s
approach, and the programming language to be described in this Part may be regarded as a contribution

1o such language-based research in design.

The inherent complexity and relatively ad-hoc nature of the design enterprise can overwhelm even the
most powerful systems. In order to combat this, engineering software developers and researchers have
rightly searched for methodologies emphasizing organization and ordering of information: increasing the
degree of organization in a collection of information makes it more accessible, more concise and less
likely to be a source of error for designers. However, the exact nature of the organizational forms that

would best suit the engineering enterprise in general have to date eluded discovery.

One problem not addressed in other current research in this area is that of general engineering computing
[173]. Not since the creation of Fortran has a language been targeted intentionally for use by engineers
(with the possible exception of Ada, whose success in this area has yet to be proven). Considering

the great evolution that has occurred in design, it is not surprising that Fortran is unable to meet the
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programming requirements of modcm cngincering enterprises. Given the high degree of complexity of

design information, it is important that the paradigm match the conceptual model of the users.

In order to motivate the arguments presented in this work, we shall begin by examining the relationship
between software systems and engineering in an abstract way. This will permit us to distinguish between

the general exigencies of engineering computing and the requirements of particular software systems,

The domain of a softwarc system is the collection of the Kinds of problems to which the system can
be applied. The software system maintains an intemal computational model of its domain; that is, the
system is a manifestation of this model. This domain-specific computational maodel is a unification of
a formal conceptual model plus a general model of computation. For example, continuum mechanics
and mathematics provide a formal model for finite ciement analysis; this, combined with a programming
environment (which is a manifestation of a general model of computation), provides the computational

model! for finite element software systems.

Engineers use a software system 1o solve problems within the system’s domain; they are using the
system’s mode] of the problem domain to perform a given task. In order to do this, they must at least
have some understanding of the system’s computational model. This includes the formal model and also

(unfortunately) some aspects of the general computational model.

However, the users also have their own mental, or cognitive, models of the problem domain. [f the
user’s model of the domain is incompatible with either the formal domain mode! inherent in the softwarc
system or the computational model of the software system itself, an impedance mismatch [27] results.
As the name implies, an impedance mismatch represents an efficiency loss in information modeling. In
this sense, the word “efficiency” refers to the ability of a system (formal or software) to precisely and
correctly model necessary information in a timely manner with respect to the user’s model. The greater
the mismatch, the less usable the software system becomes, and the more likely inefficiencies and errors

will dominate its use.

Impedance mismatches between the author’s formal domain model (HM) and the user’s cognitive model
are handled by the isomorphism described in Part IIl. The isomorphism provides a correspondence
between the formal system and design information that effectively climinates impedance mismatches
arising from the use of HM in a design environment. In this Part, the author is concemed primarily with

controlling impedance mismatches between the computational models of engincering software systems
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and the user’s cognitive model.

Impedance mismatches are not bugs. Bugs are simple mechanical errors remedied in a relatively straight-
forward way. Rather, impedance mismatches arise from limitations in the programming paradigm selected
forthe design and implementationof the software system. These mismatches are problematic. They define
from the outset the limits of the software system's functionality, and guide the programmers throughout
the development of the system. The paradigm provides the conceptual framework for general computation
within which the software will be created. Any limitations in this framework will be inherited by the
software. If the selected paradigm is incompatible with the formal model of the problem domain or
the users’ « gnitive model, the resulting software will be clumsy and error-prone, and its results will be
difficult to interpret and use. But most importantly, there is no simple solution to this kind of impedance

mismatch short of chuosing another programming paradigm and rewriting the software from scratch.

Clearly, then, the investigation and selection of programming paradigms is the key to controlling mis-
matches and improving the quality of software systems. Engineering researchers, as experts in the problem
domain for which suitable software systems are to be developed, are likely candidates to be able to carry

out such investigations successfully.

The author expects that successful efforts will bring to existence entirely new programming paradigms
cvolved [rom existing ones, but significantly different in the computational models they support. These
models will be based on formal theories about design that are currently under development by many
different researchers, thus providing continuity of formal rigor from the domain model through to the
implementation of support software. The design theories will provide the necessary formal background,
and the computational models will provide the bridge from the purely theoretic world to the software

systems that will be able to address real engineering problems.

In the Sections that follow, a programming language for design information, called DESIGNER, will be
introduced and discussed. DESIGNER is an implementation of a coinputational model based on HM, and
must thus satisfy its axioms. Since HM describes the structure of design information without making
statements about the use of that information, DESIGNER will deal with static data modeling only; that
is, it will deal with the representation of information, not with its manipulation. Chapter 13 presents
the requircments for a new computational paradigm for engineering. Based on these requirements, three

programming paradigms are identified as the bases of the cument work. Chapter 14 then introduces
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certain key notions and the basic syntactic forms of the DESIGNER language. Chapter 15 follows up with
several examples indicating how the DESIGNER language can capture design information ctfectively and

concisely.
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Chapter 13

Requirements for a New Programming

Paradigm

Many different programming paradigms have been used to develop engineering software, including
functional, logic, imperative, object-oriented, and relational [176-178]; none have succeeded universally.
The latest attempts, and those showing the most promise, are those that blend two or more paradigms.
This is because cach paradigm alone represents a particular projection of the “real™ world to that of
computation; that is, cach paradigm performs only certain classes of computations very well, and in their
purest forms do so to the exclusion of other kinds of computation. Although there are many problem
domains where onc paradigm alone can perform well, engineering, for all its complexity, is not one of
them. Engineering problems can cover both numeric and geometric domains, both the precisely analytic
and the numerically approximated, the ethereal (for example, using chaos theory to model turbulent fluid
(low) and the practical (manufacturing process planning, amongst others). Clearly, an appropriate solution
for the engineering enterprise must perform computations efficiently, yet remain flexible enough to meet

its widely divergent requirements.

Some of the requirements of a new programming paradigm for engineering have already been mentioned.
To reiterate, a candidate paradigm must: (a) be supported by a formal model of the application domain; (b)
capture the complex data structures typical of many engineering applications; (c) capture and manage the

rich interrelationships that exist between these structures; (d) be representable by a formal computational
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model; and () eliminate. or at least minimize, impedance mismatches. The author considers one other goal
as well: the paradigm should provide an cnvironment for continued research in engineering computing,

and design theory.

It is noted that due to the current lack of formalism in cngineering design. it is difficult to expect the
immediate satisfaction of some of thesc requirements. We can, however, usce such formalization as
currently exists, and tailor our results in the future as our understanding deepens. Thus flexibility becomes
another goal of the paradigm. In this context, flexibility is the ability to try new programming and modeling
techniques easily without significant alterations 10 existing softwarc. We may in this way substitute our

lack of formal understanding of design with empirical analysis and the ability to experiment.

The author has identified three programming paradigms as being of particular relevance in engineering
applications: functional programming, semantic data modeling and object-orientation. We now bricfly

introduce these paradigms.

13.1 Functional Programming

The fundamental paradigm of functional programming is that a computation can be represented by a
collection of (possibly complex) operations acting on (relatively simple) data structures. In the ideal
case, no assignments ever occur; that is, there are no variables in functional programs, only functions and
constants (e.g. numbers, strings, etc.). Though this approach is very clegant from a theoretical point of
view, it does not take into account the exigencies of practical computation; for cxample, the integer 10
is represented in a purely functional environment as the application of a function called successor
to the integer 0 ten times. In a real programming environment, the computational overhead of such
an approach would be completely unacceptable. Thus, most functional languages permit at least single
assignment, i.e. a variable can be assigned a value only once during its lifetime. One does not change
the value of a variable, but rather eliminates it in favor of an entirely new variable that has the new value
assigned to it. This approach, though an acceptable compromise between the practical and theoretical
aspects of comnputation, results in a computational model that is rather counter-intuitive and difficult 10
use, especially by people unaware of the theory of functional programming. To offset this, many currently

popular functional languages (particularly LISP and Scheme) permit multiple assignment, but only in
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certain controlled ways. Although it is commonly said that the functional paradigm does not permit the
capture of state, this is a misconception. Functional programming only requires that manipulation of the
state of a program be explicit. This ensures that unwanted and often difficult to identify side-effects do not
oceur in functional programs. References [176, 179, 180] discuss various aspects of functional languages,

and | 181] discusses some of the advantages of using the functional paradigm in engineering applications.

One of the most novel ideas of the LISP family of functional languages is that of meta-circularity. A
meta-circular language is defined largely in terms of itself, turning programs written in that language
into extensions of the language itself. This permits the creation of self-modifying programs and active
data structures, Meta-circularity also unifies the roles of programmer and user: it becomes easier for the
“programmer” to understand the user’s needs and for the “user” to have control over software programmed
by others. It also permits the development of software in modular layers, all written in the same language,

cach layer expanding upon the capabilities of the preceding layers.

The ability of these languages to treat programs as data (i.e. perform symbolic computation [179]) is of
particular advantage in applications involving design information modeling. We can write functions that
can examine design models and check for satisfaction of various kinds of constraints. The constraints
may be specific to the domain (e.g. constraining weight or size of a component in an assembly), but they
may also be computational in nature (e.g. database integrity constraints, normalization, etc.). We can thus
unite database schema and instances of those databases (i.e. models of actual design artifacts), treating
them with a single language and computational paradigm. This further integrates the roles, and thus blurs

the distinction, between programmer and user.

The greatest advantage of functional programming is the sound and detailed theoretical background upon
which it rests [99, 182]. Firstly, the A-calculus presents a general mathematical theory of functions, and
is based on set theory. Secondly, denotational semantics provides a notation (based on the A-calculus)
for the representation and study of computation, permitting the evaluation and manipulation of programs
as if they were algebraic expressions. Such formal computational theories provide the bridge between a

formal design theory, and the implementation of software systems based on that theory.

Although Scheme and LISP are rather similar, Scheme [183-185] was chosen as the base language for
DESIGNER because its semantics is defined in much more formal terms than LISP. This means Scheme

cexhibits a higher degree of robustness and formal rigor than its predecessor. A particular implementation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

of Scheme, Elk [186], was used because because it provides certain implementation features that made the
development of DESIGNER quicker and casierin a UNIX! environment. It is noted, however, that DESIGNER
has also been ported to another version of Scheme, called SCM2, which is more rigorousty adherent to
the existing Scheme standard [184] than is Elk. This indicates conclusively that DESIGNER is a legitimate

extension of Scheme.

Finally, it is noteworthy that there has been some effort [181, 187] to study and implement the notion of
a database based on the functional paradigm. The significant advantage of the functional paradigm in
this area is that the explicit management of program state can make database update management and

nommalization easier than in conventional approaches.

The one notable disadvantage of the functional programming paradigm is that complex data structures
are nommally not supported. 7his restricts the organizational structures that can be imposed on design
information. However. as will bc demonstrated below, this deficiency can be remedicd by the use of
concepts from object-orientation. Although recently developed functional languages (e.g. ML, Haskell)
have richer type systems? and data structures, it is not yet clear how these mechanisms can be best used in
an engineering environment. As well, the type systems supported by these languages arc not nccessarily
compatible with the formal design theories they are intended to support. The author therefore favors the
use of an untyped language (like Scheme) into which can be built whatever type information is found

necessary.

13.2 Semantic Data Modeling

Semantic data modeling was originally conceived of to permit the creation and description of data schema
that would then be coded into relational implementations [111). It presented the advantage of ignoring
implementation issues in favor of achieving a deeper conceptual understanding of the problem domain.
Implementation issues were then dealt with using the refational data model {108]. Eventually, it was

recognized that there were application domains where the richer assortment of abstraction mechanisms

'UNIX is a trademark of AT&T.

2SCM is maintained by Aubrey Jaffer, copyright ©1989 Free Software Foundation, Inc.

3In computational theory, type sysiems deal with the specification of kinds of data structures (e.g. integers, characler strings,
records, procedures, etc.). This is not to be confused with the use of the term “type” in HM.
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available in semantic modeling would be of great advantage. Engineering was identified as one such
domain. Since then, a number of different semantic data models have been generated and implemented.

Two good surveys of the field are (28,111].

Because of the diversity of approaches taken by various researchers in semantic data modeling, it is
difficult to identify key notions representative of the general approach. However, one very relevant notion
has found use in the definition and implementation of DESIGNER, and is worthy of note here. Attributes
of data structures in semantic data models are regarded as functions mapping one (group of) object(s) to
another (group of) object(s). This is noticeably different from the view taken in object-orientation (see
below), wherein attributes are commionly seen as constituent parts of data objects and are thus considered
more structural than procedural. For example, given some objects modeling engines and some other
objects modeling fuels, semantic modeling would define an attribute uses-£fuel as a function mapping
enginc objects to fuel objects: alternatively, in object-orientation, an attribute fuel would be a component

of engine objects whose values are chosen from available fuel objects.

The author has found that the semantic modeling view of attributes is quite useful in implementing an
object-oriented system within a functional language (i.e. DESIGNER). This is particularly interesting
because it indicates a relationship between two very different computational paradigms (functional and
object-oriented programming) by way of a data modeling system not originally intended for such a

purpose. Exactly how attributes are dealt with in DESIGNER will be discussed in the Sections to follow.

13.3 Object-Orientation

Object-orientation has had as its goal, since its origins in the language Simula, the modeling of entities of
interest to the user in a very high-level and thus usable manner [188]; in other words, object-orientation
permits the creation of software models of “‘real-world™ entities that are very similar to the users’ mental
models of those entities. By definition, then, object-orientation has at least the potential of minimizing
impedance mismatches in applications where the information to be modeled must be presented and

manipulated in as straight-forward a manner as possible {27], such as engineering design.

An object is generally defined as an entity that can capture all relevant information about a particular

real-world entity. Objects encapsulare their implementation, thus making their usage entirely independent
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of how they function intemally. This frees the user from having to understand the details of how the
data structures operate. Encapsulation has been shown to provide many advantages in the development
and use of software from the points of view of both computer scicnce {159, 188~190] and engincering
{25.112,191,192].

Communication between an object and another object or a uscr occurs by passing messages belween
objects; a message is a request that an operation be carricd out by an object or group of objects. Objects
can be active (dispatching messages to each other) passive (requiring an extermal agent for message
dispatch), or some mix of the two. Similar kinds of objects can be grouped together in various ways,
permitting different organizations of collections of objects that reflect the requirements of the problem
domain. These abstraction mechanisms are particularly important in a domain like engincering, where

the nature of relationships between data can be both very complex and very important.

The greatest advantage of object-oriented systems is that they permit the modeling of complex, highly
interrelated entities (such as those found in an engineering environment) in a more simple, flexible and
elegant way than can other programming paradigms. The principal disadvantage of object-oriented
systems is that there is still no consensus on exactly what the nature of objects should be: there arc
no formal models for computing with objects. It should be noted, however, that there are a number of
on-going research efforts aimed at providing a more formal footing for object-orientation (e.g. [ 193-195])

both as a programming paradigm and as a database model.

The author has identified three parameters that individuate object-oriented technologies. These parameters
are discussed here insofar as selection of alternative approaches based on them helped form the overall

structure of DESIGNER.

13.3.1 Message Passing Protocols

The first parameter deals with protocols for message passing. A recent report by the Object Oriented
Database Task Group of ANSI [196] differentiates between two kinds of message passing protocols. The
first, classical message passing, is similar to that provided by languages like SMALLTALK-80 [197] and
C++ [198]. The protocol defines a particular object as the recipient of the message. The message contains

a selector, which is used by the receiver 10 identify a suitable procedure (called a method) 1o be invoked.
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Methods are defined within object classes (see below). Other arguments to the method may also be
provided by the message. The method is evaluated with respect to the receiver of the message and the

result is returned to the sender of the message.

The second form of message passing is called generalized or canonical message passing. In this protocol,
a message takes the form of a function call. There is no explicitly defined receiver; rather, all objects
are passed as arguments and treated equally. The result of the evaluation of the message is retumned to

whatever environment originally dispatched it.

The classical message passing protocol permits methods to be associated only with those objects for which
evaluation of the message is meaningful. Depending on ihe approach taken to define methods, this can
improve encapsulation and is thus advantageous. However, it can also introduce asymmetry in the way

actions on objects are regarded by the user.

For example, in SMALLTALK-80, the message 3 + 4 is evaluated as follows: the object identified as 3
is sent the expression + 4; a method associated with the appropriate class of objects is identified based
on the receiver (in this case, integer addition) and evaluated by taking the value of the argument (4) and
adding it to the value of the receiver. Now, if we had previously defined x — 3andy « 4,evaluation
of the message x + y would result in x taking the value 7, while y’s value remained 4. The asymmetry
is manifested in the different roles played by the two terms x and y: although they would conventionally
be considered equivalent in that they both simply represent values, classical message passing causes the
role of x to be active and that of y to be passive. This asymmetry can become confusing, especially in
more complicated cases typical in design. Furthermore, classical message passing causes side-effects;
that is, the change in the value of x is an implicit change in the state of the program that is uncontrollable
by the user. The existence of side-effects can prevent verification of software models of design entities;

they are thus detrimental to the construction of reliable software systems.

On the other hand, the canonical message passing protocol would evaluate x + y by using the function +
to create a new object whose value is the sum of the arguments. This form eliminates the asymmetry and
appeals to the intuition more than the classical form. The function is not hound directly to a type or class
of object. Though this may be seen as a violation of encapsulation (i.e. the function is not defined within
an object class), techniques exist to offset this loss while maintaining the advantages of the classical form.

These techniques will be discussed below in conjunction with the description of DESIGNER.
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Finally, the canonical message passing protocol eliminates the requirement for the special meta-variable
self, which refers to the receiver of a message. In the classical protocol, methods are attached to object
classes; there is no way to determine a-priori which particular object will have to evaluate a given method
in response to a message. Therefore, there is no a-priori way to identify the recciver of a message. To
circumvent this problem, researchers use a special variable commonly named self which, at any point in a
computation, identifies the receiver of the currently active method. The problem is that selfis an inherently
self-referential structure, and makes verification of programs and software models very difficult. Since the
canonical message passing protocol does not explicitly associatc methods with objects or object classes,

there is no need for this special variable, and we are spared a great deal of complexity.

13.3.2 Abstraction Mechanisms

The second issue regards the abstraction mechanisms used to group objects. There are two abstraction
mechanisms currently competing as the principal mechanism for this purpose: classes and prototypes.
They are both based on grouping objects by similarities in their properties. Generally known as “clas-
sification” or “typing”, this mechanism is also a basis of human cognitive function in general, and is

recognized as such by psychologists, philosophers, and artificial intelligence rescarchers [28, 131, 166).

Classes are the older of the two forms, and are used in such languages as SMALLTALK-80 and C++.
They define the structure and behavior of collections of objects. Classes are more abstract entities than
are objects: the latter describe real entities to be modeled, whereas the former describe the objects
themselves. They are commonly dealt with using the same syntactic forms as plain objects (instances),

but have significantly different semantics.

Prototypes, on the other hand, are plain objects that are used as templates to create other objects. They are
entirely different from classes because classes are more abstract modeling entities than objects, whereas
any object may be a prototype. Thus, the same syntax and semantics can be used uniformly throughout

prototype-based systems.

Prototype-based languages have the potential to replace class-based systems as the standard for object-
oriented programming because prototype-based computational models are simpler than class-based ones,

but retain the full expressive power of the latter [199].
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There are problems with class-based systems that are dealt with better by prototypes, especially in engi-
necring computing. Firstly, schema - or meta-data — evolution is orthogonal to the development of objects
in class-based systems, because classes and their instance objects are of different degrees of abstraction.
In prototype-based systems, there is no orthogonality. This simplification can be of great assistance
especially in engineering, where relationships are already complex without the added requirements of
different orthogonal systems for data and meta-data. Secondly, version control, which is very important
in maintaining accurate histories of designs, is greatly simplified in prototype-based systems. Thirdly,
onc-of-a-kind modeling of design artifacts is much more straight-forward using prototypes, since there is
no need to generate classes for which there will ever be only single instances. SELF [200] is one system
that has been demonstrated to provide potentially all of the benefits of classes while maintaining the higher

flexibility associated with prototypes.

13.3.3 Hierarchical Construction of Objects

The finai issue that distinguishes various object-oriented languages is the manner by which hierarchies of
objects are constructed. Again, there are two principal altematives. In inheritance, given a message, the
corresponding method is searched for and used by the receiver in the evaluation process. The criterion
upon which the search process is based depends on prescribed relations between various object classes.
One class inherits from a super-class if its instances respond to all the messages to which instances of the
super-class also respond. In other words, the receiver of a message in inheritance-based systems evaluates

methods that have been located in other objects.

Delegation, on the other hand, can be viewed as message transformation: given a certain message, the
delegation constructs and transmits a new message based on the given one. The new message replaces
the original and is re-dispatched in its place. Thus, in delegation-based systems, the receiver object is
sent as an additional argument to whatever object has the method used to evaluate the message; this is
the converse of what happens in inheritance-based systems. In general, inheritance is used in class-based
languages and delegation is used in prototype-based languages. Though both these approaches have been

used in various language implementations to date, neither has shown marked advantages over the other.
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13.4 Combining Object-Orientation and Functional Programming

Although functional programming and object-oriented programming are often considered to be at oppuosite
ends of the language spectrum, it is interesting to note that many functional languages have had object-
based or object-oriented extensions for some time. Scheme (and LISP) have both been used to generate
object-oriented systems [201-206], but almost all these systems have been class-based. Some systems
(e.g. [207]) have supported prototypes rather than, or in addition to, classes, but none of these effonts
capture the intention of a system that would be useful for design. They are general purpose programming
languages or platforms for language research, and too primitive to be applied to formal design theories
such as HM.

It may be argued that a distinct similarity exists between the theoretical notions of an object and a
closure [208). A closure is a data structure often used in functional programming to represent the
conjunction of a function with an environment, providing values for any variables or identifiers not
otherwise defined within the function itself. Both objects and closures are capable of capturing the state
of a computation. Although this similarity is quite evident, it is not sufficient to completely unify the two

programming paradigms. However, it is a good sign, and indicative of possibilities for success.

One distinct difference between functional and object-oriented programming that must be reconciled in
any attempt to merge the two is the issue of static versus dynamic scope. In static scoping, values for
variables may be identified by static lexical analysis of the program text. This means that the environment
used to evaluate a given function is the environment that was current when the function was defined. In
dynamically scoped systems, the environment used to evaluate a function is that which exists when the
function is called. Arguably, functional programming is at its best in a statically scoped system [176],
whereas, since the first version of SMALLTALK-80, object-oriented languages have favored dynamic
scoping. Various approaches have been suggested in the literature [176,202,209]; a definitive solution to
the problem does not appear 1o exist yet. The author’s approach takes advantage of multiple assignment in
Scheme to provide the minimal dynamic scope needed to support encapsulation of state. It is interesting to

note, however, that the first object-oriented language, Simula, used static rather than dynamic scope [209].
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13.5 Summary

This Chapter has introduced the requirements for a new programming paradigm for design, and identified
three key existing paradigms that can be used to meet these requirements. The two principal requirements
arc: that the paradigm model design information in as direct a manner as possible (so as to eliminate or at
least minimize impedance mismatches), and that formal rigor be maintained as far as possible between the
formal domain model (HM) and the implementation of the programming paradigm as a real computerized
1ool. Object-orientation provides the modeling constructs needed to meet the first requirement, while
functional programming provides the degree of formalization needed to meet the second requirement.
Also, notions from semantic data modeling provide a unique, expressive and efficient mechanism for the

treatment of attributes (as defined in HM) within a computational framework.
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Chapter 14

Concepts and Forms in Designer

This Chapter introduces the key notions and syntactic forms of DESIGNER, a prototype-based object-
oriented language implemented in Scheme. The primary goal of this exposition is to demonstrate (a) how
object-oriented and functional programming can be effectively combined, and (b) that there are significant

advantages in the use of formal tools to design and build sofiware systems for engineering applications.

Only the principal DESIGNER forms will be introduced in this Chapter. Other, ancillary forms will be

introduced in the next Chapter as required for the various examples.

In order to avoid circularity within the definition of DESIGNER, a distinction is made between actions
of objects, and actions on objects. This distinction prevents the definition of DESIGNER from being
self-referential. Since DESIGNER is meant to satisfy HM, which is not sclf-referential, it too must not be

self-referential.

Actions of objects are the operations they are meant to carry out. Requests for such operations take the
form of messages. Actions on objects occur at a different degree of abstraction; in DESIGNER, thesc

actions are captured by regular Scheme functions.

124
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14.1 Syntactic Conventions

Since DESIGNER is an extension of Scheme, it obeys Scheme's syntactic rules. Scheme is similar to LISP
in that its fundamental structure is a list, denoted by values enclosed in parentheses. Function calls take
the form of lists whose first clement is the name of the function, Forexample: (+ 3 4) isa function call
to +, with arguments 3 and 4. In the general case, we write a kind of statement (i.e. a form) in DESIGNER

using the format;

(FUMCTION-NAME ARGUMENT ARGUMENT...)

where capitalized words represent the denotation intended of data in those relative positions within the
call. An ellipsis (...) indicates zero or more items of the same kind as that immediately preceding it.

Thus we could generalize (+ 4 5) as:

(ARITH-OP NUMBER. ..}

where ARITH-OP stands for any arithmetic operator and NUMBER. .. stands for a sequence of at least

one number!.

Comments in Scheme are started by a semicolon and continue to the end of the line.

14.2 Creating Objects

Objects in DESIGNER are representations of objects as defined in HM. A DESIGNER object is a passive
store of attributes; this treatment is in keeping with the selected message-passing mechanism (see Section

14.6. below), the general philosophy of the functional paradigm, and the definition of objects in HM.

There are three ways to create new objects in DESIGNER. The first is through the use of gen-object:

(gen-object)

'In Scheme, arithmetic operators can take any number of arguments; for example (+ 2) simply retums 2, and (+ 3 4 5
6) returns 18,
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This is the most primitive object-forming function. It returns a new, empty data structure representing
an object. The object has no attributes, will respond to no messages, and is in no way related to any
other object. At the user’s level, this function is of little use: however, it is at the heart of all other more

sophisticated object-forming functions.

An object is implemented as a vector® containing (a) a list of the objects attributes, (b a list of the object s
parents, and (c) a list of constraint relationships between attributes in that object. The notions of parents

and constraints will be discussed below.

Secondly, existing objects can be cloned to form new ones using the form:

(clone OBJECT)

The argument of clone may be any object. A clone has all the attributes of its parent, the object from
which it was cloned. The parent is the prototype for the new object. The attributes of the new object
are automatically initialized to have values cqual to the values of the parent’s attributes. The parent/child
relationship between an object and its clones is similar to the relationship between classes and instances in
languages like SMALLTALK-80, in that the parent provides the information needed to deling the structure
of the child. Cloning is generally not intended for the user, but can be utilized in creating hicrarchies ol

objects and quickly creating copies of objects.

The third way to create objects is with the new form:

(new PARENT-SPEC ATTR-SPEC INIT-SPEC)

Because DESIGNER is a prototype-based language without the notion of object classes, new provides the
functionality to instantiate existing prototypes as well as the functionality to create new prototypes. It re-
places both the class instantiation and subclassing mechanisms in conventional object-oriented languages.

It is noted that new satisfies the axiom of specialization in HM,

PARENT-SPEC is either a single object or a parenthesized list of objects that will be the parents of

the new object. The set of attributes of the new object is the cartesian product of the attribute sets of its

25cheme vectors are fixed-length sequences whose values are indexed much as one-dimensional arrays are accessed. Fur-
thermore, the elements of a vector may be arbitrary Scheme objects, including numbser, strings, functions, etc.
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parents. Since an object can have more than one parent, DESIGNER provides a kind of multiple inheritance.
However, the axiom of specialization in HM restricts objects to be formed only by a union operation of
disjoint parent objects; that is, the parents of an object cannot share attributes.

Other attributes not available in any of the parent objects can be defined by means of ATTR-SPEC, a list
of attribute specifications. If no extra attributes are needed to define a new object, an empty list, (), must
appear as the second argument of new. The exact syntax of attribute specifications is described in the

next Scction.

Finally, INIT-SPEC is a scquence of forms providing initial attribute values. The syntax of an

INIT-SPEC fom is:

(ATTRIBUTE-NAME INITIAL-VALUE)

where ATTRIBUTE-NAME is the symbol by which a particular attribute is identified, and INITIAL-VALUE
is a DESIGNER form that is cvaluated to provide the initial value of that attribute. Only those attributes for

which default values are insufficient need be initialized; default values are taken from the parents of the

new object.
All constraints are checked before a final value is retumned from new.
Finally, some general remarks regarding these forms are in order.

Identity of objects is based on the corresponding axiom in HM (axiom 3). To be exact, two objects
are identical if the sets of attributes of the objects correspond, and if the values of the members of each

corresponding pair of attributes are equal.

All the object-forming functions described above permit at most the addition of attributes to objects; no

facility is currently provided for the removal of attributes.

A clone keeps track of all of its parents. The sequence containing all parents of an object, all parents of
the parents, and so on, is called the lineage of an object. Any object occurring in the lineage of an object
is referred to as an ancestor of the object. Information regarding parents of objects is important for two
rcasons. First, it is used to create attributes in cloned objects, thus defining object stare. Second, it permits
sharing procedural information between objects of similar kinds: since an object knows what objects it

descends from, it can behave like its parents.
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The author has found that a prototype-based approach can also capture the conventional notion of object
classes. In fact, the definition of a class-like object using only the low-lcvel functions provided by
DESIGNER's prototype system has been successfully implemented. This supports the notion that the
prototype-based approach is at once more general than, yet as cqually expressive as, the class-based

approach of languages like SMALLTALK-80.

14.3 Attributes

Attributes in DESIGNER are constrained values stored in objects. The constraints limiting the types of
values an attribute can have are referred to as domain constraints. Examples of domain constraints
include integer? and Cuboid? which are unary predicates that return True only if their arguments
are integers or “Cuboids”, respectively. The domain of an attribute in DESIGNER is the set of values
that satisfies the attribute’s domain constraint. Attributes are identified by a name unique among all the

attributes of an object.

Attributes are added to objects when they are created, using the new form introduced above. Attributes

are defined within new by giving a specification of its component parts using the syntax:

(NAME DOMAIN INITIAL-VALUE)

where NAME is the name by which the attribute shall be identified , DOMAIN is a unary predicate defining
the domain constraint, and INITIAL-VALUE is an optional initial value. If the initial value is omitted,
the attribute is given the value no-val, a special symbol in DESIGNER indicating no assignment has
been made. no-val satisfies any constraint in DESIGNER, and is intended to differentiate between object
creation and assignment of values to object attributes. Such a distinction is important because a user will
often know that a certain object will be used, but may not a-priori know exactly what the specific nature

of the object will be [2].

When an attribute is defined, DESIGNER automatically defincs a query function, used to query the attribute
for its value, and a setter function, used to set its value. The syntax of these two kinds of functions is

given as:

(QUERY-FN OBJECT)
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{SETTER-FN OQBJECT VALUE)

A query function takes an object as its single argument and retums the current value of the corresponding
attribute in that object. A setter function takes an object and a value as its arguments and assigns the value
10 the corresponding attribute in that object. Assignment occurs if the domain constraint is satisfied; if a

domain constraint violation occurs, an error message is displayed and no assignment occurs.

The names of query and sctter functions are based on the name of the attribute. For example, creating an
attribute named length causes the creation of a query function named ?length and a setter function
named length:. ?length and length: will function correctly for all objects with an attribute
named length, and are created only once. This convention does not clash with Scheme’s convention of
naming predicates with a trailing question mark, yet provides sufficient connotation to make the meaning
of these functions clear.

The query and setter functions of an attribute are representative of the attribute itself; the implementation

of attributes in DESIGNER is not visible to the user. From the user's point of view, these functions are the

attribute. Thus we are taking advantage of the semantic data model's notion of attributes as functional

mappings between objects.

We note finally that the setter function makes use of the set ! primitive in Scheme to alter the state of
an attribute in an object. The author feels justified in this “corruption” of the functional paradigm insofar
as attribute state is strongly encapsulated within objects; the side-effects are therefore controlled by the

semantics of the setter function and beyond the reach of other objects and the user.

14.4 Constraints between Attributes

Domain constraints on single attributes are defined via domain predicates. Constraints can also be imposed
between many attributes in a given object. These constraints are referred to as object constraints, and are

defined using the following form:

(constrain OBJECT ((NAME...) FORM...) ...}
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where OBJECT is the abject to be constrained, (NAME...) is a list of the attribute names involved in
the constraint, and the remaining forms FORM. .. arc the body of the constraint, the evialuation of which
should return a boolean value. To facilitate adding many constraints to a single object, more than one

constraint can be given in each constrain fomm.

Object constraints in DESIGNER arc passive structures. That is, if a constraint is evaluated and found
to be not satisfied, DESIGNER will signal this fact to the user, but will not attempt to aiter the model in
order to satisfy the constraint. The author reasons that the responsibility of such alterations should fall on
either the user or some software system of a higher level than DESIGNER (c.g. a expert system, ncural net,
or other knowledge-bascd controlling system). DESIGNER is meant only to capture design information
statically; it is not a goal-oriented manipulatory system. Put another way, DESIGNER is intended to answer

the question What is this design? rather than How was this design created?

A particular object constraint is checked whenever an assignment is attempted to any attribute involved
in the constraint. However, the assignment occurs whether the object constraint is satisficd or not. This
is acceptable due to the exigencies of design. It is often the case that in the course of a design process,
various constraints may not be satisfied. This is quite normal in design [2] and does not necessarily mean
the design is inadequate. It may be that the constraints or the design problem itsclf arc not well-posed.
That is, in design, the model of the artifact evoives as design proceeds, and it is normal for there (o be
instants when the model is inconsistent. These are not, and should not be treated as, fatal errors, but rather

as intermediate steps.

14.5 Function Overloading

In Scheme, one may create and use a function without assigning the function a particular name. Such
functions are called anonymous functions. Overloading of function names is achieved in DESIGNER by
grouping a number of anonymous functions in a list accessible only to a special, generic function. Various
definitions of the terms “overloading” and “‘generic functions” have been suggested in the litcrature
(e.g. [197,198,210,211]). Here, we use the term “overloading” 10 denote a language symbol that
has multiple, non-exclusive definitions, and “‘generic function™ to denote a function that can operate

successfully on a number of different types of objects, where object types are defined by their ancestry.
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In order 1o distinguish between different anonymous functions bound to the same generic function, cach
anonymous function has associated with it a signarure indicating the number of parameters required by tae
anonymous function and a (possibly complex) predicate that is true only for sets of actual parameters tha
arc acceptable for that anonymous function. The generic functicn is bound to a user-supplied name. When
a generic function is called (by referring to its name), the actual parameters are compared by the system
to the signatures attached to cach anonymous function. The first anonymous function with a signature

matching the actual parameters is applied (o those parameters, and the resulting value is returned.

Generic functions are created in DESIGNER using the overload form:

{overjoad NAME ((ID...) (PREDICATE...) FORM...) ...)

where NAME is the symbol to be overloaded as a generic function, (ID...) isalistof formal parameters to
be used in the definition of a particular anonymous function, and (PREDICATE... ) is alist of predicates
that, together with the list of parameters (ID. .. ), form the signature of the anonymous function. FORM. ..
is the body of the anonymous function. To facilitate writing many overloadings of a single symbol at

once, overload can accept many anonymous function definitions.
By convention, names of generic functions begin with a colon (e.g. : volume).

Generic functions combined with object lineage information permit the sharing of functions that act on
objects (i.c. methods in conventional object-oriented languages). A signature may contain a predicate
that checks for membership of an argument in the lineage of an object. This is equivalent to the IS_A
relationship in HM and implies that the child object inherits from its parent. Thus, we can cause different
behaviors in generic functions depending on the ancestry of its arguments. Examples are given in the next

Scction that demonstrate how this rrechanism is similar to polymorphism in conventional object-oriented

languages.

14.6 Message Forms

This author has found that the canonical message passing protocol lends itself well to implementation in
a functional environment, especially if generic functions are used. It also maintains a single, consistent

syntactic convention for the expression of both function calls and messages. Although classical message
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passing had been implemented in earlier versions of DESIGNER, the canonical form is found to be casier

to implement, much more efficient. and has led to a much more usable system.

The canonical form diminishes the importance of inheritance and/or delegation. This is because it
establishes methods to exist outside objects rather than to be part of them. Nonetheless, the ultimate goal
of inheritance and delegation — the sharing of behavior (actions) between objects without requiring the

existence of object classes or other higher-order structures — is achieved.

14.7 Intentional Versus Extensional Attributes

In DESIGNER, we distinguish between extensional and intentional attributes. An extensional attribute is
one that has an actual value assigned to it, whereas the value of an intentional attribute is derived {rom
the values of other attributes. Extensional attributes are static; that is, their values are not procedural,
They are stored within objects themselves and are representative of the state of the object. Intentional
attributes, however, are procedural (active) in nature. Messages implemented with generic functions

capture intentional attributes. Examples of this are given in the next Section.

The author notes that it is not always obvious whether a particular property of a design entity should be
modeled with an extensional attribute or an intentional attribute. The criteria for making this decision
are bound up in the requirements of the design process used, and can vary widely. For example, if the
weight of a particular component is to be constrained, it may be preferable to model the component’s
dimensions extensionally, and its volume intentionally. However, if the constraint is based on a restriction
of space that the component may take up, then it may be preferabie to model its volume extensionally and
its dimensions intentionally (e.g. as parameterized functions of the volume). This indicates a relationship
between constraint and attribute specifications. An in-depth study of this relationship is deferred for future

work.

14.8 Summary

In this Chapter, the author has introduced the principal notions and syntactic forms of DESIGNER, a com-

puter programming language that combines object-orientation in a functional programming environment
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such that the axioms of HM are satisfied. In this way, continuity of formal rigor is maintained from
the logical aspects of HM through to the implementation of DESIGNER itself. Though unconventional in
some regards, the DESIGNER language provides a numberof mechanisms for the direct modeling of design

information in a concisc manner.
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Chapter 15

Examples

DESIGNER is an extension of the Scheme programming language, providing a prototype-based object
system. A signature-based. canonical message-passing mechanism permits overloading of function
names. Thus, DESIGNER objects satisfy the axioms of HM while also providing certain very convenient

programming mechanisms to increase usability and efficiency.

In addition to the actual object-oriented extensions of Scheme, DESIGNER also includes a library of
generally useful objects. The library can be expanded by the user. Information used to generate some of
the algorithms implemented in DESIGNER and in the prototype library was taken from [212-215]. The

complete source of DESIGNER and of the prototype library is given in the Appendices.

15.1 Simple Examples

A simple example of the definition of two object prototypes is given in Figure 15.1.

The first statement in the example defines Cuboid to be an object. It is generated by specializing a single
object, Object, defined within DESIGNER as the root parent of all other objects. The statement is not
a message because it acts on objects. It is taken as a convention in DESIGNER that objects intended to
be used as prototypes have capitalized names (e.g. Object, Cuboid) while other objects have names

consisting entirely of lower-case letters. This rule is not enforced by the syntax of DESIGNER, but is used

134
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(define Cuboid
(new Object
{(#x number-gt0? 1)
(y number-gt0? 1)
(z number-gt0? 1))))
(make-type-predicate Cuboid)
(define Sphere
{new Object
((radius number-gt0? 1})))
(make-type-predicate Sphere)

(overload :volume (({(s) ((Sphere? s)) (* {/ 4 3} Pi (** (?radius s) 3)))
{{c) {({(Cuboid? c)) (* (?x ¢} (2y ¢} (?z c))))

Figure 15.1: Definition of two Objects.

only to improve readability.

Three extensional attributes are then added to Cuboid, named x, y and z, representing the dimensions of
the entity. All three attributes are constrained to be numbers greater than zero by the domain specification
number-gt0? (assuming we accept a physical dimension to be positive and non-zero). A default value

of 1 is assigned to each attribute.

The second statement, (make-type-predicate Cuboid), creates a predicate Cuboid? that
takes a single argument and returns True or False, depending on whether the argument is an object and an

ancestor of Cuboid.

In the example, a Sphere object is also defined, as well as a predicate Sphere?. Sphere has one
attribute representing a radius.

Next, the symbol : volume is overloaded for both Cuboids and Spheres. It accepts a single argument
descended from either Cuboid or Sphere, calculates the volume of its argument, and retums this
value. This means that any object cloned from Cuboid or Sphere is a valid argument. :volume
is an example of an intentional attribute; that is, an attribute defined as a function of other attributes.
Representing intentional attributes as functions assures that the values of these attributes will always

reflect the most recent values of the attributes upon which they depend.

Domain constraints on extensional attributes are checked only when new values are about to be assigned

to the attributes, since assignment is the only operation that can change their values. If the new value does
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not satisfy these constraints, the assignment does not occur and an error is signalled.

Constraints may also be imposed between attributes in an object. For example, if we wished to constrain
the Cuboid object such that its y dimension is always twice its = dimension, we could write a constraint

as in Figure 15.2.

(constrain Cuboid (ix y) (=¥ (* 2 x)})))
Figure 15.2: A constraint on Cuboid.

This object constraint will automatically be checked cach time an attempt is made to assign values to
either the z or y dimensions of Cuboid or any object cloned from Cuboid. However, as discussed in

the previous Section, violation of object constraints does not prevent assignment from occurring.

Constraints on intentional attributes are represented differently. Since intentional attributes do not have
explicitly defined values and are represented by functions of objects, constraints on these attributes occur
at a different level of abstraction. For example, if there were a circumstance that required constraining a
Cuboid-like object so that its volume were not to exceed 100 units, we could use forms similar to those
in Figure 15.3.

(define Thing

(new Object
{ (box Cuboid?)

{max-vol number? 100))))

{constrain Thing ((box max-vol) (<= (volume box) max-vol)))
Figure 15.3: Example of constraint on intentional attributes.

This restriction on the formation of constraints on intentional attributes is reasonable because such
constraints arise from the interaction of objects (design entities) with their environment, i.c. other objects
with which they interact. In the example, the maximum volume is not a component of our model of
cuboids. It is inappropriate, then, to embed such constraints within an object when they in fact model

relationships between (possibly) many objects.

Atany time, the constraints on an object may be checked with the function check-object ~-constraints,

which takes an object as its single argument, and retumns a boolean value indicating whether the constraints
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on the object’s attributes are satisfied or not.

(define box (new Cuboid () (x 3) ly 6) (z 5)))

(?% boz) = 3

{:volume box) = 90

(define ball (new Sphere (r 5)))

(:volume ball) = 523.5987756

Figure 15.4: Examples of DESIGNER queries and messages.

Figure 15.4 shows examples of DESIGNER queries and messages. The text following the => symbol shows
the return value when these statements arc evatuated. The first statement defines a new Cuboid object

whose dimensions are initialized to 3, 6 and 5 respectively.

The second statement in Figure 15.4 is (?x box). This is a query for the value of the attribute called x

in object box. It returns the value 3.

The third statement shows the retrieval of the current value of an intentional attribute of box: its volume.
This is actually a message, though in form it appears the same as a function call. Because its single
argument is a descendant of Cuboid, the anonymous function within : volume that retumns the volume

of Cuboid objects is evaluated.

It is noted that Cuboid and box are both objects, and that there is no essential difference between them.

In particular, either one may be used as a prototype for the generation ¢f other objects.

We then create a new Sphere object, named ball, with a radius of 5 units. The volume message is
then evaluated again. But because its argument descends from Sphere this time, a different anonymous

function is evaluated.

DESIGNER's ability to define functions that act differently depending on their arguments is similar to
polymorphism and dynamic binding in class-based, object-oriented languages. In the terminology of
these more conventional languages, we would say that volume is a message accepted by instances of

both Sphere and Cuboid classes, but implemented by different methods in each class.
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15.2 Multiple Inheritance

DESIGNER supports a form of multiple inheritance. Objects may inherit from more than one parent object,
but none of the parents may share attributes; that is, the sets of attributes contributed by cach parent must
be disjoint from the sets of attributes of all other parents. This restriction is imposed by HM to maintain
its logical validity. Other object-oriented languages have attempted to support multiple inheritance of
overlapping parents or classes, but none has succeeded completely. Indeed, the author considers the
problematic nature of managing overlapping parents and classcs in inheritance to be a clear indication of
inconsistency, and prefers to restrict the possible kinds of relationships that can be specified for the sake

of formal rigor.

In order to introduce the notion of multiple inheritance as supported by DESIGNER, we include a small
example based on an example in [210, 216] which deals with the conceptual modeling of vehicles,
machines, and automobiles. Figure 15.5 gives both a graphical depiction of the model and thc DESIGNER

forms used to implement the appropriate prototypes.

In the example, Automobile inherits from both vehicle and Machine. The last three forms are

queries demonstrating that the attributes of both parents have been passed on to Automobile.

Although one may question the validity of modeling an automobile as in this example, it is used here only
to demonstrate the straight-forward nature of the multiple inheritance mechanism provided by DESIGNER.
The validity of using multiple inheritance as in this example is in itself worthy of study; however, we

defer such discussion since it does not bear directly on the subject at hand.

15.3 Mimicry of Classes

Another example indicating the flexibility of DESIGNER involves the generation of a class-like object as
might be found in other object-oriented languages (such as SMALLTALK-80). The implementation of this
object requires the use of the low-level functions of DESIGNER and is less than 70 lines of code. A simple

example of its use for queue objects (first-in, last-out lists) is given in Figure 15.6.

The example demonstrates that the distinction is made between classes (e.g. Queue) and instances (e.g. @,
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Vehicle achine
speed fuel
Automobile
speed
fuel

(define Vehicle
(new Object
{ (speed number? 0))}))

(define Machine
{new Object
{ (fvel symbol? no-val})))

{detine Automobile
({new (Vehicle Machine)))
(fuel: Automobile ’gasoline)

(?speed Automobile) = 0
(?fuel Automobile) = gasoline
(?fuel Machine) = no-val

Figure 15.5: An example of multiple inheritance in DESIGNER.
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(new-class Queue () (lst () ‘()})
(overload push ({g v} ({Queue? q)) (lst: g (cons v (21lst Qi)
(overload pop ((q) ({(Queue? q))

(if (not (?lst q)) (error ‘pop *queue is empty.*))

{let ({r (car (?lst @)
{lst: q (cdr (?lst qiny

riil
(overload as-list ({g) ({Queue? q)) (?lst q)))
{class? Queue) = true
(instance-variables Queue) = (lst ())

(define q (instance Queue))

{instance? q) = true
(class? q) = false
{is-a q) = Queue
(push q 1)

(push q 2)

{push q 3)

(as-list q) = (1 2 3)

Figure 15.6: Example of use of DESIGNER Class object.

and that the important relation is-a correctly returns the class of an instance. Also, in the new-class
form, the first empty parentheses are for a iist of (possibly many) superclasses, thus providing support for

multiple inheritance. In this particular example, no superclasses are specified.

15.4 Preliminary Design/Synthesis — Four-Bar Linkage

This Section describes a more complex example of the kinematic synthesis of a four-bar linkage given

three precision points. The three point synthesis technique used here is taken from [34], pages 103-110.

Figure 15.7 presents a schematic representation of the geometry of the four-bar linkage with various
objects labelled, and a single link with its various parts labelled. The objects themselves are discussed

below.

The four-bar linkage is modeled as an object (4bar, see Figure 15.8) with five attributes. base-a and

base-b are the base connections of the driver and output links respectively. The attributes input,
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Figure 15.7: Schematic geometry of 4bar and Link objects.
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coupler and output model the three moving links of the mechanism,

(define 4bar
(new Part

{{base-a Coord?)
(base-b Coord?)
(input Link?)
(coupler Link?)
(output Link2))))

(make-type~predicate 4bar)

Figure 15.8: Definition of four-bar linkage object.

Our definition of 4bar depends on three other objects: Coord, Part and Link. These objects are
prototypes defined in the DESIGNER prototype library. Coord models 3D points. Part rcpresents
mechanical parts; descendants of Part may be components or assemblics, and are aggregates of other
objects modeling a physical part’s geometric and physical properties (i.c. material type, etc.). Link is a
specialization of Part specific to the development of the four-bar linkage model, and is defined in Figure
15.9.

{define Link
(new Part
{(c-length number-gt0? 1)
(shaft Part?)
{joint-a Parc?)
(joint-b Part?))}))
{make-type~predicate Link)

Figure 15.9: Definition of Link objects.

The geometry of Link is a complex one which could be based on a solid model. Its attributes include a
shaft and two joints. The joints are used to connect links to one another. In addition, Link has one other
attribute: a characteristic length that represents the distance from one joint of the link to the other. It is
used as a constraint on the geometry of the link and is generated as part of the solution of the three-point
synthesis technique. The values of the shaft and joint attributes are no-val by default; as the actual
geometry of individual links is defined, we can add constraints to Link that will assure that the geometric
properties of the shaft and joints maintain a relationship defined from the synthesis method via the

link’s characteristic length (see Figure 15.10).
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(constrain Link ({c-length shaft joint-a jeint-b)
(:= c-length
(:~ !:intersect (?axis joint-b) (?axis shaft))
(:intersect (?axis joint-a) (?axis shaft))))))

(make-constructor Link (cl) (new Link () (c-length cl}))

Figure 15.10: Geometric constraints for Link objects.

The definition of Link introduces a new DESIGNER function, make-constructor. This function is
meant for convenience and creates a constructor function that facilitates the instantiation of prototypes.
In this case, make-constructor will create a function @Link that creates a new Link object and
uses its single argument to initialize the link's characteristic length. Many, though not all, prototypes in

DESIGNER have constructors defined for them.

The three-point synthesis technique is implemented in DESIGNER as a method activated by the message

(3pt-synthesis ...) and is given in Figure 15.11.

A detailed explanation of the 3pt-synthesis method is unnecessary here. Essentially, the technique
uses various angular and linear displacements of the four-bar linkage through the three prescribed points
to generate enough information to create a new 4bar object that satisfies the input parameters. A series
of examples taken from [34] were used to test the algorithm; our results were numerically identical to
those given in the reference. The heart of the method is the last form, (new 4bar ...), which actually

creates a clone of 4bar and retums it.

The author notes that the 3pt -synthesis method is not covered explicitly by HM itself because it is
a procedural component of design; it is included here as a vehicle by which design models created with

DESIGNER can be directly manipulated to perform useful design operations.

This representation of a four-bar linkage is a parameterized model suitable for a number of purposes. If,
for example, a kinematic analysis of the four-bar linkage were to be performed, the 4bar object could be
extended to capture the information needed to constrain the components of the four-bar linkage assembly.

These constraints can be specified in DESIGNER with the forms in Figure 15.12.

Thr: base points base-a and base-b are not considered part of the geometry of the linkage itself, but

rather components of constraints placed on parts of the geometry. Specifically, the ends of the input
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{overload 3pt-synthesis
((D2 D3 phi2 phi3 gammal gamma3 psi2 psi3)

( {Complex? D2) (Complex? D3} {(number? phil2) (number? phi3)
{number? gamma2) (number? gamma3) (number? psi2) {number? p=il3))

(let ((Cphi2 (@Complex {(cos phi2) (sin phi2)))
(Cphi3 (@Complex (cos phi3) (sin phi3)))
(Cgamma2 {Q@Complex (cos gammal) (sin gammaz2)))
(Cgamma3 (@Complex (cos gammal) (cin gamma3l)))
(Cpsi2 (@Complex (cos psi2) (sin psi2)))
(Cpsi3 (@Complex (cos psi3) (sin psi3ij})

(21 no-val) (Z2 no-val) (23 no-val)
{24 no-val) (25 no-val) {26 no-val))

(set! Z1 (/ (- (* D2 (- Cgamma3 1)) (* (- Cgamma2 1) D3))

(- (* (- Cphi2 1) (- Cgamma3 1)) (* (- Cgamma2 1) (- Cphil 1))))
(set! Z2 (/ (- (* (- cphi2 1) D3) (* D2 (-~ Cphi3 1}))

(- (* (- Cphi2 1) (- Cgamma3 1)) (* (- Cgamma2 1) (- Cphil 1})))
(set! Z3 (/ (- (* D2 (- Cgamma3 1)) (* (- Cgamma2 1) D3})

(- {(* (- Cpsi2 1) (- Cgamma3 1)} (* (- Cgamma2 1} (- Cpsi3 1))))
(set! 24 (/ (- (* (- Cpsi2 1) D3} (= D2 (- Cpsi3 1)}]

(- (* (- Cpsi2 1) (- Cgamma3 1)) (* (- Cgamma2 1} (- Cpsil 1})))
(set! 75 (- 22 Z4))
(set! 26 (- (+ 21 25) Z3))

(new 4bar (base-a (2Coord 0 0 0))
{(base-b (@Coord (?real Z6&) (?imag Z6}) (z 0))
(input (@Link ({(magnitude Z1})
(coupler (@Link (magnitude Z5))
(output (@Link (magnitude Z3)1})))}) 1))

Figure 15.11: Three point synthesis method.
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leonstrain 40ar
{{base-a input)
(:lomate input (lambda (p o}
tand {= (?% p) (?x base-a))
(= {2y p) (?y base-al}
(= (?z p) (22 base-a3)}))))
{(input coupler)
{:locate coupler (lambda (p o)
fand (= (?x p) (?=-length input))
(= (?y p} 0) (= {2z p) 0)))
input))
((coupler autput)
{:locate output (lambda (p o)
tand (= (?x p) (?c-length coupler))
(= {(?y p) O} (= (2z p) 0)))
couplery)
((output base-b)
{:locate output (lambda (p o)
fand (= {?x p) (?x base-b))
(= (?y p) (?y base-b))
(= (?z p) (?z base-b)))})))

Figure 15.12: Kinematic constraints for 4bar objects.

and output links of the four-bar linkage are constrained to remain at the coordinates defined by the base
points, though they are free to rotate, and successive links in the linkage are similarly constrained. In
the constraint specification, base-a, base-b, input, coupler and output refer to attributes in
a 4bar object; :locate is an overloaded message to any Part that takes two or three arguments.
The first argument is an attribute whose value is to be spatially constrained. The second argument is a
function definition (a lambda form) that specifies the nature of the constraint, and takes two arguments: the
position and orientation of the attribute to be constrained. The optional third argument is another attribute
in whose coordinate frame the spatial constraint is to occur. The representation of spatial coordinates with
respect to non-global coordinate frames is reminiscent of the relative coordinate formulation of variational
solid modeling taken by Fogle [75]; in that work, it is demonstrated that the use of relative coordinate
frames can simplify the specification of spatial relationships. The current work with DESIGNER appears

to corroborate Fogle's findings.

The first constraint is between the base point base~-a and the input link: : locate is used to constrain
the position of input to map exactly to the position of base-a. The second constraint is between the

input and coupler links, and constrains the origin of coupler to be at the end of input opposite
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where input is attached to base-a. In this case, the constraint is defined with respect to the coordinate

system of input. The other constraints are similarly defined.

The 4bar object defined herein models a four-bar linkage that satisfes the input data at an abstract,
conceptual level. Although the actual shape of the links has not been defined, their one essential property,
their characteristic length, has been captured. The value of these attributes become constraints on the

actual geometries of the links.

This example demonstrates that DESIGNER is capable of more than just modeling design artifacts
themselves; it provides the means to capture information about the entire design. For example, the
3pt-synthesis method defines a relationship between the functional requirements of a four-bar link-
age, and the key design parameters that define the physical solution. This indicates that DESIGNER can
represent the relationship between functional requircments of a design problem specification ¢nd the
physical parameters that define a solution. Specifications expressed as generic functions acting on objects
define relationships between the requirements of a design artifact and the objects themselves capture key
design parameters that define the physical solution. This indicates that DESIGNER can represent the rela-
tionship between functional requirements of a design problem specification and the physical parameters

that define a solution.

15.5 Itierarchical Organization — Thermal Analysis of a Wail

This final example shall focus on the organization of design information with DESIGNER. Specifically,
we shall present (a) a parameterized riodel of a wall, and (b) a representation of steady-state heat flow
for the wall model. This example is inspired by the material in [97]. It is noted here at the outset that
the model presented below is not the only way one could represent a wall in DESIGNER; this particular
model was chosen because (a) it matched the author’s cognitive mode! of walls and (b) it is sufficient for

demonstration purposes in this document.

Throughout the following text, the reader may refer to Figure 15.13; this figure depicts graphically the

structure of the wall model, including all objects as well as all inheritance and aggregation relationships.
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Figure 15.13: Inheritance/Aggregation Network for Wall Example.
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15.5.1 Structural Modeling Considerations

There are two important aspects that must be considered to gencrate a useful model of a wall: its gcometry

and its composition.

The width and height of a wall are important in defining its relationship to other structural clements, but
are not essentially tied to its composition!. The constraints on wall width and height exist at the level of
assemblages of many walls and thus are beyond our single-wall model; so, from the point of view of this

example, height and width are arbitrarily defined values.

The thickness of a wall, however, must be treated differently because it depends on the wall’s composition.
A wall is composed of various layers, each serving a specific purpose - load bearing, insulation, covering,
and so on. Each layer is constrained according to the requirements of that particular wall, which in tum
constrains the wall's overall thickness. So though the height and width of a wall are arbitrary (from the

point of view of the wall model), its thickness is not.

Therefore, we will represent height and width as purely geometric extensional attributes and thickness as

an intentional attribute depending on the wall's composition.

15.5.2 Thermal Analysis Modeling Considerations

For the thermal analysis portion of this example, we will make use of the following physical relationships

(drawn from [97] and a standard thermodynamics text [214]).

The heat flow through a wall is represented approximately by:

0= ftﬁAT (15.1)

where AT is the change in temperature through the wall from the wamer side to the cooler side, ¢ and A

are the thickness and area of the wall respectively, and k is the thermal conductivity of the wall.

Furthermore, by analogy with electrical systems, we may define an overall coefficient of thermal conduc-

!For stress analysis and structural integrity, we would likely need to constrain the size of the wall based on its composition:
it must be able to carry its own weight, However, we are only interested in thermal analysis for this example.
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tivity, U, for a wall of many layers of constant area as:

1

= 15.2
v i ( )
where r; is the thermal resistance of the ith layer of the wall, defined by:
—s (15.3)

15.5.3 Definition of Wall Prototype Objects

We begin by defining a prototype for simple planar geometric Shape objects (Figure 15.14), with
attributes of height and width. Shape objects will be used to define the major components of walls.
The arca of these shapes will be of importance in the thermal analysis, so we include the definition of
an intentional attribute :area. Shape inherits from Geometry, an object defined in the DESIGNER
prototype library which models an arbitrary spatial object, providing a local coordinate irame for the

object and messages to perform various transformations.

({make-type-predicate Shape) ; abstract prototype
(define Shape
(new Geometry
((width number-gt0? 1)
{height number-gt0? 1}))))

{make-type-predicate Triangle) ; subtype for triangles
(define Triangle (clone Shape))

(make-type-predicate Rectangle) ; subtype for rectangles
(define Rectangle (clone Shape))

{overload :area
((t) ({(Triangle? t)) (* (?width t) (?height t) 0.5))
({r) ((Rectangle? r}) (* (?width r) (?height r))))

Figure 15.14: 2D Shape objects.

Next, we need to represent the notion of a layer of a wall. We shall assume that a single layer is composed

of a single material and is of constant thickness. Layer objects are defined in Figure 15.15. For the
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sake of the thermal analysis, we include a message definition for : therm-resist, which retums the

thermal resistance of a layer of a given thickness and material.

{make-type-predicate Laver)
(define Layer
(new Object
{(material Material?)
(thickness number-gt0? 1))))
({make-constructor Layer (m t) (new Layer () (material m) (thickness t})

{overload :therm-resistance
((1) ({Layer? 1)) {(/ (?thickness 1) (?therm-cond (7material 1)}}11}

Figure 15.15: Layer objects.

The Material prototype is defined in Figure 15.16; for brevity, we have included only onc necessary
property, thermal conductivity, and the few instances needed for this example. Thermal conductivity data

was taken from [214]. Numeric values are in SI units.

(make-type-predicate Material)
(define Material

{new Object (({therm-cond number-gt0? 1))))
{define brick,common (new Material () {(therm-cond 0.69)))
(define brick,face (new Material () (therm-cond 1.31)))
(define glass,window (new Material () {(therm-cond 0.78))
(define plaster,gypsum (new Material () (therm-cond 0.48)))
(define wood,pine,yellow (new Material () (therm-cond 0.147)))
(define wood,pine,white (new Material () (therm-cond 0.112)))
(define wool,rock (new Material () (therm-cond 0.039))
(define air (new Material () {(therm-cond 0.02624))) ; at 300K

Figure 15.16: Material Prototype and Instances.

In order to permit the creation of walls with more complex geometries than those described by Shape
objects, we define a segment to be an area-wise component of a wall. Segments will be defined with
Shape and Layer objects. We will also be able to use segments to define walls that have regions
composed of different layers. However, before we define a prototype to represent wall scgments, we
must consider one other compositional element of walls: openings. An opening is intended to generalize
the notion of passages through a wall. For this example, we will only consider doors and windows.

An opening exhibits the same properties as segments: they occupy a certain area, and are composed
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of pus-ibiy many layers (e.g. multi-paned windows). Since it is desirable to minimize the information
content of our model, we will begin by defining a WallAtom object that will capture those properties
common to both wall openings and segments (see Figure 15.17). It is noted that none of these prototypes
will use the Shape prototype defined above for planar shapes. WallAtom and its descendants are used
10 capture information specific to walls other than their shape. We will, however, make use of the Shape
prototype later.
(make-type-predicate WallAtom)
(define WallAtom (clone Object))
{overload :thickness

({a) ((WallAtom? a))

(apply + (foreach-attribute a Layer? ?thickness))))

{overload :therm-cond

({a) ((wWallAtom? a))

(/ 1.0
(apply + (foreach-attribute a Layer? :therm-resistance)))))

Figure 15.17: Atomic wall components for openings and segments.

The :therm-cond message calculates the overall coefficient of thermal conductivity of aWwallAtom
according o the mathematical model in Section 15.5.2. The instances of foreach-attribute
gathers all attributes in WallAtom objects that are Layers, applies a function to them (?thickness
and :therm-resistance respectively), and retums the list containing the results of the function
applications.

Now we can use Wa 1l 1At om to define prototypes for wall openings and segments. The only real distinction
between openings and segments is that segments may contain openings, but openings cannot contain other
openings (i.e. a window cannot have another window as a component).

{make-type-predicate Opening)

{define Opening {(clone WallAtom))

{overload :spec-heat-flow
({o) ((Opening? o)) (* (:therm-cond 0) (:area ©0)))

Figure 15.18: Prototype for wall openings.

First, we define an Opening object in Figure 15.18. The specific heat flow of an Opening is de-
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fined as the rate of heat flow per degree of temperature, and is represented by the intentional attribute

:spec-heat-flow.

(make-type-predicate Segment)
{define Segment (clone WallAtom))

(overload :opening-area
{{s}) {({Segment? s))
{apply + (foreach-attribute s Opening? :areal))))

;:: wall segment area = total area - opening area
{overload :segment-area
{{s) ({Segment? s)) (- (:area s) {:opening-area s)))!

{overload :spec-heat-flow

((s) ((Segment? s))
{+ (apply + (foreach-attribute s Opening? :spec-heat-flow))
(* (:therm-cond s} (:segment-area s)))))

(overload :heat-flow
({s dt) {({(Segment? s) {(number? dt))
{* (:spec-heat-flow s} dt)))

Figure 15.19: Prototype for wall segments.

Second, we define a Segment object in Figure 15.19. Inthis case, we differentiate between the total arca of
the wall segment, the area of all the openings (represented by the intentional attribute : opening-area)
and the area of actual wall material (represented by the attribute : segment -~area). The specific heat
flow (: spec-heat - £ low) of a segment is the sum of the specific heat flows of cach opening and the
specific heat flow of the rest of the wall. We finally define the attribute : heat -£1low to calculate the

actual heat flow through a given Segment for a given temperature difference.

Next, we shall specialize Opening for both doors and windows. First, we define Door in Figure
15.20. Door inherits multiply from both Opening and Rectangle: the former provides those aspects
that represent design intent and function (at least, insofar as thermal analysis is concerned) as well as
composition, whereas the latter provides those aspects representing its other geometric characteristics.
The @Door constructor (created by make-constructor) simplifies the creation of single-layercd
doors. If some particular door has more than one layer (unlikely though that might be), it can be created

using new.

Various prototypes are created for different kinds of windows in Figure 15.21.
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(miske-type-predicate Door)

{eh«fine Door (new (Opening Rectangle)
((layer Layer?))))

(make-constructor Door (m w h t)

{new Door (}
(layer (new Layer () (material m) (thickness t)))
(width w)
{height h)))

Figure 15.20: Prototype object for doors.

(make-type-predicate Wdw)
(define Wdw (clone Opening))

(make-type-predicate Wdw,1lPane}
(define Wdw, 1Pane
{new Wdw
({(pane Layer? (new Layer () (material glass,window)))})))
{tnake-constructor Wdw,1Pane (t)
{let ((w (clone Wdw,1lPane)))
(thickness: (?pane w) t)
w})

(make-type-predicate Wdw,2Pane)
(define Wdw,2Pane

(new Wdw
((panel Layer? (new Layer () (material glass,window)))
(gap Layer? (new Layer () (material air))
(pane2 Layer? {(new Layer () (material glass,window))))))

(make-constructor Wdw,2Pane (t-panel t-gap t-pane2)
{let ({w {clone Wdw,2Pane}}}
{thickness: (?panel w) t-panel)
({thickness: (?gap w) t-gap)
{thickness: (?pane2 w) t-pane2)
w))

(make-type-predicate Wdw, 1Pane,5)
(define Wdw,1Pane,5 (@Wdw,1Pane 0.005})

(make-type-predicate Wdw,2Pane, 5-4-5)
(define Wdw,2Pane,5-5-5 (@Wdw,2Pane 0.005 0.004 0.005))

Figure 15.21: Prototype objects for windows.
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We begin by defining a simple Wdw object, specialized from Opening. Wdw is then specialized into
single-paned (Wdw, 1Pane) and double-paned (Wdw, 2Pane) types. In both cases, glass is used as the
material for the panes, and in the case of Wdw, 2Pane. the interstitial space contains air. Constructors
(@Wdw, 1Pane and @wWdw, 2Pane) are created for convenience. Finally, in the last four lines of Figure
15.21, two specific kinds of windows are created: Wdw, 1Pane, 5, a single-paned window with & 5
millimeter pane of glass; and Wdw, 2Pane, 5-4-5, a double-pancd window with two § millimeter panes

and a 4 millimeter air gap between them.

One last prototype nceds to be defined: the wall itself. Since all the important functions for thennal
analysis have been defined within Segment and Opening, the Wall object need not be much more
than an aggregate used to gather together various Segment objects. Wall is defined in Figure 15.22.
Our model provides intentional attributes for the overall arca of a wall (: area) and the total arca of all
openings in a wall (:opening-area). It also provides a message : heat -flow that calculates the

total heat flow through a wall for a given temperature difference.

(make-type-predicate Wall)
(define Wall (clone Geometry))

(overload :area
((w) {(Wall? w)) (apply + (foreach-attribute w Segment? :area)))}

(overload :opening-area
({w) ((Wall? w))
(apply + (foreach-attribute w Segment? :opening-area))))
{overload :heat-flow
((w dt) ((Wall? w) (number? dt}))

(* (apply + (foreach-attribute w Segment? :spec-heat-flow})
dt)))

Figure 15.22: Prototype object for walls.

15.54 Example of Wall Model Usage

We now present an example of the use of these prototypes to define a particular wall, and calculate the heat
flow through it. The sample wall will consist of two segments, a large rectangular segment containing a

window and a door, and a smaller triangular segment with no openings. Figure 15.23 defines these two
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segments, and the wall they compose.

(define seqgl
(new (Segment Rectangle) ; Segment #1
{{door Door? (@Door wood,pine,white 1 2 0.06))
(ww Welw? (new (Wdw,1Pane,5 Rectangle) ()
{width 1) (height 0.5)))
(outer Layer? {@Layer brick,face 0.1))
(core Layer? (@Layer wool,rock 0.1))
(inner Layer? (@Layer plaster,gypsum 0.01)))
{width 4) t(height 2.5)))
(define seg2 ; Segment #2
(new (Segment Triangle)
{(outer2 Layer? (@Layer wood,pine,white 0.005))
(outer Layer? (@Layer brick,common 0.1))
(core Layer? (@Layer wool,rock 0.1))
(inner Layer? (@Layer wood,pine,yellow 0.005)))
{width 4) (height 1.5)))
(define w ; The wall itself
{new Wall

{(sl Segment? segl)
(s2 Segment? seg2)l))

Figure 15.23: Two sample wall segments.

The rectangular segment, segl, is composed of three layers: an outer layer of brick, a central layer of
rock wool (for insulation), and an inner layer of plaster. The door is made of pine, and the window is
single-paned. The triangular segment, seg2, is composed of four layers: an inner pine layer, a central
layer of rock wool, and two outer layers, pine over brick. The wall object itself is just an aggregate of

the two segments,

Figure 15.24 shows three messages sent to the wall w, and the values retumed; the last query returns the

heat flow through the wall for a temperature difference of 20 degrees.

(;area w) = 13
(:opening-area w) = 2.5
{:heat-flow w 20) = 1712.55391900931

Figure 15.24: Messages sent to the sample wall.

We can then change the window in wall w to be double-paned, to see what the saving in heat flow will

be, if any. This is shown in Figure 15.25. We find that a double-paned window can greatly improve the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



overall thermal insulation of the wall.
(wdw: (?segl w) (new (Wdw,ZPane,5-4-5 Rectangle) ()

(width 1) (height 0.5)))

{:heat-flow w 20) = 213.064798857939

Figure 15.25: Altering the sample wall.

15.5.5 Observations

This example demonstrates the conciseness with which relatively complex models can be created. The
entire wall model as defined in this Section consists of less than 200 lines of code, and some of the model

prototypes (i.e. Material, Shape) could easily be re-used in many other applications,

Furthermore, because design intention is modeled in a relatively straight-forward manner, we conclude
that analysis of design entity models created with DESIGNER can accurately reflect on the adequacy of
our conceptual models of those entities. For example, both segments of the wall created in Figure 15.23
inherit multiply from Segment and from descendants of Shape (i.c. Rectangle and Triangle). It
is at this point that the geometric and compositional aspects of the mode! are combined. These aspects
are, insofar as we have defined them here, independent. Their combination has been deferred to the point
where it was absolutely necessary. We may have combined Shape and Segment objects carlier in the
development of the model, but this would have led to an increased number of prototypes (i.c. there would
have been prototypes for rectangular openings, rectangular segments, triangular openings, and triangular
segments). This approach would have introduced a great deal of redundant information that would have
made our model more difficult to comprehend. As well, the subsequent addition of other kinds of Shape
objects (e.g. Circle) would have required the addition of circular opening and segment prototypes o
maintain consistency with the rest of the model. But as we have done it here, we would only need 1o
define the Circle prototype and use it in the creation of various wall segments as required. Thus, an
analysis of the computational model of a wall in DESIGNER corresponds to an analysis of the conceptual
model underlying the computational one. Such analysis can improve our collective ability to perform

design.
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Chapter 16

Discussion

DESIGNER represents a new computational paradigm for engineering applications combining the advan-
tages of functional and object-oriented programming paradigms in a seamless and usable system. The
functional paradigm lets us use robust formalisms that ensure logical rigor of the resulting system, while
object-orientation gives us the ability to model complex entities and relationships directly. Semantic data

modeling provides a unique viewpoint on the nature of attributes.

DESIGNER largely satisfies HM. Since HM minimizes impedance mismatches with respect to the user’s
cognitive model of design information by means of its isomorphism (see Part III), DESIGNER also mini-

mizes impedance mismatches with respect to the user’s cognitive model.

DESIGNER is not intenued to manipulate data, satisfy constraints, perform analysis of design models,
or database management. It is a static data modeling language. However, because of Scheme’s meta-
circularity and its ability to operate with higher order functions, it is possible to extend DESIGNER to
include dynamic data modeling capabilities (i.e. the capability to operate on and otherwise manipulate

data as opposed to its specification).

Experimentation with DESIGNER has included three major examples to date. Firstly, a class-like object has
been successfully implemented using DESIGNER's low-level prototyping facilities. This implementation
captures all the basic properties of object classes as they are conventionally defined in languages such

as SMALLTALK-80. This indicates that our computational model is as expressive as models used by
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conventional object-oriented languages, yet simpler and more gencral than those models.

The second example is the four-bar linkage model. This example demonstrates DESIGNER's ability to
capture quite arbitrary design information, and that it is not restricted to modeling the design artifact atone,
but can include the artifact’s functional specifications and design intent (e.g. the relationships between
the specification of the design problem and its solution). The ability of DESIGNER to assist in modeling

design artifacts in the conceptual stages of a design process are also indicated.

Third, the example of structural and thermal modeling of walls demonstrates the abilities of DESIGNER and
its underlying formal models to capture detailed technical information as well as more general conceptual
information about designs. Also, the correspondence between DESIGNER computational models and users’

conceptual models facilitates the analysis of designs in general.

The current implementation of DESIGNER is quite compact. The object-oriented cxtensions to Scheme
that form the core of DESIGNER amount to about 300 lines of code. The DESIGNER prototype library is
only about 700 lines of code and includes circular lists, queues and stacks, complex numbers, 3D points
and vectors, homogeneous 3D transformation matrices, coordinate frames, and some simple parametric
solid primitives. DESIGNER currently has no graphics capabilitics; but even so, the author feels it is a
strong demonstration of the conciseness that can be achieved using object-oricnted concepts in a formal

functional framework.

DESIGNER currently satisfies all the axioms of HM but two: views and generalization. DESIGNER docs
permit the creation of sub-objects (subsets), but does not capture the view relationship between an object
and its sub-objects explicitly. Views are difficult to deal with because object constraints introduce coupling
between attributes in an object. At this time, it appears that each object constraint implicitly defines a
view uncoupled from other views; however, it is not clear that providing support only for such uncou‘plcd
views is sufficient. Suitable theory will have to be generated regarding the interaction between object
constraints and views before the latter can be supported fully by DESIGNER. We note here that DESIGNER
has fulfilled its role as a testbed for HM by providing us with this insight regarding its adequacy as a

model of design information; however, it does not affect the logical validity of HM, which is preserved.

Generalization (the inverse of specialization) can simplify (normalize) a hierarchy of objects. This
simplification can bring to light relationships between objects — and hence between the design cntities

they model — that may have been obscured by the complexity of the initial hicrarchy. Normalization
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can also improve the efficiency of operations on the software model. However, there do exist some
arguments [28,93] that strongly suggest normalization is of limited usefulness in engineering software
systems. These aiguments arc based on the observation that normalization requires a stable schema
(organization) of information to operate correctly. But schema definitions in design tend to exhibit a
highly dynamic nature; normalizing a dynamic schema leads to unpredictable and possibly disastrous
results. Additionally, generalization implies some fairly complex computation and certainly more so than
specialization. For these reasons, the author has clected to defer addition of generalization in DESIGNER

to future work.

One finul aspect of HM that is not directly supported by tie current version uf DESIGNER is that of
dimensions of mecasurement, as defined in Section 9.5. Very little work has been done to support
dimensions of measurement in computational environments; the author is only aware of the work of
Cunis {217). Because of the lzck of available information on the treatment of dimensions of measurement
in computational environments 1:pon which to build this capability into DESIGNER, the author has elected

tu defer the matter to future work.

The distinction between cxtensional attributes and intentional attributes permits the capture of various
kinds of relationships (i.c. constraints) between attributes in a straight-forward manner; as well, this
approach is integrated seamlessly into the functional paradigm, thus greatly simplifying the overall
computational model. Hovrever, this does indicate a further relationship between the modeling of attributes
and of constraints. Constraints relate entities at a given degree of abstraction, but logic dictates that the
constraints themselves must exist at a higher degree of abstraction. This essentially defines a rule, or
critzrion, that govemns the fomiation of constraint hierarchies. As was discussed in Section 14.7, the
modeling of attributes as intentional or extensional depends on the requirements of the design model;
«ais, in tum, will affect the constraint hieraitny of the modu  #fore research is needed in the area of
attribute modeling in order to define the relationship between attributes and constraints more clearly.
This constitutes a future extension of HM which the author intends to undertake. This is another insight

provided by DESIGNER regarding HM.

DESIGNER employs a canonical message passing mechanism. Though unconventional, the author con-
siders there to be a significant advantage to this approach: the clean separation between function (using

generic functions) and structure (using objects) provides a simple, intuitive computational model for
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simulation of design artifacts and systems. Furthermore, the notion of self, and all the complications that
arise from it, are avoided entircly. Although the evaluation of generic functions in the current implemen-
tation of DESIGNER is not particularly efficient, several techniques exist that can significantly improve its

performance.

In a multi-user environment such as a design group, generic functions offer another potential advantage.
Individual group members may /ocally overload particular functions (because, for example, they are so
often used by the group member) without affecting the objects and other data structures to which other
group members would have access. This would significantly decrease the chances of accidental data

corruption.

Finally, the distinct separation of functions that act on objects (i.e. methods in classical object models)
from the objects themselves permits the bundling together of groups of functions into modules providing a
coarser form of functionality. These modules can be loaded automatically as required, and automatically
freed when they are no longer needed, without affecting the data defining the design models themselves.
For example, a single design model could be used in two different tasks (c.g. solid modefing and numerical
analysis) by simply loading modules of generic functions that provide the functionality needed for each
task (e.g. color graphical rendering for solid modeling, versus automatic mesh generation for numerical

analysis).

Even though inheritance is generally used in class-based systems, the author has found it to be be usable
in a prototype-based system like DESIGNER, where, in conjunction with cloning, it has replaced both
subclassing and class instantiation. Furthermore, the use of canonical message-passing climinates the
need for the user to be aware of occurrences of inheritance, and rather treat the relationship as the more

intuitive notion of specialization.

DESIGNER permits multiple inheritance only from parent objects that have sets of attributes disjoint from
one another. Although this restriction does not exist in other object-oriented languages, the author is
constrained to impose it because of the validity requirements of HM. Although the goal of maintaining
validity is a desirable one, we must also ask ourselves if this kind of multiple inheritance is enough
to satisfy the general requirements of engineering design. There is no simple answer 1o this question
yet; indeed, there is some evidence to suggest that multiple inheritance per se is not nceded at all, and

that the abstractions it provides can be supplied by single inheritance combined with various forms of
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aggregation [218]. In the meantime, the author conjectures that multiple inheritance of the kind defined
by HM and supported by DESIGNER is sufficient. This is based on the grounds that a counter-example has

yet to be found. Obviously, this issue requires further study.

The formal denotational semantics of DESIGNER has yet to be defined. However, Scheme itself is a
formalized computer language with a complete denotational semantics [183,184]. Denotational semantics
is derived from set theory and the predicate calculus by way of the A-calculus. Since DESIGNER does not
alter Scheme but only extends it within its own formal framework, there is a continuity of logical rigor
from the formal domain model (HM) through to the actual implementation of DESIGNER. Nonetheless.
formalizing DESIGNERs extensions is a worthwhile goal to pursue in order to (a) further corroborate the
validity of HM, (b) identify arcas where the implementation of DESIGNER may be improved, (c) provide
formal proof that DESIGNER in fact satisfies HM (from the point of view of computer science), and (d)

provide formal tools to analyze design models generated with DESIGNER,

There cxist other various formal semantics (e.g. [208,219)) that define objects in functional programming
cnvironments. Some aspects of these efforts are similar to the approaches taken with DESIGNER. The
author is therefore confident that a formal semantics for DESIGNER is possible without changes to Scheme's

essential structure.

Although the experience with Scheme has indicated to the author that it is a very useful language for such
projects as DESIGNER, some difficulties remain: Scheme's syntactic forms can be rather clumsy; support
is lacking for certain useful mathematical constructs (such as matrices); the language itself is not tuned to
compute cfficiently given the important mechanisms DESIGNER requires (i.e. generic functions and object
encapsulation). Recent advances in programming language design, however, indicate that these problems

may be solved adequately in the near term.

There are many other directions in which DESIGNER can expand in the future. We mention some of them

here to indicate the potential for growth.

An argument has been made in [ 181] that functional programming can permit various degrees of parallelism
in computation, and that due to the nature of engineering computing only certain kinds of coarse-grained
parallelism can be expected to enhance performance. Elimination of side-effects and strict explicit control
of program state vastly simplify parallelization of computation. Objects providing strict encapsulation of

information. as in DESIGNER, meet this requirement and may provide the means by which granularity of
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parallelism can be made more coarse. The inclusion of an object system in a functional language may thus
be an ideal solution. Although DESIGNER does not currently support any parallclism, the author intends

to investigate this possibility in the future.

Another area where DESIGNER may find applicationis in system simulation. Advanced computermaodeling
and simulation of products has been gaining popularity [220] because of its potential to save a significant
amount of time by eliminating the need for physical prototypes. The functional paradigm pemmits the
straight-forward development of quite complex procedural units. Functions to measure time and generate
signals are included in many implementations of Scheme. Detailed models of components and design
artifacts are also possible in DESIGNER, owing to the object-oriented mechanisms it embodies. Thus,
system simulation is also possible within the same computational mode! as are other kinds of engincering

computing.

Since Scheme can be used for symbolic manipulation, a system to symbolically manipulatec mathematical
expressions could be integrated with DESIGNER to provide extensive mathematical support of various
kinds of analysis and synthesis in a seamless and integrated way. For example, algebraic functions can be
overloaded to operate on symbolic expressions (in Scheme — and hence in DESIGNER as well — symbols
such as “z” are acceptable data values that may be operated on). Furthermore, functions that manipulate
symbolic representations of equations may be overloaded to provide numerical approximations if numeric

data is provided. This would be particularly useful for constraint management [130].

The culmination of the research effort that the author has started and described herein will be a new
computer language and associated computational model specifically geared to enginecring design. The
language and computational model would satisfy HM and be formally defined using denotational (or some
other) semantics. This language will provide a computing environment for engineering that will be usablc
not only for conventional engineering computation, but also as a vehicle for the continued formal study

of engineering design.

We note that this approach is itself a strictly formal approach. It makes use of existing, proven tools of
computer science and logic, rather than the more hap-hazard means by which many languages currently

in use in engineering environments were developed.
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Chapter 17

Final Discussion

The contribution of this thesis has been to explain the nature of engineering design information in objective,

formal terms.

The formalization of design information must be treated independently of design processes which affect
or otherwise manipulate the information. Because of its independence from design processes, such a
formalization is universally applicable to any stage or aspect of design. The author has achieved this goal
with the Hybrid Model of design information, introduced in Part III. It provides isomorphisms that let
us view design information objectively, and its structured notation permits us to reason formally about
design information. The abstraction mechanisms introduced in Chapter 10 are founded on ontologic
considerations of design. They permit various organizational schemes to be developed, maximizing the
amount of available explicit information; this in tum minimizes the amount of interpretation required,
thus increasing confidence in the outcome of actions based on that information. Furthermore, by adhering
to the rules regarding the extension of classical set theory, HM is proved valid with respect to its logical
foundation (set theory); that is, HM is no less valid than is ZF. HM can facilitate continued research into
design by providing a universal formal language for the specification of design information. Its use can
improve communications between designers, contribute to the development of effective new taxonomies

of design entities and processes, and lead to the creation of more powerful computerized designers’ aides.

The use of formal systems greatly clarifies our understanding of design information by helping to resolve

difficulties arising from incomplete and vaguely defined nomenclature, managing the changes resulting
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from an evolving notion of design, and ecliminating sources of logical inconsistencies such as self-
reference. Insights of logic have lead the author to introduce conceptual tools — the layered structure of
design (Section 6.1), and the notions of a design space (Section 6.2) and artificial science (Section 5.2)
- 10 help organize our collective design and design research efforts. The results will assist in unifying

otherwise incompatible techniques and methodologies by providing a robust and valid reference.

In clcarly separating the structure of design itself from the manner in which it is conducted (the whar of
design, versus the how of it), the author acknowledges the important role of the designer as the singular
agent by which design is manifested. In this sense, logic is seen as the means by which the designer’s
creativity and intuition can be channeled in directions most likely to result in successful solutions to
design problems, much as it has been in other “scientific” fields, and forcing us to think more clearly
by providing a system wherein logical errors are more easily detected without restricting our freedom to

cxpress consistent, relevant information.

In urder to demonstrate the advantage of formal systems in design, HM is applied to the development
of a new programming language for design (see Part IV). The DESIGNER language is meant to capture
arbitrary design information in a flexible framework while largely satisfying HM. In so doing, we provide
a bridge between design theory on the one hand and the development of practical computational tools to
aid the designer on the other. This continuity of formal rigor has not been achieved before, and increases
our confidence in the validity of the language. The unique approaches taken in DESIGNER (e.g. the use of
prototypes rather than classes, and canonical rather than conventional message passing) are necessary to
meet the requirements of design as a unique and unconventional information management domain. The
brevity of its implementation in Scheme is suggestive of the clarity and elegance possible through the use

of formal theories to guide the development of engineering software.
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Chapter 18

Future Directions

Future research directions for both HM and DESIGNER are discussed in detail at the ends of parts HI and
IV. Here, the author outlines in a more general sense what the future may hold for the work presented

herein.

The key relationship between HM as a formal system and design theory is the isomorphism the author
has identified between set theory and design information. The advantage of a formal system with a
precise notation is that it lets one see relationships between information in a far simpler and objective
way than is possible with more verbose systems requiring significant interpretation (e.g. using the English
language instead of mathematical logic). Further study of the axioms of HM will likely bring to light new
relationships between kinds of engineering information, and thus improve our understanding of design
on the whole. The discovery of new relationships may necessitate modificatioas or other extensions to
HM; this feedback will be beneficial to the development of both HM and design in general. The particular
issues that will require further investigation in the near term are aggregations (the primary means by wh ch
specific simple design entities are grouped into more complex entities) and constraints (the driving force

behind the design process).

Besides the implementation of programming languages for design, HM could be applicd to a number of

other areas of computer-aided engineering.

The axiomatic form of HM makes it quite amenable to implementation with existing logic programming

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



167

languages (c.g. Prolog). The resulting “expert system™ would not depend on heuristic knowledge, and
would be useful as an analysis tool for design models generated using other computerized tools (e.g.
DESIGNER). The use of heuristic knowledge, as has been indicated in the literature survey (Section 2) can
markedly reduce the confidence level of expert systems by capturing “knowledge™ the soundness of which
cannot be proved. Since the number of axioms in HM is quite small, an expert system implementing it

may be able to perform in a timely manner.

Another area where HM could find use is in the generation of engineering databases. Many operations
for object-oriented databases may be written in terms of the axiom of separation of set theory [193]. This
implies a relationship between database theory and set theory (and hence HM) which appears promising.
There is a well-established precedent in the literature for the general usefulness of object-oriented databases

in engineering [56, 102, 106, 168,221,222].

Onc important difference between programming language design and database design is the notion of
cquality. Currently, in both HM and DESIGNER, identity is defined in terms of structure and behavior
of objects; this means that identical objects are permitted to exist. However, in database theory, such
identical entities are generally disallowed [223-225] to maintain the database in a normalized form; in
other words, the conventional definition of identity in database theory differs from that we have accepted

in this work. This discrepancy will have to be addressed before HM can be used to generate useful

engineering databases.

Finally, and perhaps most importantly, HM can be used to help teach design in an objective and rigorous
manner. It is a relatively small formal system that allows precise definition of terms, and a consistent
system for the organization and presentation of information. The actual language of symbolic logic, as
used in Part IIf of this document, need not be introduced immediately: key notions of any theory can be
taught by example, as has been done by others [31,86]. However, the author feels that an introduction to
formal systems and symbolic logic sufficient to understand HM would not be a lengthy undertaking and

would prove a worthwhile pedagogic investment.
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Chapter 19

Closing Remarks

What is engineering design?

This document began with that very question. It is useful now to retum to it and determine what headway,
if any, has been made towards answering it. Has the author’s work presented in this document answered

this question? The answer is: to a certain extent, yes.

It may be argued that the question itself is not a particularly good one. It is too vague, too open to
interpretation, and tends to invite oversimplified responses. Therefore, some provision is nceded to deal
with the inherent ambiguity. In keeping with the general tone of this work, the author regards the intention
of the question “What is engineering design?” as being of a descriptive nature. That is, we do not wish

to confuse this question with its procedural complement “How is engineering design performed?”

Many of the parameters by which designs are judged are based on quantitative measures. This indicates
that design is rooted in the physical world. A designer’s “artistic™ abilities are constrained insofar as the
results of his efforts must comply with the exigencies of the physical world. Furthermore, upon reflection
on the arguments made in this document, it is clear that any extemalization of the design process may be

subjected to logical analysis. Therefore, the author concludes design must be largely rational in nature.

This is not a statement of fact, since the rationality of design is not directly observable; nor is the
author’s work to be construed as a (technical) proof of this notion. But the body of evidence herein —

the argumenis made in Part II, the definition of HM, and its use to create the DESIGNER programming
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language — strongly indicate that design has a definite structure that can be treated formally, objectively.

and rationally.

We have intentionally said nothing about how design is performed. This issue includes the role of the
human designer and is prone to effects (such as self-reference) that severely limit the applicability of
formal techniques. Nonethcless, some very important headway has been made in this work, headway
that represents a strong first step towards a better understanding of engineering design. Although it has
traversed the spectrum from the theoretic (o the practical, the central theme of this work has been to
demonstrate that the use of logic can give us useful and relevant insights into the nature of design. The
most important of all, in the opinion of this author, is that logic has been found to be sufficient to explain
part of the problem: HM has given us the means of defining the nature of design information in formal
and objective terms. It provides the means of capturing, analyzing and communicating design information
cifectively, efficiently and in a timely manner. It gives us, designers and design researchers, a framework
{0 guide our thinking and our work, by providing a logical system to verify our ideas and thoughts. Upon
this foundation new theories of the design process may be built, strengthening our understanding and

improving our abilities to meet the challenges of the future.
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Appendix A

Source Listings of Designer

A.1 Designer Source

This section lists the source of the Designer language.

1 i File : core.scm

2 ;;; Description : Core Designer functions.

3 ;;; Version ;K

4 ;i; Revised : 19-01-93

5 ;i Copyright : 1993 by Filippo A. Salustri

6 ;;; Notes :

7

8 (require ‘bench.o)

9

t0  ;;; MISCELLANEOUS

9

2 {define-macro (warn {mt . lst)

13 ‘({print (format #f ,(string-append "Warning: * fmt) ,@lst)))
14

1%  (define (announce->filename sym)

16 (string->symbol (string-append (symbol->string sym) *.scm")))
17

t8  (define (filename->provide-stmt fn) (list ‘provide ‘’,fn})
19  (define (filename->require-stmt fn) (list ‘require ‘‘,fn))

;
20

21 (define-macro (announce . 1)

22 ‘(begin ,@(map filename-»provide-stmt (map announce->filename 1))))
23

24  (define-macro (needs . 1)

25 ‘(begin ,@(map tilename->require-stmt (map announce->filename 1))))
a-

26
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27 (define (flatten-list 1lst) poftIst ois g list oot liate,
28 ({let loop ({1 lst}))

29 (if (null? 1)

30 )

31 tappend (car 1) {(loop f{cdr 1))
32

33 (define (andmap pred lst)

34 {let loop ((1 lst))

35 {if (null? 1)

36 (14

37 (if (not (pred (car 1)))

38 #£

39 {loop tcdr L))

40

41 (define (ormap pred lst)

42 {let loop ((1 lst))

43 (if (null? 1)

44 #f

45 (if (pred (car 1))

46 L1

47 (loop (cdr 1))))))

48

49 (define (filter pred lst)

50 {let loop ({1 lst))

51 (if (null? 1)

52 ')

53 (if (pred (car 1))

54 (cons (car 1) (loop f{cdr 1))}
55 {loop (cdr 1))))))

56

57 (define not-found ‘not-found)

58 (define (not-found? %) (eg? x not-found))
59 (define no-val ‘no-val)

60

61 (define (in-list? val lst)

62 {let loop ((1 1lst))

63 (cond

64 ((null? 1) #f)

65 {{eg? val (car 1)) #r)

66 {else (loop .cdr 1))}

67

68 ;:; TYPE MODIFICATIONS

69

70 (define (attribute? x)

71 fand (vector? x)

72 (eg? {vector-length ) 3)

73 (eq? (vector-ref z 0) ‘attribute)})
74

75 (define (object? x]

76 (and (vector? x)

77 (eq? (vector-length %) 4}

78 (eq? (vector-ref x 0) 'cbject)))
79

80 (define (generic? x)

81 {and (compound? x)
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2 {equal? (procedure-lambda %) the-gf-definition)))
3
4 tdefine (function? xz) (or (procedure? %) (compound? x)})
c

GEMERIT FUNCTIONS

iii

37
He  (detfine (make-signature sig)

89 (veector (if (Jist? (car sig)) (length (car sig)) -1)

20 (eval ¢ (lambda , (car sig) (and ,@(cadr sig))))

91 (wval ‘(lambda , (car sig) ,e(cddr sig)})))

92

93  t(define (eval-signature sig-lst arg-lst)

94 (let loop ((sig-1 sig-lst))

95 (if tnull? sig-1)

96 not - found

97 (if (and (or (= (vector-ref (car sig-1) 0) -1)

96 (= (vector-ref (car sig-1l) 0) (length arg-lst)))
99 {apply (vector-ref (car sig-1l) 1) arg-lst))
100 (apply (vector-ref (car sig-1) 2) arg-lst)

101 {loop (cdr sig-1))))}))

102

103  (define (gf-setter name)

104 {string->symbol (string-append “gfset-* (symbol->string name)}))
105

106 (define the-gf-definition ‘(lambda arg-1

107 {incr-gfc)

108 (eval-signature sig-1 arg-1)))
109

110 (define-macro (overload name . sig-1}
111 ‘ {begin

112 (if (not (bound? ’‘,name})

113 (begin

114 {incr-gf)

115 {define ,name)

114 (define , (gf-setter name})

117 {let ({sig-1 ‘()))

118 (set! ,name

119 {lambda arg-1

120 (incr-gfc)

121 (eval-signature sig-1 arg-1l)))

122 (set! ,(gf-setter name)

123 (lambda (new-sig-1)

124 (set! sig-l (append (map make-signature new-sig-1)
126 sig-1))

126 ) ; return nuthin.
127 (., (gf-setter name) ’,sig-1)))

128

129  ;;; LOW-LEVEL ATTRIBUTE FUNCTIONS

130

131 (define (Any? value) #t)

132

133 (define (gen-attribute) (vector ‘attribute Any? no-val))
134

135 (define (domain a) (vector-ref a 1))
136 (define (set-demain a d) (vector-set! a 1 d))
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137
138 (define (value a) (vector-ref a 2})
139 (define (set-value a v)

140 (if (or (eg? v ne-val) {(domain a) v))

141 (vector-set! a 2 v)

142 (error ‘value "Constraint “s not satisfied for “s.” (domain ap vy
143

144 (define (attribute d v)

145 (if (not (procedure? d))

146 (error 'attribute *Domain ~s must be predicates." d))
147 {let ((a (gen-attribute)))

148 (set-domain a d)

149 (set-value a v)

150 a))

151

152 ;;; THE COPY FUNCTION

153

154 (define (copy thing)

155 (let loop ((x thing))

156 (cond

157 {(attribute? x) (attribute {(domain x) (loop (value x))}}
158 ((object? x) (clone x))

159 ({pair? x) (cons (loop (car %)) (loop (cdr x))))

160 {{vector? x) {let* ({vl (vector-length x}))

161 (nv (make-vector vl no-val)})

162 (do ((i O {1+ 1i))) ((>= 1 vl) nv)

163 (vector-set! nv i (loop (vector-ref x i}})i)})
164 (else x))))

165

166 ;;; LOW-LEVEL OBJECT FUNCTIONS

167

168 (define (gen-object)

169 {incr-go}

170 (vector ‘object ‘() () ‘()))

171 (define Object (gen-object)) ; the progenitor object.
172

173 (define (slots o) (if (object? o) (vector-ref o 1) '()))

174 (define (add-slot o name V)

175 {vector-set! o 1 (cons (cons name v} (vector-ref o 1)})

176 (define (add-slots o 1) (vector-set! o 1 (append 1 (vector-ref o 1)})
177 (define set-slots o 1) (vector-set! o 1 1)

178

179 (define (parents o) (if {(object? o) (vector-ref o 2) ‘())

180 (define (add-parent o p) (vector-set! o 2 (cons p (vector-ref o 2)))

181

182 (define (constraints o) (if (object? o) (vector-ref o 3) ‘()))

183 (define (add-constraint ¢ ) (vector-set! o 3 (cons ¢ (vector-ref o %)}))
184 (define (add-constraints o 1) (vector-set! o 3 t(append 1 (vector-ref o 3)1))
185

186 (define (: o name . v)

187 (let {{(s (assg name (slots o}))))

188 (if (not s) lerror ’': “"“s: no such slot name* name))

189 (if v

142 {set-cdr! s {car v))

191 {cdr s))))
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192

193 (define (resolve-object-name x) (if (symbol? x) (eval x) X))
134

19% ;;; GBJECT COMNSTRAINTS

196

197 (define (compile-constraint-spec c-spec)

198 {eval ‘(lambda (obj)

129 (let , (map (lambda (%) (list x ‘{value (: obj ',x)})
200 (car c-spec))

201 ,@(cdr c-spec)))))

202

203  (define-macro (constrain obj . c-spec-1)

204 ‘(begin (add-constraints ,obj (map compile-constraint-spec ‘,c-spec-1))
205 )

206

207 (define (eval-constraints obj constr-1l)

208 (let loop ((c-1 constr-1))

209 (if (null? c-1)

210 Ht

211 (and ((car c-1) obj)

212 {loop (cdr c-1)))1)))

213

214 (define (check-object-constraints obj)

215 {eval-constraints obj (constraints obj))

216

217 ;;; HIGH-LEVEL ATTRIBUTE FUNCTIONS

218

219 (defire (attribute-values->list obj)

220 (map value (filter attribute? (map cdr (slots obj}))))

221

222 {define {attribute-names->list obj) {map car (slo-s obj)))

;; for each attribute in obj satisfying pred, map fun.
(define (foreach-attribute obj pred fun)
(map fun (filter pred (attribute-values->list obj))))}

;; extensions of ‘andmap’ and ‘ormap’ to object attributes.
(define (forall obj pred) (andmap pred (attribute-values->list obj)))
{define (exists obj pred) (ormap pred (attribute-values->list obj)))

;:: HIGH-LEVEL OBJECT FUNCTIONS

(define (do-inheritance dest src)
(add-slots dest (copy {slots src)))
{add-parent dest src)
{add-constraints dest (copy (constraints src))))
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{define (expand-from-clause obj 1)

. {cond

241 ((list? 1)

242 (for-each (lambda (p) (do-inheritance obj p)) (map resolve-object-name 1)))
243 (else (do-inheritance obj (resolve-object-name 1)))))

244

245 (define (expand-with-clause obj 1)

246 {for-each (lambda (spec)
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247 (add-slot obj

248 {car spec)

249 fattribute (eval (cadr spec))

250 {if (cddr spec)

251 {eval (caddr spec))

252 no-valyy)

253 {let* {(n ({(car spec))

254 (g-name (string->symbol

255 (string-append "?* (symbol->string nyyy)
255 {s-name (string->symbol

257 fstring-append (symbol->string n) *:")}}))
258 (if (not (bound? g-name))

259 (eval ‘(define (,g-name o)} (value (: o ',n}}))
260 top-level-environment))

261 {if (not (bound? s-name))

262 (eval ‘(define (,s-name o v)

263 (set-value (: o ',n} Vv)

264 (if (not (check-object-constraints o))
265 (warn “Object constraints not satisfied.*)))
266 top-level-~environment)})))

267 1))

268

269 (define-macro (new parent-spec with-spec . init-spec)

270 ‘{let ((new-obj (gen-object)))

271 (expand-from-clause new-obj ’,parent-spec)

272 (expand-with-clause new-obj ‘,with-spec)

273 (if ’,init-spec

274 (begin

275 ,@(map (lambda (x)

276 (list ‘set-value ‘{: new-obj ‘,{car x)) (cadr x)))
277 init-spec)))

278 (if (not (check-object-constraints new-obj))

279 (warn “Object constraints not satisfied.*})

280 new-obj))

281

282 (define (clone obj)

283 {let ((new-obj (gen-object))}

284 {do-inheritance new-obj obj)

285 new-obj))

286

287 ;;: OTHER OBJECT FUNCTIONS

288

289 (define (parent? child p) (in-list? p (parents child)))

290

291 (define (lineage obj)

292 (if (not (object? obj))

293 e

294 (cons obj (flatten-list (map lineage (parents otj;i))})
295

296 (define (ancestor? obj anc)

297 (if (not (object? obj)) #f)

298 (let loop ((o obj))

299 {(or 'eg? o anc)

300 (ormap (lambda {(p) (loop p}) (parents o))})})

301
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302 (define-macro (make-type-predicate o)

303 ‘(define (,(string->symbol (string-append (symbol->string o) *2%")) %)
304 (ancestor? % ,2)))

305

306 {define-macro (make-constructor o . rest)

307 ‘(define , (string-»symbol (string-append *@" {(symbol->string o)))

308 {lambda ,@rest)))
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A.2 Support/Utility Functions

This section lists various functions used extensively in Designer, but which are not part of Scheme.

1 ;:: File : Preamble.scm

2 ;;:; Description : basic functicns and primitive overloadings used throughout.
3 ;:; Version : k

4 ;;; Revised : 16-01-93

5 ;;; Copyright : 1992 by Filippo A. Salustri

6 :::; Notes :

7

8

; ‘orientation-euler’ and ‘orientation-rpy’ from [ref paull.

9
10 ; CONSCLANLS ;jiiiiiiiiiiiiiidiidiiiisitiiadiiagiiiigiiiiiaisdanaigiiiiiiqiiisy
11
12 (define Pi 3.14159265358979323846) ; from /usr/include/math.h
13
14 ; Functions ;iiiiisiisiisiiiiiiiiiiiiiiiiiisiiiiiiisiiiisiiisiiisiiiiiiiiiaiiii
15
16 {(define (number-gt0? x) (and (number? x) (> x 0)))
17 (define (positive? x) (and (number? x) (>= x 0))
18
19 (define (rad->deg r) (/ (* 180.0 r) Pi)}
20 (define {deg-»rad d) (/ (* Pi d) 180.0))
21
22 (define ** expt)
23
24 (define (matrix44-x-matrix44 a b)
25 {let ((res {(vector 1 00 001000010000 1)))
26 do ((i 0 (+ 1 1))) {((=1 4) res)
27 (do ((3J O (+ 3 1))) ((= ] 4) res)
28 (do ((k 0 (+ k 1))
29 (v 0 (+ v (* (vector-ref a (+ (* i 4) k))
30 (vector-ref b (+ (* k 4) j)Nnn)
3 ({= k 4) (vector-set! res (+ (* i 4) J) v)1)))))
32
33 (defir~ (vectord4-cross a b)
i4 (vectar (- (* (vector-ref a 1) (vector-ref b 2))
35 (* (vector-ref b 1) (vector-ref a 2)))
36 (- (* (vector-ref a 2) (vector-ref b 0))
37 (* (vector-ref b 2) (vector-ref a 0)))
38 {~ (* (vector-ref a 0) (vector-ref b 1))
39 {(* {vector-ref b 0) (vector-ref a 1)))
40 1))
41
42 (define (vector4-dot a b)
43 (+ {* (vector-ref a 0} (vector-ref b 0)}
44 (* (vector-ref a 1) (vector-ref b 1))
45 (* (vector-ref a 2) (vector-ref b 2))))
46
47 (define (vector4-x-matrix44 v m)
48 (let ((res (vector 0 0 0 1}))
49 {(do ({1 0 (+ 1 1))) ({= 1 4) res)
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%0 {do ((j O (+ J 1))

51 (a 0 (+ a (* (vector-ref v j)

%2 (vector-ref m (+ (* j 4) 1))
%) ({= j 4) {vector-set! res i a)l)))))

t4

5% (define (scalar-x-vectord s v)

56 {(vector (* s (vector-ref v 0))

57 {(* 3 (vector-ref v 1)}

58 (* s (vector-ref v 2))

59 1))

60

61  (define (vector4---vector4 a b)

62 (vector (- (vector-ref a 0) (vector-ref b 0))

63 {- (vector-ref a 1) (vector-ref b 1))

64 (- (vector-ref a 2) (vector-ref b 2))

65 1))

66

67 (define {(vector4-+-vecror4 a b)

68 {vector (+ (vector-ref a 0) (vector-ref b 0})

69 (+ (vector-ref a 1) (vector-ref b 1})

70 {(+ (vector-ref a 2) (vector-ref b 2))

71 1))

72

73 (define (vector4-magnitude v)

74 {sgrt (+ (* {vector ref v 0) (vector-ref v 0})

75 (* (vector-ref v 1) (vector-ref v 1))

76 (* (vector-ref v 2) (vector-ref v 2)))))

77

78 ; Order: rot(z,phi) + rot(y’,theta) + rot(z‘'’,psi)

79 )

80 (define (orientation-euler m)

81 {let* ((phi (if (and (= (vector-ref m 9) 0) (= (vector-ref m 8) 0})
82 0 (atan (vector-ref m 9) (vector-ref m 8))))
a3 {crhi (cos phi))

84 (sphi (sin phi)))

85 {vector phi

86 (atan (+ (* cphi (vector-ref m 8)) ; theta
87 {* sphi (vector-ref m 9})))

88 {(vector-ref m 10})

89 (atan (- (* cphi (vector-ref m 1}) ; psi
90 {* sphi (vector-ref m 0)})

91 {- (* cphi (vector-ref m S))

92 (* sphi (vector-ref m 4))))

93 1))

94

95 ; Order: rot(x,psi) + rot(y,theta) + rot(z.phi)

96 ; with respect to the global (fixed) frame.

97

98 (define (orientation-rpy m)

99 (let* ((phi (if (and (= (vector-ref m 1) 0) (= (vector-ref m 0) 0))
100 0 (atan (vector-ref m 1) (vector-ref m 0))))
101 {cphi (cos phi))

102 {sphi (sin phi}))

103 (vector (atan (- (* sphi (vector-ref m 8)) ; psi
104 (* cphi (vector-ref m 9)))
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105 (- (v cphi (vector-ref m 5))

106 (* sphi (vector-ref m 4))))

107 (atan (- (vector-ref m 2)) ; theta

108 {+ {* cphi (vector-ref m 0))

109 {(* sphi (vector-ref m 1)})))

110 phi

111 nn

112

113 (define (list-last 1) (list-ref 1 (1- (length 1))))

114

115 ({define (list-intersect a b) .ilter (lambda (x) (in-list? x b)) a))
116

117 ; Overloadings ;iiisssiiiiisteiiisiiiiiisisisiaiiiisiniisiiiiiiiiiidiiaaaiiiii
118

119 (overload :chow

120 {(0) {(object? o)) (format #f *An Object*))

121 ((x) (O x)
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Appendix B

Designer Prototype Library

This chapter lists the object prototype definitions available in the Designer library.

B.1 Complex Numbers

1 ;;; File : Complex.scm

2 ::;; Description : complex numbers

3 ;;; Version : k

4 ;;; Revised : 14-01-93

S :::; Copyright : 1992 by Filippo A. Salustri

6 ;;: Notes :

7

8 (announce Complex)

9

10 ;;; Prototype
11

12  (make-type-predicate Complex)

13 (define Complex (new Object

14 ((real numder? 0)

15 (‘mag number? 0))))

16 {(make-constructor Complex (r i) {(new Complex () {(real r) {(imag 1i)))
17

18 ;;: Overloadings

19
2 (overload :zero? ((c) ({(Complex? c))
21 (and (= (?real c) 0) (= (?imag c) 0))))
23  (overload :magnitude ((c) ({(Complex? c))

24 (sgqrt (+ (* (?real c¢) (?real c))

25 (* (?imag c) (?imag ¢))))))

F

t
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27 (overload :+

28 ((a b) ((Complex? a) (Complex? b))

29 (@Complex (+ (?real a) (?real b)) (+ (2imag a)
30 {({c n) {(Complex? ¢) (number? nj)

31 (@Complex (+ (?real <) n) (?imag ¢

32 ({n ¢) ((Complex? <) (number? n))

33 (@Complex (+ n (?real c}) (?imag c))))

34

35 (overload :-

38 {{a by {((Complex? a)} (Complex? b))

37 (@Complex (- (7real a) (2real b)) (- (7imay
38 {((c n)} ((Complex? c) {(number? n))

39 {@Complex (- (?real c) n) (?imag <)))

40 ‘'n ¢) ((Complex? c¢) (number? ni))

41 {eComplex (- n (?real c)) (?imag c))))

42

43 ({uverload ¢

44 {(a b) ((Complex? a) (Complex? b))

45 (@Complex (- (* (?real a) (?real b))

46 (* (?imag a) (?imag b)))

47 (+ (* (?real a) (?imag b))

48 (* (?real b) (?imag a))))))
49

50 (overload :/

51 {{a b) ((Complex? a) (Complex? b))

52 (if (:zero? by

53 (error ‘:/ "Complex divisor is zero."))
54 (@Complex (/ (+ (* (?real a) (?real b))

55 (* (?imag a) (?imag b)))
56 {(+ (* (“real b) (?real b))

57 {* (?imag b} (?imag b)))}
58 (/ (- (* (2real p) (?imag a))

59 (* (?real a) (?imag b)}))
60 {+ (* (?real b) (?real b))

61 (* (?imag b) (?imag b))'))))
62

63 (overload :show

64 {(a) ((Complex? a)) (format #f *("s ~s)" (?real a)
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B.2 3D Spatial Coordinates

1 ;i File : Coord.som

2 ii: bescription @ 3D conrdinates (4vector).
(I ¥

4 i Reviced : 14-01-93

Yoossr Copyright : 1332 by Filippo A. Salustri
ho i totes i

7

H o {announce Coord)

7 (needs Transtform)
10
11 5 Special functions jiiiiiiiiiiiiisiiiiiiiiiiiiidisiiitisiiiiiiiiiiiiiiiiiiii

13 (define (vector4-»Coord v)

14 (@Coord (vector-ref v 0) (vector-ref v 1) (vector-ref v 2))

16 ; Coord prototype ijiiiiiiiiiiiiiiiisiiiisieiiaiissiiisiiiisiiiiiisiiiiisiiiiii
18 (make-type-predicate Coord)

19 (define Coord (new Object

20 {(x number? 0) (y number? 0} (z number? 0)))

21 (make-constructor Coord (xv yv zv) (new Coord () (x xv) (y yv) (z zv)))

23 (overload :show ((c) ({Coord? c))

24 (format #f "("s s Ts)* (?x ¢) (?y ¢) (?z C)))

5

26 (overload :as-vector ((a) ((Coord? a)) (vector (?x a) (?y a) (?z a) 1}))
27

28 (overload :magnitude ((c) ((Coord? c)) (vectord-magnitude (:as-vector c)}})
29

30 ({overload :normalize {(c) {{Coord? c))

31 (let ((m {vector4-magnitude (:as-vector c))))
32 (@Coord (/7 (?x c) m) (/ (?y ¢) m) (/ (?z ¢) m)))))
33

34 (overload := ({a b} ((Coord? a) (Coord? b}}

35 fand (= (?x a) (?x b))

36 (= (?y a) (2y b))

37 (= (?z a) {2z b})}))

38

39 (overload :cross ({a b) ((Coord? a) (Coord? b))

40 (vector4->Coord

41 (vectord4-cross (:as-vector a) {:as-vector b}})}}
42

43  (overload :dot {(a b) ({Coord? a) (Coord? b))

44 {vector4-dot {(:as-vector a) (:as-vector b})))

15

46 (overload :*

47 ({c t) ((Coord? c) (Transform? t))

18 (vector4->Coord

49 {vectord-x-matrix44 (:as-vector c¢) (:as-vectors t))))
50 ((s ¢) ((number? s) (Coord? c))

51 {vector4->Coord (scalar-x-vector4 s (:as-vector c))))

52 ({c s) ({Coord? c) (number? s))

a3 (vectord4->Coord (scalar-x-vector4 s (:as-vector c¢jl)})
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54

55 (overload :-

56 {ta b) ({Coord? a) (Coord? bh)

57 (vectord-s»Coord

58 {vectord---vectord ({:as-voctor a) (:zas-voctor biyyn
59

60 {overload :+

61 ({a b) ((Coord? a) (Coord? b))

62 {vectord->Coord

63 (vectord-+=-vectord (:as-vector a) (:as-vector L))1)))
64

65 ; Subtypes igiiiiiiiiisiisidiciiiiiiiiiiisiciiiiiiciiiiiiisiaiiiiiiasaiiiaiid
66

67 (define Origin (clone Coord))
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B.3 Cuboid Parametric Volumes

1 ;i File ¢ Cuboid.sen

2 g : cube-like geometry.

EEN 3

4 i 300 14-01-33

Yoo Copyright : 1992 by Filippo A. Salustri
6 ;;; Hotes :

7

4 (announce Cuboicd)
9 (needs Geometry)

11 (make-type-predicite Cuboid)
12 (define Cubold (rew Geometry

13 ((x number-gt0? 1)

14 (y number-gt0? 1)

15 (z number-gt0? 1))}}

16 (make-constructor Cuboid (xv yv zv) (new Cuboid () (x xV) (y yv) {2z 2V)}))
17

18 (overload :volume ((c) {((Cuboid? c)) (* (?x ¢} (?y c) (?2 C))))
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B.4 Coordinate Frames

1 :;: File : Frame.scm

2 ;;; Degcription : a coordinate frame.

3 ;;: Version : k

4 ;;; Revised : 13-01-93

5 ;:; Copyright : 1992 by Filippo A. Salustri

6 ;;: Notes :

7

8 (announce Frame)

9 (needs Transform Coord)

10

11  (make-type-predicate Frame)

12 (define Frame (clone Transform))

13 ;;:; no constructor yet.

14

15 (overload :position ((f) ((Frame? f£)} (:* Origin f))

16 (overload :orientation ((f) ((Frame? f))

17 (vector4->Coord

18 {orientation-rpy (:as-vectors t)))))
19

2 {overload :invert ((£f) ((Frame? f)
21 {let {({o {:orientation f))
22 (nf (clone Frame)})

23 (:z-rotate nf (- (22 o)))
24 (:y~-rotate nf (- (?y o})})
25 {:x-rotate nf (- (?x 0)))

26 nk)))

7
28 (overload :translate

29 ((f xy 2) ((Frame? f))

30 (mat: f (?mat (:* f (:tramslation x v 2z))})))
31 (overload :x-rotate

32 ((f r) ((Frame? f))} (mat: £ (?mat (:* [ (:x-rotation r})i)))
33 (overload :y-rotate
34 ((f ry ((Frame? f)) (mat: f (?mat (:* £ (:y-rotation rjj)j}})
35 (overload :z-rotate

36 ((f r) ((Frame? £)) (mat: f (?mat (:* f (:z-rotation r)))l))}
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B.5 Generalized Geometric Entities

1 ;;; File : Geometry.scm

2 ;;; Description : 3d geometric specs - sclid objects.
3 ;i; Version : k

4 ;;; Revised : 13-01-93

5 ;;; Copyright : 1992 by Filippo A, Salustri

6 ;i; Notes :

7

8 (announce Gecmetry)

9 (needs Frame)
10

11  (make-type-predicate Geometry)
12 (define Geometry (clone Frame))

13

14 (overload :volume ((g) ((Geometry? g))

15 {error ‘Geometry "Must be implemented in subtypes.*)))
16

17 (overload :locate

18 ({g p wrt) ((Geometry? g} (function? p) (Geometry? wrt))

19 {p (:- (:position g) (:position wrt))

20 {:orientation (:* ({:invert wrt) g))}}

21 ({g p) ((Geometry? gj (function? pji

22 (p (:position g) (:orientation g))}}
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B.6 3D Lines

1 i File : Line.scm

2 ;:; Description : parametric line segments in 3D
3 ;3 Verzion ik

4  ;;: Revised : 14-01-92

5 ;;: Copyright : 1992 by Filippo A. Salustri
& ;i Hotes :

7

8 (announce Line)

9 (needs Transform Coord)
10

11 ;;; Line prototype
12

13 (make-type-predicate Line}
14 (define Line (new Object ((start Coord?) {(end Coord?;)})

15 (make-constructor Line (a b) {new Line () (start a) (end b)))
16

17 (overload := ((a b) ((Line? a) (Line? b))

18 (and (:= (?start a) (?start b))

19 (:= (?end a) (?end b}))))

20

2 (overload :* ((l t) ((Line? 1) (Transform? t))

22 {@Line {:* (?start 1)} t) (:* (?end 1) t))))
23

2 ;::; Based on solution in [ref zeid] [p 244-245]

25 ;i:; There is a degenerate case if 1 line is in the plane formed by the origin
26 ;:;:; and the other line. This is dealt with in the ‘if’.

27 (overload :intersect

28 {(fa b) ({Line? a) {(Line? b))

29 {let ((bx (:cross (?start b) (?end b))

30 (da (:- {?end a) (?start a))))

31 {if (= {:dot bx da) 0)

32 {let ((shift (:translation 0 0 1)})

33 {:* {:intersect ({(:* a shift) (:* b shift))
34 (:translation 0 0 -1)))

35 {:+ (?start a)

36 (:* (- (/ (:dot bx (?start a))

37 (:dot bx da}l))

38 da))) 1))

39

40 (overload :show

11 ({1) ((Line? 1))

42 (format #f *(~a ~a)* (:show (?start 1)) (:show (?end 1)))))
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B.7 Generalized Physical Parts

1 ;:; File : Part.scm

2 ;;:: Description : a physical parc.

3 ;;; Version : k

4 ;;; Revised : 14-01-93

5 ;i;:; Copyright : 1992 by Filippo A. Salustri
6 ;:: Notes :

7

8 (announce Part)

9 (needs Geometry)
11 (make-type-predicate Part)

12 (define Part (clone Geometry))
13 ;:;: no constructor yet
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B.8 Queues

1 ;ii File : Queue.scm

2 ;;: Description : FILO lists

1 ;5 Version :

4 ;i Pevised : 13-01-93

S ;:: Copyright : 1992 by Filippo A. Ealustri

6 :: HNotes :

7

8  (announce Queue)

9 (needs List)
10

11 ;;; Prototype

2
13 (make-type-predicate Queue)

14 (define Queue (clone List})
19 (make-constructor Queue arg-l

16 (let ({0 (clone Queue)))

17 (for-each (lambda (x) (:push o x)) arg-1)
18 o))

19
20 ;;; Overloadings
21
22  (overload :push ({(q v) ((Queue? q}) {:append! q V)})
23
24 (overload :pop ((q) {(Queue? q))
25 (if (:empty? q) (error ‘:pop "nothing left to pop."))
26 (:chop! q)))
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B.9 Circular Lists

{announce Ring)

1 :;; File : Ring.scm

2 ;i; Description : circular list objects.

3 ;:: Version R

4 ;i; Revised : 13-01-93

5 ;i; Copyright : 1992 by Filippo A. Salustri
6 ;i; Notes :

5

8

9

10 ;;; Prototype

12 (make-type-predicate Ring)
13 (define Ring {(clone Object}}
14 (add-slot Ring ‘lst ‘())

15 (add-slot Ring ‘offset 0)
16 (make-constructor Ring 1

17 (let ({o (clone Ring)))

18 (: o "lst 1)

19 o))

20

21 ;;; Overloadings

22

23 (overload :first ({(r) ((Ring? r}))

24 (: r 'offset 0)

25 (list-ref (: r *lst) 0)))

26

27 (overload :length ((r) ((Ring? r)) (length (: r ‘lst}))}

28

29 (overload :as-list ((r) {((Ring? r)) ({vector->list {list-»vector (: r ’'lst))))
30

31 (overload :next ((r) ((Ring? r))

32 {let ((1 (length (: r ’lstC))))

33 (if (=1 0)

34 {error ‘:next *zero-sized ring."))

35 (: r ‘offset (modulo (1+ (: r ‘offset)) 1))
36 (list-ref {(: r *lst) (: r 'offset)})i})

37

38 (overload :peek-next ((r) {{(Ring? r))

39 ({let ({1 (length (: r ’'lst))))

40 (if (=1 0)

41 (error ':peek-next *zero-sized ring.*))
42 (list-ref (: r ‘'lst)

43 (modulo (t+ (: r ‘cffset)}) 11)1)})}
44

45 (overload :prev ((r) ({Ring? r))

46 (let ((1 {length {(: r ’‘lst))})

47 (if (=1 0)

48 (error ‘:prev “zero-sized ring."))

49 (: r 'offset (modulo (1- (: r ‘offset)) 1))
50 (list-ref (: r ’lst) (: r ‘offset}})}

51

52 (overload :peek-prev ({r) ({(Ring? r))

53 {let ({1 (length (: r 'lst))))
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L4 {if (= 1 0)

55 {error ‘:peek-prev “zero-sized ring.*))
N6 (list-ref (: r "lst)

%7 (modulo (1- (: r ‘offset)) 1))}1))
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B.10 Stacks

1 ;;; File : Stack.scm

2 ;;; Description : FIFO lists

3 ;:: Version : K

4 ;;; Revised : 13-01-93

S ;;; Copyright : 1992 by Filippo A. Salustri
6 ::; Notes :

7

8 (announce Stack)

9 (needs Queue)

10

11 ;;; Prototype

12

13 (make-type-predicate Stack)

14 (define Stack (clone Queue))

15 (make-constructor Stack arg-l

16 {let ((o {(clone Stack)})

17 (for-each (lambda (x) (:push o %)) arg-1)
18 o))

19
20 ;;; Overloadings
21
22 (overload :push ({(s v) ((Stack? s)) (:prepend! v s)})
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B.11 Geometric Transforms

1 ;:; File : Transform.scm

2 ;i; Description : 3d transforms (4x4 matrices)
3 ;:: Version HS 4

4 ;;; FRevized : 14-01-93

5

;33 Copyright : 1992 by Filippo A. Salustri
6 ;i;; Hotes :

8 (announce Transform)
10 ;;; Prototype

12 (make-type-predicate Transform)
13 (define Transform

14 {new Object

15 {(mat vector? (vector 1 0000 10000109000 1)))))

16 ;;: no corstructor -- probably useless anyways.

17 ;;; maybe could use Loci as arguments in a constructor in the future.
18

19 ;:;; Overloadings
2 {overload :show ((t) ((Transform? t)) (format #f *"~a* (?mat t))))
{overload :as-vectors ((A) ((Transform? A)) (vector-copy (?mat A))))
(overload :* ({A B) ((Transform? A) (Transform? B))

{new Transform ()

{mat (matrix44-x-matrix44
{:as-vectors A) (:as-vectors B)))}))

W DO ts o o ot
DN S W

0 (overload := ((A B) {(Transform? A) (Transform? B))

31 (equal? (?mat A) (?mat B))))

32

33 ; Subtypes iiiiiiiiiiiiidiiiiiiiiiiiiiiiiiiiiiiiiiiisidiiiiiiiiiiiisiiiiiviiig
34

35 (define IdentityTransform {(clone Transform))

36

37 (overload :scaling ((x y 2z} ({number? x} (number? y) (number? z))

38 (new IdentityTransform ()

39 (mat (vector x 0 0 O

40 Oy 0O

41 00z0

42 000 1))

43

44 . (nverload :translation ((x y 2z) {(number? x) (number? y) (number? z))
45 {new IdentityTransform ()

46 {mat (vector 1 0 0 0O

47 0100

48 0010

49 Xy z 1))

50

51 {overload :x-rotation ((x) ({number? x))

52 (new IdentityTransform ()

53 {mat {vector 1 0 0 0
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54 QoS X) (ain XY 0

55 QO (- {sin W) {coa XY 0O

56 [V O HARRRE
57

58 (overload :y-rotation {(y) {{number? y!)

59 (new ldentityTransfovm ()

60 (mat vector (Ccos ¥) 0 (- {sin yyy o

61 0 10 0

62 {(sin yb» 0 (coz vy 0

63 Q 00 |SRRRE}
64

65 (overload :z-rotation (iz) {((number? z))

66 (new IdentityTranstorm ()

67 (mat (vector (cos I} isin 2y 00

68 (- {sin z)) {(cos =) 0 O

69 0 0 10

70 0 0 0 1))
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