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A B S T R A C T

There is m ounting evidence in the current literature which suggests that our collective understanding of 

engineering design is insufftcicnl to support the continued growth o f the engineering endeavor. Design 

theory is the em ergent research field that addresses this problem by seeking to im prove o u r understanding 

of, and thus o u r ability  to, design. The goal o f  this au thor's work is to dem onstrate that formal lcchnii|ues 

o f  logic can im prove o u r understanding o f design. Specifically, a formal system  called the H ybrid M odel 

(HM ) is presented; this system  is a set-theoretic description o f engineering design inform ation that is 

valid independent o f  (a) the processes that generate o r m anipulate the inform ation and (b) the role o f  the 

hum an designer. Because o f  this, HM is universally applicable to the representation o f  dcsign-spccilic 

inform ation throughout all aspects o f the engineering enterprise. The fundamental unit in HM is a design 

entity, w hich is defined as a unit o f information relevant to a  design task. T he axiom s o f  HM define 

the structure o f  design entities and the explicit m eans by which they m ay be rationally  organized. HM 

provides (a) a  basis fo r building taxonom ies o f  design entities, (b) a gcncraii/.cd approach for making 

statem ents about design entities independent o f  how the entities arc generated o r used, and (c) a formal 

syntactic notation  for the standardization o f  design entity specification. Furtherm ore, HM is used as the 

foundation o f  DESIGNER, an extension to the Scheme program m ing language, providing a prototype-based 

object-oriented system  fo r the static m odeling o f  design information. Objects in the D e s ig n e r  language 

satisfy the axiom s o f  HM  while providing convenient program m ing m echanism s to increase usability and 

efficiency. Several design-specific exam ples dem onstrate the applicability o f  D e s i g n e r , and thus o f  I >M 

as well, to the accurate representation o f design information.
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List of Symbols

T he notation presented in this section is drawn from accepted system s o f  notation in predicate calculus 

and axiom atic set theory. In addition, a num ber o f  sym bols used exclusively by the  author fo r the  Hybrid 

M odel (Part III) are also included. Usage o f these sym bols is restricted to Part III, w herein the formal 

statem ent o f  the Hybrid M odel in the language o f  m athematical logic is presented.

Basic logic and set theoretic sym bols are:

6  Set m em bership; for exam ple, x e  /  is read “ x is a m em ber o f  I " .  T h is  is taken to be

prim itive to the 1st o rder predicate calculus and so is considered an undefined prim itive 

in axiom atic set theory.

=  The identity operator, which is transitive (x ) (y ) ( ( (x  =  y )  0  ( y  =  z ) )  =s> (x  =  2 )),

sym m etrical (x ) (y ) ( (x  =  y )  =*• (y  =  x ) )  and to tally  reflexive (x ) (x  =  x ). F o r 

exam ple, x  = y  iff every attribute o f  x  is an attribute o f  y, and conversely. T h is is  taken 

to be prim itive to the 1st o rder predicate calculus and so  is considered an undefined 

prim itive in axiom atic set theory.

=dj Read as " , . .  define a s . t h i s  sym bol is used to  introduce definitions (e.g. X  =d/ { x :

( x e K ) . ( x e  Z ) } ,  which defines X  to be the set o f  elem ents occurring  in both Y  and 

Z ) and is distinct from  the identity operator (above).

C Subset relationship; for exam ple, x  c  y  is read “ x is  a  subset o f  y".

V T he universal qualifier, read as “ for all ...” . Statem ents using V are com posed o f

three parts: the V sym bol, the specification o f  a  variable o r variables o v er w hich  the
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quantification is perform ed, and a statem ent which is true for the variablc(s). The pans 

are separated by parentheses. For exam ple, V ( i ) ( i  € / )  is read " for a ll x . x  is a m ember 

o f  I" .  A lso, if I  is the set o f  all integers, V(x €  l ) ( x  > 0 ) defines all positive integers, 

and is read “fo r  a ll x  in I .  x  is greater than  0".

T he existential qualifier, read as “ there exists...". Statem ents using 3 have the stune 

form as statem ents using the universal quantifier. Forcxam plc. 3 (x  6  /) ( .  r  =  l ) is r c a d  

as “ there exists an x  in I ,  such that x  equals 1". It is generally unclear w hether this 

qualifier should be read as “ there exists at least one x  in I . . . " o r  as " there exists exactly 

one x  in I . . ." .  A distinction is m ade in [1] between the two by using !3 to indicate 

the latter and 3 for the former. We adopt this distinction here because the sem antic 

difference is relevant to the developm ent o f  the Hybrid Model.

Logical equivalence. T his rule o f  inference is defined by the statem ent ( i  =  y)  ~  ( x  =s

y ) n  (y  => x).

Logical not operator, read as “ ...not...” , and resulting in the logical negation o f  its 

im m ediate consequent. For exam ple, if  x  is true, then ->x is false.

Intersection operator, read as “ ...and...". The result o f  this operation  is the set intersection 

o f  its antecedent and consequent. For exam ple, x  n  y  results in the intersection o f  the 

set entities x and y. T his form is used exclusively for set operations. A lso, the form 

PI; AT; m eans the intersection o f  all AT,.

Boolean “and” operator. The result o f  this operation is  true iff both its antecedent and 

consequent are true. For exam ple p  •  q is true iff both statem ents p  and q arc true.

Inclusive union operator, read as “ ...or...” . T he result o f  this operation  is the set union o f 

its antecedent and consequent. F o r exam ple, x  u  y  is the set containing all the m em bers 

o f  both set x and set y. A lso, the form U . Af; m eans the union o f  all AT,.

T he boolean inclusive “o r” operator. T he result o f  this operation is true iff c ither o r both 

o f  its antecedent and consequent are true. F o r exam ple, p  +  q is true iff  (a) p  is true, 

o r (b) q is true, o r (c) p  and q are true. T he exclusive union operator (i.e. the operator

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

10

the result o f  which is true if only one but not both o f p  o r q is true) is defined by the 

expression (p  +  </) •  -i(p  •  </).

=> M aterial im plication, read as “ ...im plies...” . Classically, this is the only kind o f  im pli­

cation used in formal logic. The antecedent o f  => im plies the consequent; that is, i f  the 

antecedent is true, then the consequent is also true. T his operator is used w hen only the 

truth value o f  the antecedent is known and the value o f  the consequent is unknown.

( . . . )  Angle brackets denote tuples, which are short ordered lists treated as single units. For

exam ple, V ((x ,t/) ) ( (x  €  / )  •  ( 3/ €  / ) )  denotes an ordered pair o f  integers.

D Superset operator. Equivalent to =>.

2  Superset-or-equality operator.

0 T he em pty  (o r null) set.

V ( X )  T he pow er set o f  A '; i.e. the set containing all subsets o f  X  (including the em pty  set).

A fu n c tio n  is denoted by its nam e followed by arguments. T he argum ents are in parentheses. For 

exam ple, V IEW (A ', 9 ) is a function whose name is VIEW, and whose argum ents (in  th is case) are X  and 

1p. Functions m ay have no argum ents. A function w ith one aigum ent is called a  unary  function; a  function 

w ith two argum ents is called a binary  function; a function w ith m ore than tw o argum ents is called an 

n-ary  function. A function returns som e data entity. In general, a  function is written f ( x ) .

Function variables (i.e. variables that represent functions) are w ritten in greek characters, fo r exam ple <p.

A predicate  is like a  function, but it can only return one o f  two values, true  o r fa lse .

T he follow ing sym bols are used exclusively in the Hybrid Model.

A', Y ,  Z  individual objects.

C i A  collection i o f  objects.

a, b, c attributes o f  objects.

0  T he set o f  all objects.
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T  The set o f  all object types.

T , U , V  types.

C  The set o f  all classes o f objects.

A The set o f  all attributes.

D The set o f  all attribute domains.

R The set o f  all attribute ranges.

T  The se t o f  all view definitions.

7  A view  definition.

IS_A The typing predicate, read as “ . . .  is

exam ple: IS_A (A \ T )  is true if  object

IN H ER ITS The inheritance predicate, read as “ . . .  inherits f ro m .. .  ” and used to relate object types.

For exam ple: 1NHERITS(T, U ) is true if  type T  inherits from (i.e. is specialized from) 

type U  or, similarly, if  type U  is inherited by (i.e. is generalized from) type T .

A The set o f  all aggregate predicates.

6 An aggregate predicate.

a . . .  ” and used to relate objects to types. For 

A' is o f  type T ,  and false otherw ise.
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Glossary

T his g lossary  contains term s relevant to the work presented herein that are not com m only used in

engineering, but that are quite com m on in o ther fields. For each term in the  glossary, the page where the

term is first used is given in parentheses.

A b s tra c tio n  M echan ism : A device o r technique whereby details are rem oved from  som e collection o f  

inform ation leaving only that which is considered essential. A bstraction  m echanism s perm it the 

ordering, o r  organization, o f  inform ation, (page 19)

C a rte s ia n  P ro d u c t: The cartesian product o f  two sets A  and B  is defined as the set o f  ordered pairs 

such that the first elem ent o f  every ordered pair is a m em ber o f  A  and the second elem ent o f  every 

ordered pa ir is a m em ber o f  B .  (page 85)

C o m p le ten ess : T he property o f  a  formal system  wherein exactly all tree  sta tem ents can be proven true 

and exactly  all false statem ents can be proven false, (page 48)

C o n sisten cy : In logic, the state o f  a  formal system  containing no contradictions; that is, a  form al system  

is consistent i f  all axiom s and theorem s in the system  are valid  (see below ) w ith respect to each 

other, (page 48)

D esign E n tity : A unit, not necessarily realizable in and o f itself, o f  relevance in  design; an inform ation 

m odel o f  real world structures o f  use in a  design process, but not including the design  process itself, 

(page 74)

D ynam ic  D a ta  M odeling : The m odeling o f  sem antic properties and the m anipulation  o f  data  structures, 

often  in  reference to database transactions, (page 157)

12
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E n ca p su la tio n : T he discretization o f  a quantity o f  inform ation into a m eaningful structure that can be 

treated as a  single unit, (page 76)

E p istem ology : The study o f  a theory o f  the nature and grounds o f  knowledge, especially  w ith reference 

to  its lim its and valid ity1, (page 81)

F o rm a l System : A system  consisting o f a set axiom s taken as premises, and a set o f  rules by which 

theorem s m ay be proven by application o f  the axioms, (page 19)

H eu ris tic : Som ething valuable for empirical research, but unproved o r incapable o f  proof, (page 34)

Iso m o rp h ism : In logic, the relationship betw een a formal system  and som e perceived aspect o f  reality. 

A  form al system  is isom orphic to som e real-world phenom enon if it m odels it correctly, (page 40)

O n to lo g y : A  branch o f  m etaphysics relating to the nature o f  being; a particular theory about the nature 

o f  being  o r the kinds o f existence2, (page 90)

P a ra d o x : In logic, a  statem ent that can be proven both true and false in a given form al system , (page 48)

S ta tic  D a ta  M odeling : The description o f  data objects and their relationships w ithout considering o f the 

operations in w hich such structures m ay be used, (page 1 11 )

U n iverse  o f  D iscourse : The dom ain about w hich all interesting argum ents arc m ade. For exam ple, in 

se t theory, the universe o f  discourse is that o f  all sets, (page 74)

V alid ity : In logic, the state o f  being true under any interpretation; that is, a statem ent o r  form ula is valid 

i f  it can  never be false, (page 38)

'F rom  W ebster's 7th Dictionary. 
’From W ebster's 7th Dictionary.
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Chapter 1

Introduction

1.1 Preamble

W hat is engineering design?

In the broadest sense, the issue addressed by this work is that hum anity lacks a sufficient understanding 

o f  the process o f  engineering design. A lthough sim ple enough to phrase, this problem  has been an issue 

o f  contention  for years, and the som etim es very emotional argum ents m ade by various proponents o f one 

view point o r  another, m ethodology A o r  B, system  X or Y, have possibly done more harm  than good. 

It has alw ays struck this au thor as h ighly suspicious behavior when one is unable to refrain from  overt 

generalization and em otional rhetoric to convince an audience. Unfortunately, m em bers o f  all  the various 

schools o f  thought involved in the debate m ay be accused o f  this kind o f  behavior, leaving one with the 

distinct im pression that no one is com pletely right.

How ever, the unavoidable facts are these: engineering design has existed in one form o r another since 

ancient tim es. In this interval, design has changed -  evolved  -  no t only in response to o u r ever-increasing 

understanding o f  the physical universe, but also in other, relatively arbitrary ways, responding to forces 

no t particularly natural: sociological, psychological, environm ental, governm ental, and political. All 

these forces have had a hand in shaping design as it is now, and their continued influence has required 

designers and design researchers to adapt to their exigencies.

15
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The one constant throughout the history o f engineer! jcsign  has been that the requirem ents placed on 

designers and on the products they design have continually increased in com plexity. Sim ilarly, as we gain 

m ore know ledge about the universe, that m uch m ore information can be applied to the problem s we have 

to solve. T he com plexity o f m ost currcnt-day design problems is m any orders o f  m agnitude greater than 

that o f  problem s faced by the designers o f  the last century, and there is no reason to suspect that this trend 

will change in the future. Correspondingly, in order to meet the challenge o f  to d ay ’s design problem s, we 

m ust Icam to m anage all the inform ation at our disposal in an efficient, concise and tim ely manner.

Design researchers are thus faced with the task o f dealing with this com plexity; sim ply  ignoring it is 

unacceptable. In response to this challenge, an ew  field o f research has em erged: design theory. Its goals 

arc (a) to respond to the increasing com plexity o f  engineering design problem s, (b) to increase confidence 

in o u r solutions to the design problem s o f  the future, and (c) to overcom e lim itations and difficulties 

associated w ith the process o f  design by providing m ore consistent, logically  structured m ethodologies 

and techniques.

Furthering our understanding o f design is a worthwhile goal because it leads to verifiable explanations 

o f  the phenom enon o f  design. Historically, explanations o f this kind in  o ther fields (such as physics, 

m edicine, etc.) have led to progress, advancem ent, and new insights into the nature o f  the phenom enon.

M any segm ents o f  the design process are still based in large m easure on arbitrary, ad-hoc  decisions and 

processes. Still, design theory has provided a focal point for the efforts o f  hundreds o f  researchers, and 

their work has already m ade notable contributions towards the goals stated above. It m arks the beginning 

o f  a  new  stage in the evolution o f  design, a  renaissance o f  sorts; we, as designers, are collectively and for 

the first tim e attem pting to exam ine our role in society, and to exam ine design itse lf critically, objectively, 

logically. Holding design theory as a central concept, researchers are striv ing  tow ard a  level o f  formal 

rigor in engineering design, a  certain scientific legitim acy that has, to date, been ra ther elusive.

In the recent past, engineering design has been considered largely an “art”  o r even a  “sk ill” , an endeavor 

not am enable to form alization and scientific scrutiny. T his is changing: the in troduction o f  expert 

and autom ated system s, quantitative cognitive design research, new  m ethodologies such as concurrent 

engineering, new forms o f  m athem atics (for exam ple, fuzzy logic) and o ther technological and scientific 

innovations are pennitting  a new view o f  design to develop, a  view  in w hich technology and creativity, 

science and intuition are linked in a  sym biotic relationship, forming a  w hole that is greater than  the sum  o f
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its parts. It is not unlike the Renaissance, during which tim e science grew from a highly m ystical practice 

to the m uch m ore rational, reasonable, and far more useful endeavor, it is today. As this maturation 

process continues, we will have to examine the engineering design enterprise and possibly change our 

ideas about what it realty is. In order to be successful, every effort must be made to m aintain a flexible 

yet definitive fram ew ork w ithin which design and design theory can evolve in a formal manner.

It is this au tho r’s hum ble desire to contribute to this endeavor, and to help the engineering profession 

develop to its next plateau.

1.2 Premises

T he relevance o f  the w ork presented herein depends on the acceptance o f certain prem ises. These premises 

cannot be proved in any mathematical o r logical sense o f  the word because they arc extralogical, that is. 

they are em pirical, deriving directly from observation o f  the state o f  design and o f  reality. As such, the 

m ost that can possib ly  be expected is to provide sufficient empirical evidence to suggest an acceptable 

degree o f  confidence.

These prem ises are discussed here, at the outset, so as to define the boundaries w ithin w hich the rest o f 

this work exists.

D esign is n o t w ell-u n d ersto o d . There is no clear, precise definition o f  what design is. It has, for exam ple, 

been referred to  in the recent literature as “ ...the evaluation and satisfaction o f  m any constra in ts...” 

[2]; “ ...planning for m anufacture...” [3]; a largely intellectual, cognitive process |4 |;  an “ ...ill-defined 

art...w hich lacks form al definition..." [5]; a  som ewhat “m ystical” process [6 ]; a  “ ...socially m ediated 

process...”  [7]; and m any others. All these descriptions are. to be sure, partly right. But the totality 

o f  w hat is involved in design is lost in each case. Certainly, m any researchers have been m otivated to 

perform  design research expressly due to the apparent lack o f  current understanding [8,9].

D esign is n o t c u rre n tly  efficiently pe rfo rm ed  o r  tau g h t. In a recent report [ 10], the National Research 

Council (U SA ) 1 has taken the position that engineering design education is weak, and that this weakness

'in  collaboration with the National Science Foundation and other bodies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

18

is preventing the best available design practices from reaching industry. This point o f  view  has been 

advocated widely, both in the United States, and in Canada [11,12]. Educators m ust find new  ways to 

com m unicate effectively to students if  these students are to som eday design effectively. B ut w ithout a  good 

understanding o f what design is and how it is perform ed, such necessary com m unication is im possible. 

Thus, the burden finally lies with researchers, who m ust advance our basic understanding o f  design.

F o rm al theo ries o f  design w ould lead to im proved  p rac tica l m ethodologies. A form al theory is a 

logical, objective system  for the maintenance o f  knowledge and the investigation o f  phenom ena. Formal 

theories arc the cornerstone o f  both the natural and engineering sciences. The establishm ent o f  formal 

theories o f  design m ay provide the benefits to designers that they have provided to scientists. T h is notion 

has been echoed by o ther researchers (e.g. [13,14]).

I t  is possible to  fo rm alize  a t  least segm ents o f  the  design process. A num ber o f  m ethodologies and 

techniques already exist, defined in at least informal term s, that have provided considerable insights, i f  not 

into the nature o f design itself, then at least into the m ore practical aspects o f the engineering endeavor. 

T he structure currently  used every day in design processes all over the world did no t ex ist a  century, o r 

even a decade, ago. There is no indication that we have yet exhausted all the d irections in  w hich such 

a  structure can extend. W hether the design process as a  whole can be entirely autom ated rem ains an 

open question; still, there are m any areas where increased form alization is possible and desirable. The 

advantages are num erous: im proved com m unications and tools fo r teaching, m ore reliable analysis o f  

designs fo r correctness, inform ation integrity and shorter developm ent tim es are but a  few [15].

1.3 Statement of Thesis

T he thesis o f this w ork is: axiom atic se t theory provides a basis whereby design  inform ation can 

be rigorously specified independent o f  design processes giving rise to or otherw ise m anipulating  that 

inform ation.

T his statem ent captures the essence o f  a  num ber o f  argum ents, all o f  which will be presented  and 

exam ined in this docum ent. Such term s as axiom atic se t theory, design inform ation, design  process  and
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so on  will be defined where possible in accordance with com m only accepted practice; in som e cases, 

w here conventional definitions arc vague or imprecise, an attempt will be made to specify them more 

fully. Som e term s, such as isomorphism, have specific denotations in logic; since this work focuses on 

the use o f  logic, we will use the logical rather than engineering definitions. A glossary o f important tenns 

is provided at the beginning o f this document.

T he heart o f  the work focuses on the derivation o f a formal system  called the Hybrid M odel o f design 

inform ation (HM ); the system  consists o f nine axiom s and various definitions and theorem s. The axioms 

capture essential properties o f  design information within a logical framework, including live abstraction  

m echanism s  that perm it the organization o f  information according to various criteria. The axiom s will he 

presented in the notation o f m athematical logic; explanation and discussion will be presented in English.

In order to dem onstrate the application o f  formal systems to practical issues in engineering design, a new 

program m ing language for engineering com putation, called D e s ig n e r , shall be presented. D e s ig n e r  

relies on  HM  for rigor. It represents a com putational model that captures arbitrary inform ation about 

specific design entities and permits the organization o f  that information; it is not intended to capture 

m ethodological o r procedural inform ation about the design process itself. It will be show n that a strong 

continuity  o f  logical rigor exists from HM through to the im plem entation >f D e s ig n e r . Various exam ples 

specific to engineering are included to demonstrate D e s ig n e r ’s capabilities.

G iven the novelty  o f  design theory as a field o f  research, a significant body o f fundamental work docs 

not yet exist. T his is indicated in the premises (Section 1.2). T he au th o r’s work m ust remain som ewhat 

general, i f  for no other reason than this. In the process o f  developing the theories and ideas presented 

herein, the author has also developed a n u m b ero f collateral notions which, though not d irectly  associated 

w ith  the precise topic o f  this work, im pact upon it in an ancillary capacity. T h is material is nonetheless 

relevant and original, and is included in this docum ent for the sake o f com pleteness.

W ith th is in  m ind, the author also defines the thesis o f  this work in a broader sense; nam ely that the use 

o f  fo rm al logic can significantly improve our understanding o f  design, and provide a fram ew ork within 

w hich h igh ly  effective tools fo r  m anaging the complexity o f  design can be  generated. The answ er to 

the question  o f  the specific thesis o f  this work, stated at the beginning o f  this Section, will be used to 

corroborate th is m ore general statement.

It is noted  that this dissertation directly addresses w hat is given in [4] as the first m istake o f  current
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design education: “ We have done very little research to develop a fundamental scientific understanding 

o f  engineering design processes."

1.4 General Remarks

As design theory continues to gain acceptance and popularity, the organizational aspects o f  these research 

efforts will become increasingly important. Successful organizational techniques rely on  the detection of, 

tuid accom m odation to, the structure that exists w ithin inform ation available to designers. T he creation 

o f  these techniques m ust occur in a  logical fashion. Paraphrasing Quine [16], the tru ths o f  logic m ay be 

reckoned am ong the truths o f  design, thus making logic an essential basis o f  its form al understanding. 

T hroughout this work, argum ents will be structured in as logical a  m anner as is possible, and logic will 

be invoked often as the basis upon which we will m ake o u r observations.

Efforts in design theory have rightly depended on the use o f  com puters for their capacity  to store 

inform ation accurately and to calculate and m aintain the com plex relationships that exist betw een data. 

As is noted in [17], “ ...the hum an brain is better able to recognize than recall....” C om puters, w ith their 

relatively infallible m em ories, are o f  great assistance in this regard. Furthermore, as the w orld econom y 

continues to m ove from a product and service base to an inform ation base, inform ation m anagem ent issues 

in design will becom e m ore im portant [7 ,18-20].

D esign research in the recent past has exam ined the use o f  databases, application-specific languages and 

expert system s, as well as m ore theoretical studies in such areas as constraint satisfaction and sym bolic 

com putation. These tools have been applied with varying degrees o f  success to com ponent assem bly [21], 

design  exploration [22,23], solid m odeling [24], finite elem ent analysis [25], etc. T he unique nature o f 

design  suggests that generalized information m anagem ent approaches will not necessarily  support all o f 

its aspects [26-28].

Currently, however, there is grow ing concern regarding the sem antics o f  engineering design. M any recent 

research efforts have m et w ith lim ited success because not enough is understood about the m eaning  o f 

the inform ation wc use. T he understanding we do have tends to be em pirical and intuitive [29 ,30] and its 

organization is neither particularly structured nor logical. In response to this, researchers have begun  to 

backtrack, seeking a return to sound, logical first principles in design. Two notable exam ples o f  th is trend
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are [4 ,31]. The notion o f  the existence o f formal first principles for design has guided the au th o r's  work 

presented herein as well.

T he im portance o f the organization  o f  design inform ation cannot be overem phasized. T his issue is 

strongly  tied to the search for sem antic formalization. To organize inform ation m eans to order it. The 

im position  o f  order on  inform ation is identical to the extraction o f  m eaning from it, and m akes explicit 

such inform ation as would otherw ise be implicit only. Increasing the amount o f  explicit inform ation 

present in a collection o f  data decreases the am ount o f interpretation  that m ust be perform ed to extract its 

sem antics [32,33]. Therefore, the study o f  organizational schem es for design inform ation is synonym ous 

w ith  the study o f  its sem antics. T he them e o f  organization pervades the au tho r’s work.

T h e  search fo ra  form alization for engineering design m ust necessarily be conducted in a logical, scientific 

and internally consistent m anner [4], For this purpose, the author has selected axiom atic set theory and 

discusses it briefly in Section 8.2. The role o f  logic in design is critical to the developm ent o f  the author's 

theory, and will be discussed in detail before the actual theory is presented.

T h is docum ent is arranged in five Parts. The central three Parts form the body o f  the work, beginning 

w ith  the m ost general and theoretical remarks, and proceeding towards m ore specific m atters. Part 11 will 

focus on the role logic plays in design, indicating som e o f  the short-com ings o f  the current understanding 

o f  design and indicating how logic can help resolve these problem s.

Part III deals w ith the central thesis and presents the Hybrid M odel (HM ) o f  design inform ation. Naturally, 

no  discussion  about design  inform ation can be carried out w ithout som e  reference to the design process, 

bu t the author will dem onstrate that it is both reasonable and advantageous to separate inform ation about 

a  design  artifact from  the actions carried out on  or w ith this inform ation. It is essential to understand 

w hat form s o f  inform ation are available before any m eaningful discussion regarding design processes can 

occur. T hus, the theory deals specifically and only with design inform ation. T he design process will be 

discussed  on ly  insofar as to define the design inform ation m anagem ent problem . Issues such as concurrent 

design  are no t addressed because they are aspects specific to the design process; that is, they affect how 

inform ation  is m anipulated, but no t the inform ation itself.

Part IV will describe a new  program m ing paradigm  devised by the author, built upon HM . The intention 

is to indicate the im m ediate benefits that can be reaped from a form al theory such as HM , and to provide a 

testbed w ith which further research in design theory m ay be conducted. Various design-specific exam ples
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will dem onstrate the capabilities o f  the resulting computational system.

Finally, Part V will conclude the work with a general discussion o f  results and d irections for future 

research.

A glossary o f  im portant term s and a list o f  sym bols are provided at the beginning o f  the docum ent.
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Chapter 2

Literature Survey

2.1 Introduction

T his C hapter will present a survey o f recent literature exam ined in the course o f  perform ing the work 

reported herein. Due to the relative youth o f  design theory as a research lieid, literature directly within 

the field is no t abundant. However, the author has found a great deal o f  inform ation in the peripheral 

areas o f  form al logic, computer-aided engineering, concurrent engineering, and com puter science which 

is relevant to the m atter at hand.

B ecause th is dissertation  is squarely w ithin the field o f  design theory, com m ents that will appear in this 

C hapter shall be biased in that direction. In other words, the prim ary criterion for the evaluation o f  other 

research shall be  the degree to which it contributes to the overall understanding o f  design. In som e cases, 

this con tribu tion  will be slight; this does not m ean that the surveyed work is o f  no value, but only that it is 

o f  lim ited use strictly  w ithin design theory itself. G iven the nature o f  this survey, literature dealing with 

theoretical aspects o f  com puter program m ing, as well as fields such as formal logic and o thers will not be 

dealt w ith  directly.

T he au tho r has found that the existing literature can be divided coarsely into three categories; design 

theory, com puter-aided engineering, and cognitive and concurrent design research. T hese three categories 

are no t decoupled; som e cross-over is bound to occur as techniques are applied to various dom ains

23
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(for exam ple, the application o f  a specific design theory to the generation o f a  com puterized desig n er’s 

aide). However, principal contributions by various researchers can be categorized on the w hole using this 

scheme; it shall be used here to help organize this survey.

2.2 Design Theory

Surveyed work which the author classifies as design theoretic in nature is hallm arked by three properties. 

First, com puter technologies arc not essential to the contribution o f  the work; that is, the principal 

contribution  is not sim ply a new computerized designer's aide, database, o r  o ther program . Second, 

design theoretic w ork aim s at a unified view o f  design in the m ost global sense, not only as it affects some 

very specific task w ithin design (for exam ple, synthesis and analysis o f  m echanism s [34]). A lthough such 

work m ay contain strong theoretic elem ents, it is not design theory because it deals w ith specific tasks and 

excludes issues o f  integration with other aspects o f  the design endeavor. T hird , the role o f  the designer is 

not central to the developm ent o f  the work; this excludes issues o f  cognition, intuition, judgm en t, etc.

T he efforts o f tw o researchers in particular are exem plary o f  the w ork currently being done in  design 

theory:

Nam P. Suh has recently published a text [31] wherein he sets forth  an axiom atic theory o f  design. Suh 

assum es that a design problem  can be stated in terms o f functional requirements (FRs) and that its solution, 

a  design artifact, is defined in term s o f  a num ber o f  design param eters  (DPs). He argues fo r th is approach 

based on the em pirical evidence o f  how design problem s are com m only stated, and how  the ir solutions 

are com m only specified.

Based on this assum ption, his theory contains only tw o axiom s, eight corollaries and six teen  theorem s. 

We will exam ine only the axiom s here, since the corollaries and theorem s m ay be derived from  them . The 

first axiom  is that the FRs o f  a design problem should be independent o f  each o ther (i.e. uncoupled). He 

argues that coupled functional requirements indicate som e m isconception o f  the design  problem ; several 

exam ples are provided to support this notion. The second axiom  o f  S uh’s theory is that the inform ation 

content o f a  design specification should be m inim ized. T he intention here is to ensure that there is no 

duplicated inform ation o r inform ation arising from coupling betw een FRs. It is show n that, all e lse being 

equal, a set o f  uncoupled FRs leads to a “sim pler” design (i.e. having a m inim um  requited  inform ation
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content) than an equivalent set o f coupled FRs.

Su h 's theory does not formally define an exact procedure to be followed in an arbitrary case in order to 

find an appropriate solution, but rather defines a collection o f  rules (hat a designer can use to analyze 

a design  problem  and guide evaluation and subsequent iterative redesign o f  a solution until it becom es 

satisfactory.

A lthough the theory is for the m ost part presented in English, a chapter is reserved near the end o f  the 

book fo r a restatem ent o f  the theory in the language o f  predicate logic. T his author notes that though 

the statem ent o f  S u h ’s theory is am enable to representation in predicate logic, a num ber o f  important 

concepts are defined as prim itive predicates only informally (such as feasib ility , m easure o f  information  

content, and coupling). Since logic is a  field wherein an argument is only as strong as its weakest link, 

such inform ality  at the very outset o f the presentation can only be taken as a shortcom ing o f  the theory.

N onetheless, the text is replete with exam ples ranging from the design o f  a can opener to the rc-organizat ion 

o f  the E ngineering Directorate o f  the National Science Foundation, and is an ideal vehicle for the 

in troduction  o f  logical structured thinking processes into the field o f  design, both as an educational tool 

and as a  general reference.

T he second principal c o n tr ib u to rs  design theory is John Dixon (e ta l) w ho, in num erous papers and articles 

(e.g. [9 ,1 3 ,2 9 ,3 5 ,3 6 ])  strongly advocates a more “scientific” approach to design  and design research. 

R ather than the generally philosophic approach taken by Suh, D ixon’s w ork centers on  experim entation 

w ith com puters to prove o r disprove general notions relevant to design. In [9], for exam ple, a taxonom y 

fo r various kinds o f design problem s is described. The criterion for ascribing a particular problem  to one 

kind o r  another is based on the nature o f  the initial state o f  knowledge when the problem  is defined, and the 

final state o f  know ledge at the p roblem ’s solution. For exam ple, phenom enological design  is characterized 

by a function  to be supplied and a  physical phenom enon that will provide that function. Each kind o f 

design problem  thus recognized, argues Dixon, suggests a class o f  solu tion  m ethods. Thus the taxonom y 

o f  design  problem s is seen as leading to a corresponding taxonom y o f  design m ethodologies. As these 

taxonom ies becom e m ore detailed, D ixon also reports on  various softw are system s devised to satisfy 

taxonom ic and o ther requirements. T he system s are then used to determ ine what advantages are provided, 

i f  any, by  the approach. T he m ain contribution o f  D ixon’s work is seen by this author as the explanation of 

the  nature o f  various kinds o f  design problem s and the classification o f  know n and new ly devised solution
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techniques based on experim entation using computers. Many o f  D ixon 's classifications are quite coarse, 

but since no o ther taxonom ic system s have yet been widely accepted, he has little alternative. Two other 

classifications that he and his co-workers have advocated include: the separation o f  design into (a) design 

problem s, (b) the people who perform design and (c) the environm ent w ith in  which design occurs [37]; 

and categorization o f  design theories as prescriptive1 (tending to describe how  design should be carried 

out), cognitive-descriptive (describing what design seeks to achieve) and com putational (form alization 

through com puterization) [38]. These system s all seek to provide flexible tools to guide researchers 

tow ards a better understanding o f  the nature o f  design, rather than a series o f  rigid, inflexible structures 

defining exactly  the nature o f  design as a  process.

Insofar as purely theoretic research is concerned, special com m ent should be also m ade o f  three other 

efforts:

T he first is the Extended General Design Theory proposed by Yoshikawa in [39], T he im portance o f  this 

w ork is three-fold: firstly, it was a fairly early attem pt to em ploy som e techniques o f  logic to discuss 

the  nature o f  design; secondly, it sought to place design in a m ore g lobal fram ew ork and discussed the 

relationship  betw een design and such fields as physics, philosophy, and technology, by  representing the 

universe as perceived by m an as divided into three distinct dom ains: log ica l, conceptual and physical-, 

thirdly, Yoshikawa was one o f  the first to advocate the distinction betw een what design  is versus how  

design is perform ed. From this starting point, Yoshikawa began investigating  the nature o f  design, thus 

including from the very outset the notion  that design m ust occur w ithin an environm ent, by w hich it is 

affected and w hich it affects. T his view  o f  engineering as part o f  the hum an experience has m ore recently 

becom e qu ite  relevant in nationally m andated efforts to improve design as an endeavor [10].

The second is the notion o f  recursive design  as proposed by Ward [40]. D esign is seen as recursive (rather 

than iterative) in cases where the design problem  m ay be broken dow n into sm alle r and sm aller com ponents 

by the recursive application o f  som e single methodology. This differs from  the m ore conventional iterative 

approach in  that an iterative design process is applied m any tim es to a  detailed  design alternative, its goal 

being convergence o f  successive solutions when compared to an externally  defined set o f  criteria. The 

advantage o f  recursive design is its ability to im plicitly handle a  w ide nu m b er o f  design alternatives, 

som ething that typical iterative techniques do not do well. However, i f  the resulting tree structure o f  all

'som etim es referred lo as normative.
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alternatives in a recursive design process is not carefully “pruned" to elim inate unacceptable designs as 

early as possible, it can lead to an intractable num ber o f  solutions. The notion o f  recursive design is quite 

new, but show s som e potential, especially in concurrent engineering environm ents.

The third and last no 'ab le  theoretic effort is that o f Fauvcl (411. In his approach to m odeling design, no 

em phasis is placed on any one aspect. Rather, two abstract notions, embodim ent and activity, tire used to 

m odel any design  entity. An activity is any procedure o r m ethodology used by a designer: an embodim ent 

is the resulting effect o f  that procedure o r m ethodology on a design. This essentially functional approach 

is particularly  flexible and capable o f providing an integrating framework for (he overall design endeavor. 

It is also rem iniscent o f  the model developed in this thesis (see Section 8.1).

Dixon is also a leading proponent o f so-called feature-based design  (e.g. [42-45]). A feature is generally 

considered to be a m odeling entity m ore im m ediately relevant to design and m anufacturing than a simple 

solid o r  o ther geom etric model. It is often used in connection with efforts to integrate design and 

m anufacturing. However, even Dixon h im self states that the exact nature o f  a  feature has yet to be 

defined [42], and o ther researchers (e.g. [46 ,47]) have dem onstrated that feature-based approaches arc 

not com putationally  feasible over large feature sets. Nonetheless, the im portance o f  features as m odeling 

structures m akes it w orthy o f  note here. Unfortunately, researchers have alm ost invariably treated features 

as the basis fo r the construction o f  software system s rather than legitim ate conceptual structures to aid in 

the generation  o f  design  theories: nonetheless, since we are interested in design theory and not engineering 

com putation, we discuss features in this survey only insofar as they represent a conceptual tool useful in 

design theory. D ixon is one o f  the few who have used the notion o f  a  feature to guide the developm ent 

o f  his design research. Features have found use in the study and generation o f  taxonom ies o f  design 

entities [48 ,49], form al languages for the specification o f  spatial relationships [50,51 ], and the integration 

o f  design  and m anufacturing [52-54],

A nother area w herein a  great deal o f  work o f  a  design theoretic nature has been done is the area o f 

constraints. A  constraint is generally defined as som e kind o f  relationship betw een variables o r parameters 

that restricts the  set o f  acceptable values that the variables m ay have assigned to them . C onstraints capture 

a  restriction p laced on a  design by the nature o f  the design problem ; thus all constrain ts on a particular 

design  m ust be  satisfied for the design to represent a possible solution. T he constrain t satisfaction 

problem  has been determ ined in the general case to be NP-com plete  [55 ,56]; that is, all but trivial cases
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are com putationally intractable [57], Constraints also affect design optim ization and sim ulation  [58—62], 

Thus, finding alternative strategies for dealing with constraints remains an active research area.

The first real attem pt to treat the notion o f "constraint” as a m odeling tool m athem atically appears to have 

been by Friedman and Lcondes [63-65], wherein not only a general m athematical treatm ent o f  constraint 

theory  was given, but various kinds o f constraints relevant to the engineering dom ain  were exam ined. 

Since then, work in the theory o f  constraints has continued in two principal directions: com putation  and 

theory. The com putational aspects o f  constraints will be discussed in the next Section. Insofar as the 

theoretic aspects o f  constraints as concerned, m any efforts have been directed in the use o f  constraint 

theory to optim ize  design; notably, the work o f  W ilde [66] who introduced the notion  o f  m onotonicity  

and established several principles by which m onotonicity can be used to optim ize m athem atical m odels 

o f  design artifacts. All this work has been continued by m any others, including [2 ,2 2 ,5 8 ,6 7 -7 2 ] ,  

A lso, various specific aspects o f  constraint theory as applied to design have attracted the  attention  o f 

researchers: the role o f  constraints in discrete event system s for m odeling design processes [73 ,74]; 

the representation o f  spatial constraints to model shape and physical structure [75 ,76]; categorization  o f 

constraints types [77]; and the use o f constraint netw orks as m odels o f design processes [78].

T here arc m any o ther research efforts that have contributed to the developm ent o f  design  theory; to even 

m ention them all is an intractable proposition. However, a  glim pse o f  a  few can indicate the dep th  and 

richness o f  ongoing research o f  potential relevance:

Various m athem atical and logical form s have found their way into design theory, w ith  the  goal o f  advancing 

the integration o f  otherw ise d isjoint aspects o f design, including: probability  and fuzzy logic applied to 

the representation o f  uncertainty in the design process, especially in top-down  approaches [47 ,79]; 

predicate calculus [80] applied to the capture o f design knowledge [14]; and in tegration th rough the use 

o f  inform ation m anagem ent techniques and inform ation theory [81-83].

T he developm ent o f  general m ethodologic frameworks fo r particular sub-dom ains o f  the general design 

process has attracted considerable attention, including Design for M anufacture (and A ssem bly) [84], 

design for quality  [85], generalized techniques to assist in the organization o f  design know ledge for 

the sake o f  sim plifying its com plexity [86-88], and efforts to create viable taxonom ies o r  classification 

system s for design problem s, m ethods or entities [ 17,89,90].
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2.3 Computer-Aided Engineering

Into this category falls the m ajority o f the work (over 50%) o f  w hich the author is aware, and consists o f 

m odels and actual im plem entations o f  computerized design aides. Efforts in computer-aided engineering 

often  have im plicitly  defined w ithin them m odels o r portions o f m odels o f  design in general. T h is has 

been necessary because fom ial bases for design do not yet exist. Indeed, the need for form alism s for 

design inform ation and processes is often regarded as an essential prerequisite for achieving integrated  

com puterized design system s [91.92], Such conceptual models and form alism s guide the developm ent 

o f  softw are system s. The m otivation for the developm ent o f the conceptual model arises prim arily front 

the requirem ents o f  software design, rather than from the requirem ents o f  design in general. In many 

cases, this has resulted in confusion between the m odeling requirem ents o f design and the exigencies 

o f  com puter program m ing. We defer a detailed exam ination o f  this issue to Section 4.3; here, we shall 

exam ine the breadth and nature o f  recent work by o ther researchers. As indicated in the introduction to 

this Chapter, em phasis shall be placed on contributions to design theory rather than to com puter-aided 

engineering.

T he m ost notew orthy effort is that o f  Charles Eastm an et a l [93-98]. T his w ork presents a new conceptual 

da ta  m odel, called the Engineering Data M odel (EDM ), that defines classes o f  designed products called 

product m odels. The content o f  a  product model corresponds to a design  database schem a (i.e. the 

organizational structure o f a  design database, not necessarily the actual data w ithin it). O ne o f  the m ajor 

advantages o f  ED M  is that it is entirely independent o f both hardware and software considerations; this 

separation  greatly  sim plifies the system , perm itting clearer definition o f  im portant notions for design 

w ithout the need fo r actual com putation. Additionally, notions o f  formal logic are used as the base upon 

w hich E D M  is built; th is provides rigor to permit the “correctness" o f  a  particular product model to be 

investigated. ED M  product m odels are defined entirely in term s o f  three prim itive constructs (dom ains, 

aggregations and constraints) plus several higher level constructs built up from the prim itives.

T he im portant contribution o f  E astm an’s work from the point o f  view o f  design theory is that EDM 

provides a  form al structure for design information, albeit for the express reason o f  generating database 

schem a. T h is structure could be used to exam ine the nature o f  design inform ation itself. In this regard, 

ED M  is unique in all the work o f  which this author is aware for its com pleteness and rigor.
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However, there are two shortcom ings in EDM that this author feels are significant. Firstly, ED M  is a 

descriptive  (or declarative) form, as opposed to an axiom atic  form. EDM  is m eant to perm it, among 

o ther things, reasoning about product m odels, but a descriptive form does not provide the apparatus 

to perform  this reasoning in a formal m anner [99]. As well, descriptive form s have been found to be 

dom ain-dependent, which can lead to difficulties in com putability [ 100]. Axiom atic system s, on the other 

hand, inherently provide all the apparatus needed to check for correctness (i.e. the notion o f  “proof” o f  a 

m odel) and system atic model construction.

Secondly, although EDM remains quite detached from the exigencies o f  computer programming, the 

fact that it is a data m odel requires it to treat such issues as identity (i.e. nam ing, equality, etc.) from 

a com putational point o f  view. T his introduction o f  com putational issues can unnecessarily  com plicate 

investigations geared to the study o f  design inform ation in general.

A nother notable contribution is that o f  Crawford and Anderson [78,101], in w hich a  com puterized system  

for general m odeling o f  design is presented. The key advantage is that the system  is capable o f  m odeling 

solu tion  processes as well as design problem s themselves. In this way, a  h igher level o f  unification is 

achieved than in o ther efforts, and different categories o f  solution techniques can be established to assist 

in so lv ing  novel design problem s. However, as is typical in these efforts, the strictly  descriptive attitude 

taken in  the w ork lim its the use o f the proposed system  to the study and analysis o f  designs. A lso, the 

connection betw een the proposed system  and formal bases (e.g. logic) are not exam ined, thus raising 

questions as to w hether the validity o f  the system  can be demonstrated.

T he need to express structure as an essential property o f  data in a  com putational environm ent has 

encouraged the developm ent o f  various taxonom ies, including taxonom ies fo r design decisions [100], 

for m echanical system s [17], for design tasks [102], and for sem antic operations on design  knowledge 

[29 ,103]. A s well, to capture the procedural aspects o f  design, num erous m odels o f  design  have been 

suggested, including m eta-m odel evolution [102], the m olecular data m odel [104], the state/transition 

m odel [ 105], the structural data model [106], and m ulti-layered logic [107], T hese are notew orthy because 

they all represent m odifications o r extensions o f  existing data m odels (e.g. predicate calculus [80], the 

relational model [108], the cntity-relationship model [109,110], sem antic data  m odels [28, 111], etc.) 

leading to the conclusion, supported by many, that conventional data m odeling techniques are insufficient 

for design. T h is underscores the need for additional design theoretic research, since we cannot depend on
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existing  schem es to provide the needed structure.

One data  m odeling technique deserves special m ention because it was originally  designed to provide 

support especially  for non-conventional applications such as engineering, and because it has becom e the 

m ost popular approach to m anaging information: object-orientation. Though a detailed discussion o f the 

nature o f  object-orientation is unwarranted here, it is quite relevant to distinguish it as possibly the most 

p rom ising approach to design information m anagem ent yet devised. In particular, the object-oriented 

approach specifically addresses the short-com ings o f its predecessor, the relational data m odel 110K|. The 

relational m odel was conceived to address the needs o f  business and com m ercial applications, but as 

m any design  researchers have indicated, design’s data m odeling requirem ents arc quite different from 

those o f  o ther application dom ains [25 ,93,112-118], In particular, object-orientation is seen as providing 

a far r icher set o f  abstractions for the construction and organization o f  design m odels, independence from 

im plem entation issues, reflection (for autom atic analysis o f  design m odels), unified language definition 

for both  program m ing and database applications, and so on. From a design theoretic point o f  view, 

object-orientation  can perm it the com puter to becom e a m ore useful tool for investigative studies into the 

nature o f  design  by h iding m any o f  the m ore m undane and irrelevant issues o f  com putation  from the user.

It m ust be noted here that o f  all aspects o f  design, conceptual design, arguably the m ost im portant aspect 

o f  the design  process, is the least well understood o f  all. T his is m ade abundantly c lear by  the failure o f all 

a ttem pts to com puterize it [17 ,60,119,120]. One tool has been indicated, however, as a  possible solution 

to th is particular problem : param etric design. In param etric design, details o f  various com ponents, 

assem blies, etc. are ignored for the sake o f  capturing in param eterized form the essential attributes o f 

design  entities. In th is sense, this author suggests the term schem atic design  m ay be m ore appropriate as 

it carries a  m ore d irect connotation o f  an abstract nature and o f  the intention to capture only those aspects 

that are essentially  representative o f  the entities being designed. Param etric design has been investigated 

in detail by others, including [61 ,75 ,121 ,122]. We note, however, that two issues regarding parametric 

design  rem ain problem atic, especially from the point o f  view  o f  design theory. First, param etric design 

does n o t perm it cyclic relationships to exist between data; yet the existence o f  such structures has been 

indicated in constraint netw orks, especially in conceptual design [122]. Second, though param etric design 

m ay solve the problem  o f  conceptual design, it has been dem onstrated to be too restrictive for use in 

op tim ization  [61]. W hether these problem s indicate a shortcom ing in param etric design, o r a  deeper
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inadequacy in o u r understanding o f  conceptual design, has yet to be determ ined. One possible alternative 

is variational design, which adopts a different m athematical formulation than does param etric design, and 

which has been show n to m anage cyclic constraint networks well.

M any other com putational approaches have also led to insights into the nature o f  design. Efforts m aking 

use o f  system s engineering [83.101] have demonstrated the usefulness o f  m odular approaches to control 

complexity. Various research projects involving the construction o f database system s fo r design have in­

troduced the notion o f  abstraction m echanisms as techniques to organize and integrate o u r understanding 

o f  design in general; these include structural entities like features [2 ,123], task-specific view s o f  inform a­

tion [56,112], and hierarchies, aggregations and other classification form s [106 ,124-126]. R esearch into 

the practical aspects o f  constraint m anagem ent have provided num erous approxim ations fo r the solution 

o f  the constraint satisfaction problem  (see previous Section) [2 3 ,24 ,105 ,127-130].

2.4 Cognitive and Concurrent Design Research

T he third category o f  research is distinguished by a concern for understanding, in w hole o r  in  part, the role 

o f  the hum an in design; that is, rather than being concerned directly w ith design itself, w orkers in  this area 

are concerned w ith the mental functions o f  hum an designers when they perform  design tasks. Similarly, 

som e researchers (e.g. [39 ,120]) have distinguished between how  design is perform ed (by hum ans) as 

opposed to w hat design is. A lthough not com m only considered together, cognitive design research and 

concurrent design do share an interest in the actions o f  the designer.

Cognitive design research is concerned with what m ight be referred to as the p sychology  o f  design, and 

seeks to explain, o r at least quantify  in som e manner, the particular m ental processes a  designer m ay 

use. The author also includes expert (and other knowledge-based) system s research in this category, since 

these system s m odel the designer's ability rather than design itself o r som e aspect o f  it.

Concurrent engineering, on  the o ther hand, is concerned w ith sociological issues. T he principal tenet 

o f  concurrent engineering is that the involvem ent o f  all interested parties in a  design process from  the 

outset can m arkedly im prove the decision-m aking abilities o f  the group as a  whole. T h is k ind o f  design  is 

far m ore inform ation- and coordination-intensive than conventional, purely sequential design  processes 

and thus requires a m uch m ore refined strategy to assure efficient, accurate and tim ely  com m unication
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betw een team  m em bers. T his requirement has led to great activity in the use o f com puter tools to help 

docum ent design processes and com m unicate information between designers. T itus, again, the role o f the 

h um an in the design process is the central concern.

2.4.1 Cognitive Design Research

T his au tho r has several reservations as to the relevance o f cognitive design research to design theory. This 

issue w ill be dealt w ith in depth in Part II. For the current discussion, an abbreviated version is sufficient. 

Very little  is understood o f how the hum an m ind functions; additionally, the outw ard signs o f  mental 

function (speech, gestures, etc.) do not necessarily relate d irectly  to underlying cognitive process. Indeed, 

there is som e evidence to suggest that "thinking” as we norm ally consider it is a purely unconscious 

p rocess that we m ay never directly observe or even experience [1311. T his detachm ent suggests that 

too m uch  m ay interfere w ith any attem pts to control the cognitive function so that it m ay be observed 

in a  scientific manner. One is therefore left doubtful o f  efforts involving the use o f  artificial intelligence 

techniques to create expert system s and other knowledge-based system s for design which arc all moled 

in the presum ption o f  som e basic understanding o f  the hum an cognitive function.

How ever, it m ust also be said that there have been notable contributions to design theory m ade not 

necessarily  from individual efforts in cognitive design research, but rather by the whole o f  the endeavor. 

Specifically, the various efforts o f  which the author is aware in the recent literature [8 ,2 1 ,2 4 ,1 0 2 ,1 0 3 , 

132-136] are supportive o f  the follow ing observations:

F irst, expert system s suffer from a phenom enon called com binatorial explosion  when applied to very wide 

app lication  dom ains. T his m eans that the am ount o f  inform ation that m ust be m anaged by these system s 

becom es intractably large as m ore and m ore different kinds o f  problem s are included. However, for 

very specific dom ains, expert system s have been known to generate reasonably efficient solutions. This 

suggests, as has been noted in [102,103], that though the original goal o f  expert system s as the ultim ate 

design  tools m ay never be achieved, they m ay be very useful as sm aller com ponents o f  large, integrated 

design  system s (e.g. the design o f  cam s [21]). As well, a very significant dependence on the structures 

used to  represent inform ation is indicated.

Second, expert system s, like hum an designers, require a certain period during which they are “ traincd-up”
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for the kinds o f tasks they are to perform. During such training periods, the system  will not perform 

correctly since it is still learning. The resource drain that m ust necessarily occur during training o f 

expert system s has not been addressed in any o f  the efforts o f which this author is aware. As well, 

the information base upon which expert systems draw during this period is often heuristic. Heuristic 

knowledge is em pirical in nature, often unprovable and usually based on the knowledge o f  particular 

experts in a field. So, while expert system s may perform m ore rapidly than hum ans, and are less likely 

to be the source o f  sim ple mechanical errors, they will carry w ith them all the inaccuracies o f  a  hum an 

designer.

Third, the notion o f know ledge  is not precisely defined. The term has been associated w ith bo th  the 

act o f learning and its results2. This author is surprised that such a vaguely defined no tion  has been 

used to m otivate the creation o f  so m any com puter software system s (i.e. know ledge-based  system s). A 

fundamental aspect o f  these system s is that they can operate in various “ intelligent” w ays on inform ation; 

one m ight suppose that knowledge is then tied to the process o f  using  inform ation. B ut again, we lack 

understanding o f  how the m ind acts on information; we m ust therefore suspect any effort to m im ic this 

behavior com putationally as being based on rationalizations rather than real scientific understanding.

Fourth, as indicated in [24], m ost design “knowledge” imparted to expert and o th er such system s tends 

to be routine  knowledge. T his would seem to indicate, then, that expert system s w ould be unable to cope 

with new  kinds o f  design problem s. This has been indicated not only in the existing design  research, but 

also in a  more general sense in artificial intelligence [137-139],

2.4.2 Concurrent Engineering

C oncurrent engineering has enjoyed significantly m ore success than has cognitive design  research. As 

stated above, the goal o f  concurrent engineering is to parallelize the design process, bringing upstream  

various functions norm ally left until late in the design process (e.g. assem bly planning). Engineering 

establishm ents that have adopted concurrent techniques have boasted m arked savings in  tim e-to-m arket, 

developm ent and production costs, and wastage [100 ,117 ,140 ,141], in  som e cases exceeding 50% . The 

degree o f  savings has surprised many, and caused a num ber o f  researchers to investigate concurrent

2 B a s e d  o n  W e b s t e r 's  7 t h  D i c t i o n a r y .
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engineering with the aim  o f  identifying exactly how these savings arc achieved. This work is on-going 

and very few results o f  consequence have been reported. However, researchers have identified that 

com m unication  o f inform ation is likely the key to effective concurrent engineering.

Effective com m unication in a  technical field such as design requires a formalized notation for the specifi­

cation  o f  inform ation (i.e. a language) and a flexible yet strict framework w ithin which iufom iatioii can 

be arranged and organized [107]. This has led to the adoption o f hypertext (also called m ulti-m edia) as a 

key com putational tool for concurrent engineering research 132,135,142-1441. In essence, hypertext is a 

m odeling technique for infom iation upon which no organizational schem a is available a-priori. Thus users 

o f  hypertext system s not only supply the inform ation but also the various "hooks” by which the system 

can organize the inform ation. T he im portant contribution o f  such system s is that inform ation that would 

otherw ise have been only im plicit (because no schem a exists to capture it) can be m ade explicit 18 11. Here 

is one possible use o f  expert system s to aid designers, though indirectly. A suitably (rained system  could 

exam ine a  hypertext database and organize it according to various o ther schem a identified as significant 

in a design  environm ent. T h is idea has yet to be researched.

Finally, because concurrent engineering places great importance on die conceptual stages o f a design 

process, a  num ber o f  cognitive researchers have investigated the nature o f  com m unication betw een group 

m em bers in concurrent engineering team s [7 ,4 7 ,1 3 5 ,1 4 5 ,1 4 6 ], and have identified various techniques 

o f  “negotia tion” and sharing o f  know ledge whereby group decision-m aking can be assisted by various 

form al techniques (e.g. case-based reasoning [145]). It is noted in closing that cognitive research has 

had a  m ore noticeable im pact on  concurrent engineering, possibly because o f  the increased availability o f 

externalized evidence (com m unication between group m em bers) o f  the design process.

2.5 Summary

T his C hapter has presented a survey o f  recent literature on  design theory and the associated fields o f 

com puter-aided engineering, concurrent engineering and cognitive design research. On the whole, the 

body o f  work, though not particularly volum inous due to the relative youth o f  the field, clearly  indicates a 

preoccupation  w ith the integration o f  the various aspects o f  design. Som e research has dealt w ith specific 

theoretical aspects o f  design (such as constraint satisfaction), w hereas o ther efforts have been larger and
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less detailed in scape, seeking a general framework where particular efforts m ay be seam lessly com bined. 

Som e successes have been dem onstrated as the results o f  this research percolate from research institutions 

into industry, but there is as yet no consensus as to the final form o f  a fully integrated design endeavor. 

Nonetheless, the successes achieved to date indicate that the principle o f  an integrated view  o f  design is 

w orthy o f  further study.
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THE ROLE OF LOGIC IN DESIGN
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Chapter 3

Introduction

T he approach used in this work is quite novel: though tools o f  logic -  such as se t theory and predicate 

calculus -  have often been invoked in supporting roles in design theory, there is no evidence o f  any work 

in design that takes logic as its sole foundation. The author finds that the  uniqueness o f  th is approach 

w arrants som e explanation, and that the explanation itself can go a  long way to clarify  the  nature o f  

engineering design, and indicate ways in which m ore robust form alism s can be achieved.

T he purpose o f  this Part is twofold. First, the general role o f  logic in design theory w ill be discussed. 

Som e o f  the problem s confronting design theorists w ill be exam ined, and possible so lu tions based on  the 

application o f  logic will be considered. A fairly wide range o f  topics will be covered, b u t the  underlying 

notions are few and distinct. Second, a  num ber o f  term s and notions o f  logic that are no t particularly 

w ell-know n in design -  but that will be used extensively in  the Parts to follow  -  w ill be in troduced and 

d iscussed in detail.

Som e im portant notions should  be introduced before any o ther consideration, because o f  th e ir  im portance 

in the sequel. First, we define logic  as “ ...the study o f  m ethods and principles used in  d istinguishing 

correct (good) from incorrect (bad) arguments [80].” Indeed, a  definition o f  logic that is bo th  precise 

and com pact is difficult to find since such a definition would to som e degree depend on  logic itse lf for 

correctness, and, as shall be show n, the validity o f  such self-dependent definitions is suspect. Fortunately, 

great effort has been expended by philosophers and o ther thinkers to  resolve this problem ; the  interested 

reader is refereed to the introduction in [16], where the overall nature o f  logic is d iscussed very  clearly  if

38
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som ew hat verbosely.

T he no tion  o f  p ro o f is also important. In logic, a proposition is proved if  a valid argument can be 

constructed so  as to dem onstrate that the proposition is true. T his is a wcll-acccplcd, conventional 

definition o f the term  for classical formal logic. Variants exist, depending on the form o f logic used. For 

exam ple, in fuzzy logic [147,148], there are gradations o f  truth; thus it is possible to have propositions 

that are m ore o r less true than others. However, for the current work, classical two-valued  (i.e. true  and 

fa ls e ) logic is sufficient.

A nother im portant notion is that o f validity. Validity refers to the correctness o f  an argum ent, but not to 

the truth-hood o f  its premises. T hus the classical exam ple “I f  every m an is m orta l a n d  Socrates is a man, 

then Socra tes is m ortal"  can be show n to be valid without m aking any statem ents about the premises 

“...every m an  is m ortal..."  and “...Socrates is a man...”. The advantage is that we can d istinguish clearly 

betw een the prem ises o f  an argument and the procedures used to reach conclusions. A lso, logic provides 

the m eans to  check those procedures for incorrect interm ediary steps. A lthough logic m ay also assist 

in determ ining the correctness o f  the prem ises o f an argument, this is a separate consideration. Often, 

prem ises o f  argum ents are based on observed facts, which are by definition em pirical and which usually 

cannot be proved  in the technical sense o f  the word. A lthough this restriction m ay appear to lim it the 

applicability  o f logic -  especially w ith respect to a dom ain w ith such strong physical ties as design -  the 

notion  o f  valid ity  lets us prove o r disprove arguments, which are the building blocks o f  reasoning; and 

reasoning is an essential com ponent in design.

T he issue o f  validity o f  particular form al system s is problem atic; this was established by Gfldel in his 

w ork  on  incom pleteness. However, insofar as formal system s m ay be considered valid, they offer a far 

m ore rigorous m eans o f  treating phenom ena such as design than any o ther available technique. It thus 

rem ains advantageous to em ploy form al techniques in design theory.

L ogic  is considered to be independent o f  the physical universe; it is for th is reason that truth o f  statem ents 

such as “ . .  .Socra tes is a m a n .. . ” cannot be decided. Indeed, it is possible to generate formal system s 

that are in no  w ay related to any aspect o f  physical existence. However, som e formal system s have been 

found to  be very useful in explaining and predicting the behavior o f physical (extralogical) phenom ena. 

A s engineers, we are particularly interested in formal system s that do relate in som e way to the physical 

universe. T hese form al system s are o u r logical models o f  phenomena. T he success o r  failure o f  a  particular
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logical model depends on its perceived correspondence to the phenom enon being studied. Logicians call 

the correspondence between a model and an observed part o f  reality an  isom orphism  [149]. The more 

accurate and com plete the isom orphism  is betw een a model and a phenom enon, the better the m odel. The 

notion o f  isom orphism s will also play a  role in determ ining the extent to w hich  form al theories for design 

can be considered valid; this will be explained in the follow ing Sections.

Furtherm ore, logic is, on  the whole, objective. It is considered to be valid regardless o f  hum an cognitive 

function. It is interesting to note, however, that there does exist work in  logic m eant to form alize such 

naturally subjective dom ains as belief system s [150]; such work has found technological application (for 

exam ple, in the treatm ent o f  distributed system s such as com puter and com m unication netw orks). It 

would appear, then, that if  we are to m aintain a  certain objectivity in design  research, logic should be 

considered a very im portant and useful tool.

To m otivate the discussions to follow, the presentation in this Part w ill begin w ith  an exam ination o f 

tcrm inologic and taxonom ic issues, and the inherent vagueness w ith w hich notions and concepts in design 

are currently  defined. T his view has been expressed by others in the field, especially  D ixon, in [4], Next, 

a  d istinction  is draw n betw een the conceptual m odels that we use to  understand design  phenom ena, and 

the com putational m odels we use to im plem ent o u r conceptual m odels as design  aides. T h is distinction 

is im portant because it can significantly sim plify the com plexity o f  design  theories. We then exam ine the 

concept o f  “ self-reference” in the context o f  design theory. Self-reference can prevent valid  form alizations 

in any dom ain; the author argues that it should be avoided in design theory i f  valid  form alizations are to 

be found. Next, the notion o f  design as an artificial science  is introduced as a  m eans o f  discussing the role 

(hat form al logic plays in the establishm ent o f  useful fram eworks w ithin w hich design  can  be  studied. The 

conclusions o f  these discussions m otivate the form ulation o f  two conceptual design  theoretic tools. The 

first, a  layered logical structure for design, outlines a  technique w hereby different degrees o f  abstraction 

in design  inform ation m ay be identified and classified. The second, called a design space, is m eant to 

help  study the relationships betw een various notions, m ethodologies and approaches to design.
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Chapter 4

Motivating Discussion

4.1 Terminologic Considerations

There is no  rigorous term inology or nom enclature for im portant concepts and notions in engineering 

design. Term s that designers and design researchers use are often defined in w hatever fashion is most 

convenient to them  (e.g. the various definitions attributed to the term fea ture  in [1 3 ,5 1 -5 3 ]). T his is not 

an  indictm ent o f  the abilities o f  these persons o r the quality o f their work, but rather an indictm ent o f  our 

collective ability  to define the nature o f  design itself.

T he nearest convention we have in this regard is the engineering drawing. A lthough the graphical nature 

o f  engineering draw ings can capture som e inform ation efficiently, drawings alone, even i f  computerized 

(via CAD system s), cannot capture all the inform ation necessary to represent the nature o f  a design in an 

efficient and usable way [32,94],

A  lack o f  standardized nom enclature results in bad com m unication. Betw een designers, this can have 

d isastrous consequences. In com puterized system s, it can lead to inefficient, incom patible software 

system s that stym ie rather than stim ulate the abilities o f  designers.

A t a deeper level, th is indicates a  significant disagreem ent on the lim its o r boundaries o f  various notions 

and concepts. W hat is engineering design? W hat is a  solid m odel? A t w hat point does a  geom etric model 

becom e a  so lid  m odel? Should a finite elem ent m esh be considered an analytic m odel parallel to a solid
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m odel, a particular m anifestation o f a product model, o r an entirely separate kind o f m odel? To what 

extent arc constraints a valid m odeling form? Is constraint theory a m odeling technique o r  a technique 

o f  analysis? These questions indicate ju st how vaguely design is defined, a  notion echoed in the work 

o f  m any researchers [2 9 ,3 1 ,3 9 ,1 5 1 ], They cannot be answered because there is consensus neither o f 

nom enclature nor o f  the associated underlying concepts and notions.

The im portance o f  this problem  is underscored by its im pact on our ability  to teach design. In order 

to teach, we m ust com m unicate effectively. W ithout effective com m unication, the im precision and 

inconsistencies o f  the teacher will tend to be passed on to the student. T hus, the problem  perpetuates 

itself. The relationship betw een design theory and teaching design is d iscussed in som e detail in [4,10,36]. 

Recognition o f  key prim itive notions is essential to attain a m ore form al understanding o f  design. The 

establishm ent o f  m ore precise conceptual definitions and their corresponding term inologies w ould assist 

us to resolve m any difficulties now being experienced.

By sim ple analogy, consider the nom enclature o f chemical com pounds. F o r exam ple, a su lf/re  is different 

than a sulf/t/e, w hich is different than a sulfate. At once, these term s concisely and exactly  capture 

significant differences in com position and behavior o f  these various classes o f  distinct, yet related, 

com pounds. T he im portance o f  this nom enclature is not so m uch that it accurately d ifferentiates betw een 

various classes o f  com pounds, but that it represents a collection o f  very precise definitions and notions 

that are consistent w ith the rest o f the formal structure called chemistry.

T his kind o f  precision is m issing in design and design research. As things stand today, it is difficult -  if 

at all possible -  to generate a nom enclature o f  design parallel in precision to that o f  chem ical com pounds. 

However, if  this were possible, the benefits to be reaped w ould be great. O f prim ary im portance is the 

increased efficiency and security o f  inform ation transfer. A universally recognized nom enclature would 

v irtually  elim inate the subjective interpretation o f  engineering inform ation and thus g reatly  dim inish 

the chances o f  m isinterpretation  o f  that information. Designers will then be able to spend m ore tim e 

d iscussing the nature o f  their designs and less tim e arguing over how  the designs are presented.

A lso, increased efficiency in com m unication can have im portant consequences to the developm ent o f 

softw are system s m eant to assist the designer. Specifications for softw are system s w ill be m ore robust 

because the m odels they im plem ent will be m ore precisely specified. Com puters are n o t yet able to deal 

well -  if  at all -  w ith vaguely defined data. Im plem entation details w ould be easie r to  m anage if  the
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com putational m odels o f the problem  dom ains included precisely defined notions.

In searching for a nom enclature for design, it will be up to design theory researchers to provide the fonnal 

system s and m ethods needed to assure the validity o f the nom enclature. T he tool they will use to provide 

it will have to be logic. The au tho r’s propositions in this regard arc discussed in Sections 5 .1 and 6.2.

4.2 Taxonomic Considerations

A taxonom y is an orderly structured system  o f classification based on presum ed or observed properties. 

T axonom ies are used to classify entities and thus permit their study at h igher (i.e. m ore general o r abstract) 

levels than that o f  individual entities. Taxonom ies are also very useful in system s containing many 

individuals and m any different kinds o f  individuals; being able to classify individuals can be a great tool 

to assist in the m anagem ent o f  inform ation about the individuals and how they relate to each other.

T his problem  is nicely stated by Chignell et ah  in [ 143]:

“ O ne o f  the m ost annoying th in g s . . .  is the feeling that one cannot keep up w ith this hroad 
literature o f  things that one should know about. Drawing on psychological theory, it seems 
that the task o f  the researcher m ight be simplified som ewhat by providing a fram ework or 
organizing schem a within w hich to understand and absorb the frightening am ount o f possibly 
relevant m aterial that should be dealt with.”

O ne o f  the im portant aspects o f  taxonom ies is that they need not be com plete and entirely correct to 

p rovide valuable assistance to researchers. The taxonom y used for the classification o f  living organism s 

is a  good exam ple o f  this. Though it is not perfect (some disputes still go  on  as to the nature o f  certain 

organism s), it is fo r  the m ost p art a  highly useful tool in such areas as the study o f  evolution, anim al and 

agricultural husbandry, teaching, and so on.

T axonom ies could help design theory in m any ways and at m any levels. At a practical level, they could 

assist in  standardizing parts and com ponents, leading to universally com patible part catalogs, annotated 

libraries, etc. T hey could be used to classify design processes and so provide a fram ework w ithin which 

designers can  select appropriate m ethods for different kinds o f  design problem s. Also, they could assist 

in  the  classification o f  m anufacturing techniques, prom ote m odular construction and thus help not only in
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product m anufacturing, but also in the design o f the plants and assem bly facilities used.

In design theory itself, taxonom ies could help us understand differences and sim ilarities in various 

theoretical system s, which in turn provide a m eans to evaluate new ideas. We could also use this 

knowledge to identify classes o f  problem s that require more research, and criteria that can be used to 

optim ize their solutions.

Taxonom ies for design and design research have not yet been developed, though there have been various 

attem pts (77 ,87 ,152], In m any cases, the taxonom ies are derived in a  generally ad-hoc  m anner [52], A 

good taxonom y m ust be based on formal reasoning, and the principal criterion  used in the search m ust be 

that o f validity. The prem ises o f  taxonom ic arguments are those notions for w hich taxonom ies are sought: 

these notions arc captured by a nom enclature. Dem onstrating validity o f the taxonom y does not include 

dem onstrating validity o f the premises.

Insofar as taxonom ies are ordering m echanism s, we can look to logic to provide a  num ber o f  tools to 

facilitate their generation. In Chapter 10, five specific m echanism s by w hich design inform ation can be 

ordered will be discussed and dem onstrated to be sound with respect to their logical foundation. These 

m echanism s can be taken as general principles with which taxonom ies o f design entities can  be formed.

4.3 Computational Considerations

The au thor has noted that m any suggested m odels o f  design inherently involve com putational aspects. 

Exam ples o f  this are: [ 117], where little distinction is m ade betw een the conceptual problem s o f  classifying 

design function in mechanical design and the com putational issues surrounding the im plem entation o f  

their classifications in com puter system s; [126], wherein the factors affecting data flow in  a design 

activity arc suggested to arise both from design requirements and from  the requirem ents o f  com puterized 

im plem entation o f  their system; [77], wherein com putational m odels o f  know ledge engineering are used 

as a basis for formal design process models; [123], where integrity o f  stored inform ation is seen as an 

im portant aspect o f  design; and [ 125], where a relationship is indicated betw een the “business process” o f  

com puter-integrated m anufacturing and the m aintenance o f  software. It is noted that all these efforts fall 

at least nom inally  w ithin the dom ain o f  design theory, and thus indicate a possible relationship betw een 

design theory and com puter science.
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T he au thor suggests that a distinction m ust be m ade between conceptual and com putational models. None 

o f  the above-noted m odels actually require im plem entations. Each presents a certain view o f design, and 

contributes to o u r understanding o f it. regardless o f  how the system s arc im plem ented. The distinction 

betw een im plem entation o f  a tool and the model upon which it is based is tenned by the author as the 

distinction  betw een computation  and conceptualization. M odels can and do exist as formal theories, 

independent o f  their im plem entations.

In general, a conceptual model m ight provide formal descriptions o f  the kinds o f  inform ation that must 

be present, the kinds o f  operations that arc defined on the information, integrity and o ther constraints 

that are to  be satisfied, as well as the general philosophic background. A com putational model defines 

the im plem entation  o f  the conceptual model, and m ight specify the kind o f  scop ing1 to be used, atomic 

data structures, type-checking sem antics, transaction control and so forth. An appropriate com putational 

m odel is based in part on the requirements o f  the conceptual model. Problem s arising from differences 

betw een the tw o are often referred to as impedance m ism atches [27]; but the problem s them selves arc till 

com putational problem s, and do not necessarily reflect the nature o f the conceptual m odel itself.

Issues o f  im p lem en ta tio n - such as the selection o f a  base program m ing language (e.g. C versus Sm alltalk) 

-  can g reatly  affect the success o f a particular model o f  design. Also, com putational theory can be a 

useful tool in design  theory for its ability to formalize actions and procedures that m anipulate information. 

But in the purely theoretic arena, any m echanism  could be used, albeit awkwardly. T h is is due to the 

determ inistic  nature o f  the com puter itself. In o ther words, the im plem entation docs not affect the validity 

o f  the conceptual m odel itself.

The converse o f  this is also true: given a particular im plem entation, any valid conceptual m odel can 

be captured. To be sure, the efficiency o f  a  particular im plem entation docs depend on the relationship 

betw een the m odel and im plem entation techniques. However, it is noted that the term  '•efficiency” in this 

case denotes efficiency o f  the im plem entation  and not o f  the model.

T herefore, the evaluation o f  im plem entations o f  m odels does little to effectively com pare the underlying 

conceptual m odels, w hich should be evaluated on logical grounds based on their ability  to explain and 

predict phenom ena o f  interest. The inclusion o f  issues pertaining to the im plem entation o f  a formal 

conceptual system  in a  com puterized environm ent can unnecessarily increase the system ’s com plexity by

'T he scope o f a data structure is the region of program code in which it is active or accessible.
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introducing a false coupling between the model and the im plem entation. T his does noth ing to increase 

the robustness and secure validity o f the m odel, nor does it verify o r increase the efficiency o f  the 

im plem entation.

It is, in fact, possible to separate issues o f  conceptualization from those o f  com putation: [31 ,40 ,52] and the 

work presented herein all achieve this separation at least to a degree, and still m ake m eaningful statem ents 

about design. A lthough these and other related efforts can be used to develop design  softw are system s, 

the fact that they arc not directly tied to the developm ent o f  software perm its them  to be used for a  variety 

o f  o ther reasons, such as teaching aides and research tools, in non-com puterized arenas.

T he author finds it curious that m odel generation for design should have becom e so tightly  connected to the 

developm ent o f  software system s, but believes that the connection arose from  the h istorical roots o f  design 

theory in the developm ent o f  the first CAD system s. Com puters, being determ inistic  m achines, cannot 

deal well w ith the arbitrary nature o f  the way design was once conducted. Hence, techniques w ere sought 

that m ade design m ore am enable as an application for the then-em ergent com puter technologies. G raphic 

rendering technology is a d irect progenitor o f  today’s solid m odeling program s [121]; constructive solid 

geom etry itse lf eventually led to features [5 ,51], Since then, o u r understanding o f  bo th  design  and the 

underlying logic o f  com putation and information theory have led to the realization that form al m odels are 

useful and im portant tools independent o f  their use in com putational tasks.

4.4 Summary

In this Chapter, the author has presented a discussion intended to  m otivate the pursuit o f  a  m ore com plete, 

formal understanding o f design. In this regard, we have exam ined term inologic, taxonom ic and com pu­

tational considerations. There is currently no consensus regarding the definition o f  im portant term s and 

notions that are often used in design research and practice. W ithout such a  consensus, m isinterpretation 

o f  design inform ation and incom patibilities between subsystem s cannot be avoided o r  even controlled. 

Furtherm ore, there exists little coordinated organizational structure for d esign  inform ation (taxonom ies, 

etc.) that can stream line the specification and com m unication o f  inform ation vital to the design  endeavor. 

Finally, the coupling o f design  w ith com putational considerations unnecessarily com plicates investiga­

tions o f  design. In order to im prove the state o f  o u r understanding o f  design, all these issues m ust be
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addressed.
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Chapter 5

A New View of Design

5.1 The Notion of Self-Reference

Hofsladtcr, in [149], stales “It is very important when studying form al system s to d istingu ish  w orking 

within  the system  from m aking statem ents o r observations about the system .” H ofstad ter is w riting 

about the concept o f  self-reference ' ,  and though it m ay seem sim ple enough in this short quotation, the 

concept is one o f  the m ost com plex and consequential o f  this century. It is a no tion  fiindam ental to all 

the argum ents present in the above-cited, Pulitzer Prize w inning work. T he problem  o f  self-reference is 

defined form ally by  G ddcl’s Incompleteness Theorem , w hich states that no  system  can reference itself 

and be proved valid. A system  w ithout self-reference will no t be able to prove som e statem ents that are 

nonetheless valid; a self-referential system , on the o ther hand, will perm it the p roof o f  all valid statem ents 

plus certain  invalid ones as well (i.e. a  paradox). Put another way, no system  that can be proved valid  can 

be com plete. No o ther notion o f  logic has had m ore im portant consequences, and yet been so universally  

accepted as necessary. For exam ple, in classical set theory [153], the existence o f  the universal set cannot 

be dem onstrated w ithout appealing to self-reference; yet set theory w ith self-reference a n d  the universal 

set is easily proved inconsistent (i.e. containing invalid parts). M oreover, it can be show n that any formal 

system  that corresponds to num ber theory through an isom orphism  is incom plete; i.e. there are som e

'Self-reference is also known as reflection-, however, the author prefers the former term for its direct denotation o f systems 
that are aware of. or act upon, themselves.
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truths th a t cannot be proved [149,154].

A lthough m athem atics and logic is lim ited in rigor due to incom pleteness, the fact rem ains that both 

these discip lines have contributed inestim ably to our understanding o f the physical universe. There is no 

a-priori reason to think that sim ilar contributions to our understanding o f  design are not possible.

T he kind o f  paradox that can occur in self-referential system s is exemplified by the sentence "T his sentence 

is false.”  In fact, self-reference abounds in the English language (e.g. “T his is an cnglish sentence."), 

indicating that english cannot be proved valid. The fact that such self-referential cnglish sentences can lie 

quite m eaningful to hum ans does not bode well for the validity o f  the hum an m ind. In fact, the m ind itself 

is self-referential: how else can we think about the mind? T he mental processes that we call "th inking" 

are part o f  an entity capable o f self-reference, and the concern w ith logic o f  scholars through the ages 

is an effort to  justify  o u r thinking processes and validate the rcsulls thereof. Indeed, sclf-rcfcrcncc. o r 

self-aw areness, appears to be a property unique to the m ind am ong all natural phenom ena; it is difficult 

to th ink  o f  gravity, DNA, o r a airplane as being self-aware. W hile the author is not suggesting that the 

m ind w ill forever elude formal understanding, we do suggest that any formal understanding o f  the mind 

will be o f  a  different order than o u r understanding o f o ther natural phenom ena because o f the m ind 's 

self-referential nature.

B ecause english, and other natural languages, are so often used in design to com m unicate inform ation, 

self-reference can also appear in o u r ideas about design. A statem ent such as “Conceptual design is a 

com ponent o f  the design process’’ is self-referential; a design process that takes into account properties o f  

itse lf is self-referential. Design itse lf tends to be self-referential, as is evidenced by existing research: “A 

m ajor part o f  the design activity is concerned with the developm ent o f  the design process itself [ 1011.” 

A ny self-referential system  that seeks to form alize design will be logically  inconsistent. Furtherm ore, it 

is im possib le  to determ ine the extend o f the inconsistency w orking w ithin the system  itself. If  we arc to 

find a reliable, logical system  wrth which to model design, we m ust ensure that it does not contain the 

no tion  o f  self-reference.

T he issue o f  self-reference is perhaps one o f the g re fe s t  stum bling blocks facing design  researchers, if 

fo r no o ther reason than that it is hum an nature to treat ne universe in a “elf-referential way. However, it 

does seem  possib le to the au thor that beginning carefully from  first principles, and striving to  avoid the 

desig n ers’ self-referential m ental processes (e.g. intuition, opinion, etc.), design can be at least partia lly
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formalized into a  system  that is valid with respect to its logical foundation. In the Sections to follow, the 

author will present the beginnings o f  such a formal system for design.

The author has found the use o f  the terms subjective  and objective  to provide a useful view point in this 

regard. The term objective  is defined as existing independent o f the m ind, belonging to the sensible world, 

being observable o r verifiable especially by scientific m ethods2. Insofar as design  is (at least in part) a 

function o f  the hum an m ind, there is obviously a subjective com ponent to  it. T he subjective aspects o f 

design are all prone to self-reference by their very nature. However, not all o f  design is subjective. Any 

objective com ponent o f  design may be treated formally. Moreover, as research into design  progresses, it 

m ay be found that aspects o f  design considered heretofore subjective can be treated quite  objectively.

5.2 Design as an “Artificial” Science

5.2.1 The Scientific Approach

A num ber o f  researchers have suggested recently that a  m ore “scientific” approach should  be  em ployed 

in the study o f  engineering design. Two notew orthy exam ples o f this po in t o f  view  are [11] and [31], The 

argum ent fo r pursuing such a scientific approach generally proceeds as follow s:

•  T he objective o f  science is to provide a  precise and logical understanding o f  natural phenom ena.

•  D esign as an endeavor is currently not precisely defined, and tends to be highly  subjective, m uch 

as science was before the Renaissance.

•  Therefore, those m echanism s that provide precision and structure fo r science m ay also be able to 

do  so for design.

T he relationship betw een science and design theory will be discussed in this Section. T he au thor postulates 

that there is a part o f  design that can benefit the m ost from an approach based o n  logic ra ther than science. 

W hereas logic is seen as a  necessary progenitor o f  both the “natural” sciences and design  theory, science 

and design theory them selves are seen as equals related through logic. B ecause o f  the egalitarian nature 

o f  this relationship, the author introduces a new term , artificial science, w hich is intended to connote

P araphrased  from Webster's 7th dictionary.
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the form al nature o f  design theory while distinguishing it from the natural sciences. T he essence o f  this 

relationship is depicted graphically in Figure 5.1.

th e  study  ofth e  s tu d y  of

D esign N a tu ra l
P h en o m en a

D esign
Theory

Science

Figure 5.1: Relationship between design theory and science.

T he techniques espoused by supporters o f  a scientific approach to design research generally seek empirical 

data about design  (e.g. f 117 ,122 ,126 ,135]). T he scientific m ethod is used as the basic m ethodology in 

such projects: observations are m ade o f designers at work; then, formal m odels are sought that can predict 

(at least to a  degree) the behavior o f  designers when confronted with particular situations. Som e call litis 

k ind o f  research cognitive design research, and the procedure used is in essence the sam e as that used by 

scientists to investigate natural phenomena.

A lthough the current literature indicates that cognitive design research has yielded m any useful results, 

the au thor view s such research as being taigeted not at design p e r  se, but rather at the m ental processes 

o f  the designer, and as such tends to the subjective. T his view  has been espoused by at least one m ajor 

p roponent o f  new  fundam ental research into design ([4 ]). T he distinction is im portant because statem ents 

about h ow  designers th ink  do not necessarily relate to design itself. We have stated earlie r that mental 

processes occur w ith in  a  self-referential system  (the m ind) and thus are unprovable by conventional logic 

techniques. How ever, these m ental processes can be rationalized as soon as they are externalized; that 

is, as so o n  as these m ental processes becom e m anifested outside the m ind -  be it in the form o f  a  CAD 

draw ing, an  english  sentence, o ra  m athematical form ula -  they leave the realm  o f  the sclf-rcfercntial m ind 

and can  be analyzed logically to a  greater extent than i f  the d esigner’s cognitive functions were included.

In  this way, the au thor differentiates betw een those parts o f  design that cannot (currently) be formalized, 

nam ely  the subjective m ental processes o f  designers, and those that can (and should) be formalized, 

nam ely  all extem alizations o f  those processes. We note that ou r intention is not to rem ove the creative, 

cognitive com ponents from  design, but rather to provide the m eans by which to analyze the results o f  these
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processes in a  logical manner, thus helping the designer to channel h is/her im agination and creativity  in 

d irections that will m axim ize results. M any o f  the best m athem aticians and scientists throughout history 

have been very creative and intuitive people, and have used these characteristics in the ir w ork to  great 

advantage. T his should be the case in design as well. A lso, form alization o f  the non-m ental segm ents 

o f  design  can be beneficial to cognitive design researchers by providing them  with a yard-stick against 

which to m ake observations and compare theories.

5.2.2 Design Versus Natural Phenomena

T he scientific m ethod  is a trial and error technique, the goal o f  w hich is the creation o f  m odels based on 

observations that let us understand a given phenomenon. The logical and m athem atical m odels created by 

scientists have provided excellent isom orphism s to various natural phenom ena. B ased on these successes, 

it could be argued that logic in som e way reflects an essential property o f  the universe. How ever, this 

proposal begs the question o f  w hether the universe is determ inistic [ 16]. In  o rder to avoid th is contentious 

and ra ther philosophical issue here, the author adopts a  som ew hat less aggressive position: that form al 

m odels approxim ate  som e underlying structure o f the observed phenom enon.

An im portant assum ption is built into the scientific approach to design theory; nam ely, that there is a 

correspondence betw een design and natural phenom ena, and that this correspondence allow s researchers 

to treat design as a natural phenom enon. In o ther words, the  sam e isom orphism s are relevant to  both 

design and natural phenom ena. The author contends that this assum ption is m isleading; w e m ake o u r  case 

w ith the follow ing argument:

D esign, unlike natural phenom ena, is “contrived" in that it is a  purely hum an invention. W hile nature m ay 

be considered as existing  w ithout any action on  the part o f  hum ans, design is not independent o f  hum an 

beings; in fact, the designer is the only agent by  which design is m anifested at all [14].

A lso, the evolution o f  design  has proceeded over the years in a  m ore o r  less ad-hoc  m anner, responding not 

only  to the em ergence o f  new  scientific and technological understanding, but also to various sociological, 

econom ic and governm ental pressures, none o f  which can be said to be particularly  natural (in  the scientific 

sense o f  the word).

It m ay be argued that since the hum an m ind is a natural phenom enon, processes that occu r w ith in  the
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m ind (such as design) should be considered likewise. The author argues against this position. There is no 

dependence o f  natural phenom ena on hum an beings. However, design requires the existence o f the mind. 

T h is distinguishes design from natural phenomena.

Science has had little success in understanding the hum an mind so far [155-1571. m uch less success than 

it has had in understanding natural phenom ena such as gravity, nuclear reactions, and DN A. One possible 

explanation is that the isom orphism s that have successfully been applied to natural phenom ena arc not 

accurate w ith  respect to the hum an m ind, and because design is a construct o f  the m ind, we may say 

the sam e about design. If we cannot understand the mind, how can we understand design, which is tut 

invention o f  the m ind? The author is forced to conclude, then, that it is inappropriate to treat design as a 

natural phenom enon that can be studied scientifically, because it is a  m ental process.

5.2.3 The Role of Design Theory

H aving apparently  cornered ourselves in this way, we are left asking w hether any form alization o f  design is 

possib le at all. T he solution to this quandary lies in recognizing that we do no t need  the sam e isom orphism s 

to app ly  to design as apply to natural phenom ena. Because design is a m ental process, it can benefit from 

the sam e logical thinking that perm its scientists, m athem aticians and logicians to solve problem s m ore 

com plex than they could i f  they had only  their intuition and creativity to guide them . But because design 

is not bound  by the structure o f nature, we are free to make o f  it w hatever w e choose.

T hough  relatively unconstrained by nature, design theorists should nonetheless seek as formal and objec­

tive a definition o f  design as possible. We are free to do so w ithout being  constrained by the influence o f 

science because design is not a  natural phenom enon. No formal system  is related de-facto to reality; it is 

the d iscovery  o f  isom orphism s betw een the formal system  and reality that m akes it relevant. Any system  

fo r w hich an isom orphism  to a phenom enon can be found becom es a candidate m odel that can be used 

w ith in  the scientific m ethod. The use o f logic is required because it is the only tool m ankind has devised 

so far to  reason in a  reliable and repeatable way. Design theory should thus depend on logic, but not on 

science, fo r rigor. Hence, the author view s design theory as a sibling, o r  equal, o f  the natural sciences, 

sharing w ith them  a dependency on logic (see Figure 5.1).

T h is  is not to say that design is not related to nature at all. Usually, the ultim ate result o f  design is an
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artifact having som e physical existence; thus it m ust relate to nature in som e way. But this is w hat design 

does', here we arc concerned with what it is.

In sum m ary, the author contends that design theory should be concerned w ith finding logical systems 

that can form alize design without necessarily relying on the isom orphism s o f  the natural sciences. In an 

effort to em phasize this notion, the author introduces the term artificial sc ience  to describe design theory. 

This term has been chosen to distinguish clearly between design theory  and the natural sciences  while 

preserving the idea o f  som e com m onality between design and natural phenom ena.

The author notes that there is already a tendency to consider design in som e w ay artificial; fo r exam ple, the 

tcm t synthesis  is often used to describe the methodical generation o f a  design artifact, even in conventional 

design contexts (e.g. [34]). W hile synthesis is often taken roughly to m ean creation, it has a  connotation 

o f  artificiality that is generally m issing in contexts where creation  is used3.

Since design is som ething that begins in the hum an m ind but ends in the real w orld, there are som e aspects 

o f  design that logic cannot be expected to capture on  empirical grounds. In addition  to creativity, intuition 

and opinion, "facts”  from the real world cannot be dealt w ith using logic alone, in  the sam e way as the 

atom ic prem ises o f  the syllogism  about Socrates in Chapter 3 cannot be dealt w ith  using  logic alone; 

here is ano ther region where natural phenom ena influence design, and w here the conventional scientific 

m ethod m ay be used. Still, there remain m any aspects o f  design that are candidates for form alization 

through logic.

To this end, the author postulates that a  logical system  to m odel engineering d esign  can be achieved. The 

system  w ould be used to represent facts and to reason about design. T heories about design  and design 

inform ation m ay be derived w ithin the model and eventually supported o r  d isproved by logical analysis, 

experim entation  (i.e. application o f  the theory to test situations), and observation  o f  the resulting systems.

The derivation  o f  a logical system  for design as an artificial science is the  principal goal o f  the au tho r’s 

work. T he first concern is to identify tools o f  logic that provide good isom orphism s. In seeking such a 

system , a  return to first principles has been found necessary to lim it em piricism , self-reference and the 

influence o f  the designer's  mental processes. T he result o f  the au tho r’s efforts in th is regard is presented 

in Part III.

'Based on definitions for synthesis and creation in the Oxford English Dictionary.
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5.3 Summary

T his C hapter has d iscussed the advantages and problem s associated with the use o f  fonnal system s in design 

theory. W hile they represent the best understanding m ankind has o f  logical, structured argumentation, 

form al system s are inherently limited by G bdcl’s Incom pleteness Theorem. N onetheless, no superior 

approach to system atic, formal reasoning exists, so in order to m aximize the degree o f  rigor in tiny 

attem pted form alization o f  design information, formal system s should be considered an essential tool.

Furtherm ore, the author introduces the tem i artificial science  to describe design theory as a sibling of 

the natural sciences, sharing w ith them a dependence on logic for formal rigor. It is unreasonable to 

expect o u r understanding o f  natural phenom ena (the dom ain o f  the natural sciences) to contribute to 

ou r understanding o f  design, because design is m anifested as a  construct o f the hum an m ind rather than 

being a natural phenom enon independent o f  hum an cognition. A lthough we lack a good understanding 

o f  the hum an m ind, the externalizations o f our thought processes can, and should, be subjected to logical 

analysis. Such analysis can identify inconsistencies that m ight otherw ise escape detection. Furthermore, 

the form al techniques o f  logic can help a designer channel his/her creative and intuitive energies in 

d irections m ore likely to lead to successful design solutions.
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Chapter 6

Logical Solutions

6.1 Limiting Self-Reference in Design

In preceding Sections, it has been suggested that it is possible to construct a  valid form al system  for those 

parts o f  design that are independent o f hum an mental function. Such a system  should  be able to deal 

not only w ith specific inform ation regarding a  particular design artifact, but also w ith various degrees o f 

abstract inform ation that are equally essential to the design endeavor. However, we m ust im pose a  certain 

structure upon the system  to avoid self-reference. The structure is such that the total system  is com posed 

o f  logical sub-system s o f  increasing degree o f abstraction. Each sub-system  is capable o f  referring to 

other, lower layers, but not to itself, o r to higher (m ore abstract) layers. T h is is in  essence the solution 

suggested by Bertrand Russell to a  large class o f  paradoxes i r  the original derivations o f  classical set 

theory [153] that arose due to self-reference. T he resulting layered structure consists o f  one layer for 

each degree o f abstraction. In the general case, where the dom ain o f  a logical system  includes the entire 

universe, an infinite num ber o f  layers would be needed to capture all possible abstractions. Fortunately, 

due to the relatively restricted dom ain o f  design (w ith respect to the general case), and because each 

layer would have a d istinct m eaning in design (via the isom orphism ), a  layered system  o f  logic should be 

tractable.

In this Section, the author presents the beginnings o f  such a layered system . The presentation  is necessarily

56
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quite  general, but it does suggest the overall structure o f the system , and indicates how the various degrees 

o f  abstraction are delim ited based on the notion o f avoiding self-reference1. The structure is depicted 

graphically  in Figure 6.1. The relationship between the Hybrid Model (HM ) and the rest o f  the layered 

structure is also show n in the figure. HM is presented in Part III.

L ay e r 3

L ay e r 2

L ay e r 1

FU N C T IO N A LSTRU CTU RA L

H ybrid
Model

Design
A rtifac t

S ta te m e n ts  
ab o u t A rtifac t

F u n c tio n a l
B reakdow n

S ta te m e n ts
ab o u t

S ta te m e n ts

A b s tra c t
F u n c tio n a l

In fo rm atio n

Figure 6.1: Logical structure for removal o f self-rcfercncc

A t the low est (least abstract) level o f  the system , is the design artifact itself; this is the actual part/object 

that is the goal o f  a  design process, an actual physical entity. We im m ediately divide the system  into two 

different bu t com plem entary branches. On the one hand, there are all the statem ents that can be m ade 

about the artifact at any instant in its existence (o r even before o r during its creation); on the o ther hand, 

there are all the actions that are required to create the artifact, to use it, to m aintain it, etc. T he separation 

is essentially  one o f structure  (description) versus function  (procedure). The branches are com plem entary 

in  that they both relate to the design artifact. The structural branch is static, tim e-independent and 

prescriptive, w hile the functional branch is dynamic, tim e-dependent and descriptive. Furtherm ore, the

'I t  is interesting to note that though the system described in this Section is not self-referential, the description itself presented 
herein depends on self-reference to achieve its end.
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.structural branch addresses the issue o f what design is, whereas the functional branch deals w ith the how  

o f  d esign ’s occurrence and procedure.

At h igher levels o f  abstraction, the functional branch captures the design process used to create the artifact 

and issues o f  cognition by the designer. Thus, the functional branch m ay exhibit self-reference. The 

structural branch exhibits no self-reference because it does not consider the role o f  the designer. Thus in 

this fram ework, we can identify  and lim it the effects o f self-reference.

The structural branch captures the state o f  information pertaining to a description o f  the artifact at various 

degrees o f  abstraction. Since this description is independent o f  the actions that caused the inform ation 

to be discovered o r generated, it is applicable uniform ly throughout the design  process. A lso, since the 

description is independent o f  the agents responsible for those actions (the designers), it is also applicable 

to any design process; that is, the inform ation description is independent o f  the design process. T hus, it 

is possible to control self-reference in the structural branch. HM, which is the heart o f  the au th o r’s work, 

is contained entirely in the structural branch.

Each layer in the proposed system  m akes statem ents about the preceding layer, this is the case in  both 

branches. T hus, the first layer beyond the design artifact in the structural branch contains statem ents 

about the artifact, capturing concrete facts about it. The second layer contains statem ents regarding the 

classification o f these facts, and by extension, the classification o f  different artifacts. T he next layer (not 

show n in the figure) contains statem ents about different classification schem es and m echanism s.

Sim ilarly, in the functional branch, the first layer beyond the design artifact contains functions provided 

by the artifact and a functional breakdown o f  the artifact. The second layer contains actions taken to create 

(design or  m anufacture) the artifact. These actions m ay be affected by the cognitive processes o f  the 

designer. T he next higher level (not shown) contains more abstract inform ation about those instructions. 

C lassification o f  actions would also occur in this layer, and can include judgm ental and intuitive rem arks 

about the relative m erit o f  those instructions. The next level (also not show n) w ould include statem ents 

used to reason about the classifications and would include issues o f  decision m aking and negotiation 

betw een designers. T his inform ation would be used in the generation o f  different design  m ethodologies, 

their analysis and comparison.

The process o f  abstraction is used in both branches to m ove from one layer to the next. Clearly, the 

abstraction  could continue a d  infinitum, generating innumerable layers. However, the kinds o f  statem ents
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captured by these layers would quickly become so abstract as to be entirely m eaningless. At this time, 

the au thor believes that three o r four layers should be sufficient to capture all relevant inform ation. It is 

also noted  that this layered structure can be useful in the generation o f design taxonom ies by pm viding a 

criterion  for separating statem ents (i.e. information) based on the degree o f  abstraction used.

6.2 Categorization of Design Aspects

In response to the lack o f formal term inology and taxonom y for design and design theory, the author 

proposes a  m echanism  that can assist in the organization o f  relevant notions and their corresponding 

term s. T he m echanism  proposed herein arose front the au tho r’s consideration o f  m any aspects o f  design, 

only one o f  w hich is m entioned here, by way o f  an example.

K eirouz e t al [122] discuss the differences betw een variational and param etric m odeling from the point o f 

view  o f  constraint satisfaction in conceptual design. T he current author considered how best to categorize 

the cited  work: it d id  not belong strictly in any one o f  the three areas m entioned (m odeling, constraint 

theory and conceptual design) but seemed to relate to the three together.

T his k ind  o f  tightly  interwoven dependency betw een various aspects o f  design is indicative o f  the high 

degree o f  com plexity  required to accurately model it. C onsideration o f  each o f  the aspects alone is not 

sufficient because a large part o f the com plexity arises from the relationships that exist betw een them . The 

au thor therefore sought som e m echanism  that could represent the various aspects o f  design as individual 

com ponents w hile also capturing the relationships that exist between them . T he m echanism  is intended 

prim arily  as a  conceptual tool, an aid to stim ulate clear thinking about a  potentially  confusing problem.

T he au th o r’s research suggested that in a  real design process, there are a  num ber o f  different, fairly 

independent aspects that interrelate. Due to the richness and com plexity o f these relationships, a m ulti­

dim ensional approach seem ed appropriate.

The au thor thus proposes the use o f a design space  com posed o f  orthogonal axes. Each axis represents 

an independent aspect o f  design. In this system , different relationships, approaches and techniques can 

be classified and com pared. A particular relationship can be represented as a  point, line o r  region in the 

design  space. T he author has identified four orthogonal aspects o f  design: artifact m odeling  (the A-axis),
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behavioral m odeling (the B-axis), meta-m odeling (the M-axis), and model im plem entations (the I-ax is). 

Each aspect is assigned to an axis in the space, each o f  which is discussed briefly below. Figure 6.2 

represents the lour dim ensions o f  the design space as two three-dim ensional spaces sharing tw o axes, and 

includes a shaded area representative o f  the “locus" o f  the work described in (122],

6.2.1 Artifact Modeling

The ultim ate goal o f  a  design process is the production o f  an artifact o r product. T hus, one aspect o f  

design is the ability  to state in precise terms the nature o f  the artifact, that is, the generation o f  a m odel 

o f  the artifact itself. Inform ation from this model is eventually used in a  num ber o f  o ther areas (analysis, 

m anufacturing, etc.).

For this reason, one axis in the design space is allocated for design artifact m odeling techniques, including 

the physical aspects and the physical relationships between com ponents in the artifact. Variational and 

param etric m odeling, as well as various solid m odeling techniques, would all be represented on  this axis. 

In Figure 6.2, artifact m odeling is represented by the A-axis.

It is interesting to consider the role o f  constraints in artifact m odeling. Are constraints, vis-a-vis constraint 

satisfaction, a necessary  part o f  artifact m odeling? O r are they essentially  orthogonal to  artifact m odeling?

There are ongoing efforts in the field to investigate “constraint-based design” from points o f  v iew  ranging 

from knowledge-based system s [23,55] to alternate param eterization schem es [72 ,158] and constraint- 

based design [67]. These efforts have all had at least som e success in em bedding constrain ts into o ther 

design aspects. However, constraint theory is in the m ost pragm atic sense an  analytic technique and not a 

m odeling technique: it perm its the m athematical study o f  the capability  o f  an  artifact to prov ide a given 

functionality [63] (this notion is discussed in m ore detail in the next Section). The au thor recognizes that 

constraints can also be used to analyze and study m odeling techniques; but in  such cases, the constraints 

apply to the m odel, not to the artifact being m odeled, and so  m ust be regarded separately. T h e  design 

space being discussed in this Section is meant to study design; hence, constraints are not involved in  the 

artifact m odeling axis.
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c o n s tra in ts

co n cep tu a l
d esign

constraints

A B I-space

Figure 6.2: Graphical representation o f  the 4D  Design Space as tw o 3D  spaces
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6.2.2 Behavioral Modeling

Behavioral m odeling captures the other side o f the artifact m odeling coin. T his aspect o f  design is con­

cerned with m odeling the response  o f the artifact to stim uli provided to it from its operating environm ent.

C onstraint satisfaction is a prim ary technique with which to model system  behavior. In m any cases, a 

design problem begins with the specification o f  som e objective function to be m et by a  design. This 

objective function is derived from issues concerning the environm ent w ithin w hich the design is to 

function, and takes the form o f a  constraint. O ther constraints, including those internal to the artifact 

itself, arc usually derived in som e fashion from the objective function.

C onstraints permit the creation o f  m athematical models o f  artifact behavior. M athem atical m odeling o f 

system s (e.g. finite clem ent o r kinem atic analysis) is therefore also included in this aspect o f  design. 

O ptim ization and sim ulation based o r  the m athematical representation o f  behavior are also included.

C onstraints capture the relationships between form and function, and also betw een the artifact and the 

environm ent w ithin which the artifact is to function. They thus represent the link  betw een an  artifact’s 

structural m odel, which is usually  represented as being isolated from its environm ent, and the rest o f  the 

world in which it is intended to function.

A second axis o f  the design space is used to represent behavioral m odeling, and is  labelled the B-axis in 

Figure 6.2.

6.2.3 Design Evolution, or Meta-Modeling

Such notions as conceptual design, detailed design, concurrent desi^,., etc. do no t relate directly  to the 

artifact itself, but rather to the system  by which the artifact is produced. As discussed in S ection 5.1, such 

notions exist at a different level o f  abstraction than those o f  artifact and behavior m odeling. By treating 

r ‘o re  abstract notions separately, we can elim inate a possible source o f  self-reference in o u r fram ework. 

C onceptual, detailed, strategic, and o ther “kinds" o f design are m ew -m odeling techniques that perm it the 

study o f  the m odels them selves, rather than o f the thing that is m odeled (the design artifact).

T hus, a third axis is needed to represent these meta- m odeling notions o f  design theory. In Figure 6.2, 

m cta-m odcling inform ation : s represented by the M-axis.
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6.2.4 Implementations

In Section 4.3, we indicated that a distinct separation should exist betw een m odels o f designs and design 

processes, and how we implement those m odels. It is appropriate then to propose a fourth axis in the 

design space to represent the im plem entations o f the aspects o f design represented by the other axes. 

C om puter im plem entations o f  formal m odels is one com ponent o f this axis, but im plem entations need not 

be dependent on  the use o f com puters. W henever an idea, formalized o r not. is im plem ented in any way, 

a num ber o f  other issues that are implementation-specific -  issues that arc not important at the m odeling 

level -  m ust be considered. All these im plem entation issues and the techniques we use to handle them 

are represented along the fourth axis o f  the design space. We have labelled the last axis as the l-ax is  in 

Figure 6.2.

Insofar as com puters are concerned, all issues regarding software design, testing and usage would be 

represented on  the im plem entation axis; these include m atters regarding databases, com puter languages, 

graphics, etc.

6.2.5 The Example, Revisited

By w ay o f  exam ple. Figure 6.2 show s the regions occupied by the work in [122], m entioned at the 

beginn ing  o f  this Section. We m ay quantify the cited work as a  volum e in the design space bounded by the 

design aspects m arked o n  the axes: param etric and variational m odeling, conceptual design, and constraint 

satisfaction  (also labelled in Figure 6.2); and since the work does not d iscuss issues o f  im plem entation, it 

appears as a  tw o-dim ensional region in the ABI-space.

T he quantification that is possib le through the use o f the design space can perm it a new degree o f 

organization  in  the work o f design researchers. Its graphical representation pem iits easy visualization o f the 

re lationships that exist betw een different research efforts. It could be used to organize individual research 

projects w ith in  large groups and indicate regions where m ore work is needed o r where different projects 

overlap. It m ay also find use in the organization o f  engineering corporations and controlling/regulatory 

bodies by  clearly m arking the boundaries o f  the areas o f  influence o f  each body. T he design space can even 

be used to  organize conferences and other m eetings by perm itting visual identification o f  areas covered 

by each presented work or representative group.
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6.2.6 Relationship to the Layered Structure

There is a relaiionship between the layered structure in Figure 6.1 and the design space in Figure 6.2. 

The layered structure separates degrees o f  abstraction in design, whereas the design space separates 

orthogonal aspects o f design. The A (artifact m odeling) and B (behavioral m odeling) axes o f  the design 

space represent the structural and functional branches o f the layered structure respectively. A lso, the M-axis 

(m cla-m odcling) captures the increasing degree o f abstraction that occurs through the layered structure. 

Since the layered structure docs not deal with im plem entation issues, there is no correspondence w ith the 

I-ax is.

Therefore, both the layered structure and the design space capture the sam e basic philosophical notions, 

albeit from different points o f  view.

6.3 Summary

The author has suggested two possible solutions fo r addressing problem s in design and design theory 

caused by logical inconsistency. The first is a  logical layered structure that perm its the c lear distinction 

o f  different degrees o f  abstraction (Section 6.1). Being able to classify statem ents m ade about design 

according to their degree o f  abstraction, we m ay better avoid circular and self-referential argum ents that 

cannot be validated. In other words, it contributes to clearer thinking about design.

Secondly, the design space described in Section 6.2 pem iits the v isualization o f the relationships offered 

by various approaches and techniques in design and design theory along four orthogonal (independent) 

metrics: artifact m odeling, behavioral m odeling, m eta-m odeling, and m odel im plem entation. Again, the 

principal goal is to clarify  the relationships inherent in o u r understanding o f  design  so that we m ay study 

and im prove that understanding.
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Chapter 7

Discussion

T his Part o f  the au tho r’s w ork has covered a fairly wide range o f topics, but the underlying philosophic 

no tions are few and distinct. The goal o f  this sum m ary is to consolidate the m atters presented above.

T he au thor has identified som e problem s in design and design theory that arise from the lack o f  a formal base 

upon w hich rigorous understanding can be developed. T he changing, grow ing nature o f  design is in part 

responsible for the lack o f  accurate taxonom ies o f  design com ponents, notions, m ethodologies, etc. The 

fluid nature o f  d esign ’s developm ent m akes finding a correct and m eaningful taxonom y quite like hitting 

a  m oving taiget. T he non-logical ad-hoc  nature o f  the evolution o f  design is also to blam e. Its relatively 

arbitrary developm ent has led to the introduction into com m on usage o f  vaguely and /or inconsistently 

defined concepts and term s. Ill-defined classification system s for design artifacts, com ponents, systems, 

etc. have ham pered the generation o f  appropriate tools with which design can be studied in an abstract 

sense. Subjectivity  introduced by considerations o f  the d esigner’s role in design has introduced self- 

reference, w hich in turn leads to inconsistent design theories. T hese shortcom ings have harm ed o ur ability 

to  com m unicate and have spawned incom patibilities betw een the various aspects o f  design, leading to 

so-called “ islands o f  autom ation”. The inability to com m unicate properly has also affected our ability to 

teach design, and thus perpetuates the inconsistencies.

E m pirical studies are unlikely to lead to a m ore scientific understanding o f design because the influence 

o f  self-reference w ithin such fram eworks cannot be dealt with. O f course, existing design theories and 

m ethodologies can be valuable in guiding our search for a logical design theory, but we should not be
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surprised when inconsistencies in our current understanding are found.

Self-reference can be m inim ized only by forming logical system s for design that do  no t include the 

subjective, cognitive functions o f  the designer. Logic offers us m any techniques that can  be used in this 

regard. These techniques m ust be diligently applied throughout o u r efforts, m uch as they have been in 

the form alization o f  science.

T heories o f  design can be regarded as being either functional o r  structural in nature. Functional theories 

describe artifacts from the point o f  view o f  the functions they provide and the actions needed to create 

them . These seem m ost prone to self-reference because the actions can be traced to the cognitive functions 

o f  the designer. Structural approaches can result in formal theories w ithout self-reference; such theories 

take the form o f  prescriptive inform ative descriptions o f  design artifacts at various degrees o f  abstraction.

Som e m ay argue that the intensive use o f  logic in design can stifle such intangible and qualitative things as 

creativity, opinion, intuition and judgm ent. The author m aintains that this is not the case. L ogic  does not 

squelch creativity and intuition, but rather channels it, helping to keep the designer from  m aking errors 

that would adversely affect productivity and efficiency. It helps a  person have m ore inform ed opinions 

and m ake m ore educated judgm ents.

T hree informal, conceptual tools have been introduced. These tools are m eant to clarify  and study  the 

postulated logical structure o f  design. The notion o f design as an artificial science  is presented to reconcile 

the di fferenccs betw een the “natural” sciences and design theory, and to present a poin t o f  v iew  that perm its 

design  researchers to take advantage o f  the formal tools o f  logic m ore fully. The layered logical structure  

presented in Section 6.1 perm its the m odularization o f  design by degrees o f  abstraction. It allow s fo r the 

identification and subsequent e lim ination o f  som e occurrences o f  self-reference from design  theory, and 

m ay be useful in the generation o f  design taxonom ies. Finally, the notion o f  a  design space  perm its the 

classification o f  the various techniques available to designers, and assists in the organization o f  the  efforts 

o f  design researchers and theorists.

T he intention in this Part has been to introduce in a  relatively inform al but detailed w ay the dom ain 

o f  the au th o r’s work. Having established this definitional fram ework, we m ay now  proceed to detailed 

considerations regarding the structuring o f  design information.
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Chapter 8

Introduction

This Part o f  the au tho r’s work is devoted to an exam ination o f  design inform ation w ith the aim o f 

form alizing its structure. This is done by proposing a formal system  that relies on axiom atic set theory for 

internal consistency. T he author calls the resulting model the H ybrid M odel (HM ) o f  design  information. 

The origin o f  the nam e “ Hybrid m odel" is in the au thor’s original research in com bining object-oriented 

data m odels [159] w ith hypertext [160], hence the use o f  “hybrid". Since then, H M  has evolved into an 

entirely different kind o f  model.

In keeping w ith the observations m ade in Section 6.1 regarding the lim iting o f  self-reference through the 

use o f  logical layers o f increasing abstraction, we will present HM in tw o Chapters. First, m atters relating 

to actual design inform ation will be dealt w ith in C hapter 9; then, the organization o f  that inform ation will 

be dealt w ith in C hapter 10.

As well, it was indicated in Section 6.1 that a  d istinct separation betw een structural and functional 

descriptions o f  design artifacts lends itself well to the control o f  self-reference, an instinctively hum an 

action w hich has been argued to be detrim ental to the developm ent o f  rigorous design theories. T his im plies 

a separation betw een design infom iation and processes that m anipulate o r otherw ise use  that information. 

It has already been suggested [7 ,161 ,162] that design inform ation can be considered separate from the 

engineering design process.

Finally, the author contends that a good understanding o f design infom iation  m ust precede  any real
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understanding o f  the design process itself. T his issue will he discussed in Section S. I. and m otivates the 

central thesis o f  this work: the search for a formal theory o f design infomiation.

8.1 Modeling the Design Process

In this Section, the author presents a model o f  the design process with the intention o f  supporting the 

hypothesis regarding the separation o f design infom iation and processes. It is presented only to the extent 

that it p rovides a reference point for the developm ent o f HM, and brings to light several im portant aspects 

o f the design  process that have affected the developm ent o f HM. The model regards the design process 

from a functional point o f view, and we refer to it sim ply as the functional m odel (not to be confused with 

the functional branch in figure 6,1).

We begin  by m aking the relatively trivial statem ent o f  a  generic m athematical function, namely:

y  =  / ( * ) •

Here, /  is som e function that m aps an input value represented by the variable x  to son ic  output value 

represented by the variable y ; indeed, y and f ( x )  arc identical. Now, from the point o f  view o f design, 

we rewrite this equation  as:

.S' =  d( P) .

P  represents a design problem , S  its solution and d the design process. We m ay state this in words as: 

“There is a design  process that operates on a particu lar design problem  and  results in a corresponding  

design as a so lu tion” . T his is not an unreasonable statem ent to make, and though it m ay still appear 

trivial, it does c a n y  som e im portant implications:

Clearly, the so lu tion  depends on the problem (the output is the  dependent variable). A lso, as stated above, 

5  and d ( P )  are identical.

From  a purely m athem atical point o f  view, one m ay be inclined to stop here. But there is m ore than one
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way to design a certain entity. That is, given a particular design problem , there m ay be m ore than one 

design process d  that can provide equally acceptable solutions. Selection o f  a  design process depends at 

least in part on the kinds o f  infom iation about the problem that are available to the designer. (It would 

also depend on optim ization considerations, as well as on the m ore subjective preferences and judgm ents 

o f  the designer.)

If the input is badly o r  incorrectly defined or specified, then selection o f  an appropriate so lu tion  function 

may be difficult o r im possible. That is, if  the design problem  is badly stated, o r  is based on faulty vaguely 

o r verbosely presented inform ation, then the selection o f  a  design process is prone to erro r (since, as is 

indicated above, the design process is dependent on the problem ), and thus reduces confidence in the 

solution. Therefore, the problem  m ust be clearly understood  and precisely defined before  a solution 

process can be selected and applied.

There is another issue that is an essential component o f  alm ost every non-trivial design  task: iteration. 

That is, a (possibly dynam ically  changing) design process w ill be applied iteratively to a  design problem  

in o rder to reach a final solution. We can represent this in o u r m athem atical notation by:

Si+i = d{Si + P).

For each iteration i +  1, the design process d  is applied to the problem  p lus  the solution, such  as it exists, 

at iteration i. Put another way, the solution at iteration i +  1 is based on both the problem  an d  the ith 

solution. W ithout including the solution at iteration i  in the argum ent to the design function, convergence 

would never occur. So, at each iteration in a  design cycle, the existing -  though possib ly  incom plete 

and/or incorrect -  solu tion  is used to drive the next iteration o f  the design cycle. T he essential observation 

here is the "superposition” o f  the problem  with the ith  solution: correspondingly, the problem  and the 

so lu tion  m ust be representable in a com patible way o r the iteration process cannot proceed.

In sum m ary, the functional model provides two im portant insights into the requirem ents that m ust be m et 

by a form al system  for design information:

•  a  formal understanding o f  design state inform ation is necessary before  the design  process can  be 

successfully  form alized to any significant degree (i.e. design  state inform ation is independent o f  the
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design  process);

•  the organization o f  inform ation is relevant both for the problem  definition and the solution, ;uid any 

theory o f  this infom iation  m ust be  unified over both problem  and  solution domains.

T his approach differs from that taken by other researchers. Suh [31] states design problem s in tenns o f 

functional requirem ents to be m et by successful candidate designs, and solutions arc stated in tenns o f  

param etric  representations o f  variables. Another approach is taken in by Yoshikawa |3 9 |,  who defines two 

separate spaces -  a  function space and an attribute space -  and each o f  the design problem  and solution 

are defined in term s o f one o f  these spaces only. These approaches, am ong others, arc sim ilar in that both 

consider a  design artifact (as represented by S uh’s design param eters o r Yoshikawa's attribute space) as a 

separate entity  from the problem  that caused it to be designed (the functional requirem ents o r space).

T h is dual representation o f  design inform ation by functions on the one hand and param eters on  the 

o ther m akes unified representation o f  design problem s and solutions m uch m ore difficult. As well, it 

in troduces coupling betw een the form o f  the representation o f  infom iation and the design processes that 

use th is inform ation. In its favor, such a separation o f  the dom ains o f  functional requirem ents and physical 

param eters is beneficial from a  conceptual point o f  view, perm itting m odularization o f  the task into sm aller 

segm ents that can be studied individually. However, it can also lead to a  divergence at the theoretic level 

that w ill prevent final integration o f  these dom ains into a  single, global theory. Also, it docs not address 

the dependence o f  iteration on the successful com bination o f  inform ation regarding both problem s and 

partial solutions.

T he approach presented herein by the functional model is superior because it sim plifies the m anagem ent 

and organization  o f  design as an endeavor. In an iterative process such as design, the cumulative  

inform ation  generated from the iteration is an essential com ponent o f  finding a correct solution. In order 

to m erge the accumulated inform ation with the design problem  for the iteration to continue, a unified 

representation  o f  both problem  and solution m ust exist. T he functional m odel o f design m aintains the 

in tegrity  o f  problem  and solution specification while d ividing the problem  along a different and more 

im p o u an t boundary betw een static, passive inform ation and dynam ic, active functions that transform  the 

inform ation.

T h e  au tho r also notes that a  num ber o f  other researchers have supported the notion o f  separating rcp-
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rcscntation o f inform ation from processes affecting that information, including [1 4 ,4 1 ,4 2 ,8 7 ,1 6 3 ], Of 

particular interest is Fauvcl’s work [41 ], which suggests that the relation

( A c t i v i t y  ( n ) ,  E m b o d i m e n t  ( n ) ) —  A c t i v i t y  ( n + 1 )

is representative o f  the design process. An A c t i v i t y  ( i )  is som e com ponent process o f  the overall 

design process and an E m b o d i m e n t  ( i ) is the physical m anifestation o f  the result o f  the com pletion  o f 

an activity. It is interesting to note the shift in point o f view between the au th o r’s m odel and that o f  Fauvel. 

The latter is based on the notion that given som e initial design activity, the results o f  that activity drive the 

selection and execution o f  other activities. The form er is based on the notion that an initial em bodim ent 

(in Fauvcl’s tcm ts) drives the selection and execution o f activities that lead to o ther em bodim ents.

The au thor m aintains the functional model as presented above because o f  the observation  that reliable, 

accurate and usable infom iation m ust exist p rior  to the selection o f  any processes m eant to act on this 

infom iation; Uiat is, the em phasis should be placed on information as the driving force behind a  design 

enterprise.

Fauvel reasons in detail on the role o f  various kinds o f activities that are relevant to  design, w ithout 

dw elling on  the nature o f  the em bodim ents. His results are quite clean and elegant; th is encourages the 

au thor to believe that the separation o f  design inform ation from design actions is n o t on ly  appropriate, but 

necessary i f  design theory is ever to m eet w ith success.

8.2 Basic Structures and Concepts

8.2.1 Basic Aim of HM

8.2.1.1 A Prescriptive, Axiomatic Approach

T he aim  o f  HM is to provide a prescriptive, axiom atic theory o f  the inform ation present during the course 

o f  a design. Naturally, only infom iation relevant to a particular design task is considered, thus restricting 

the application dom ain  significantly. T his restriction plays an im portant role in the developm ent o f  HM; 

this is d iscussed below.
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HM  is prescriptive  in that it prescribes a language for the specification o f  infom iation for a design task. 

The term  is not used to prescribe m ethodologies that should be considered norm s (som etim es called a 

norm ar/ve approach). G iven the role o f hum an cognition in design, the author believes that the best results 

can be achieved by a sym biotic  relationship between the designer’s innate capabilities (including such 

intangibles as judgm ent, creativity and intuition) and som e more formal logical system.

The term prescriptive  is used to indicate that HM is a system  that lies outside the actual thought processes 

o f  the designer, that is, it lies w ithin an objective, logical dom ain. The author considers this a more 

reasonable objective than that o f  the descriptive  school [ 111. which seeks to quantify  ;uid formalize the 

actual cognitive functions (i.e. mental content and processes) o f the designer.

HM  is axiom atic  in that it relies on axiom atic set theory as its foundation. The au th o r’s initial attempts 

sought a  form alization based on existing infom iation m anagem ent paradigm s (object orientation and 

hypertext in particular), but the lack o f existing form alization in these fields was found to be insurm ount­

able. O bject orientation is often referred to more as a philosophy or point o f view than tui actual i'omial 

paradigm  [27,164]; the status o f hypertext is even m ore tenuous [143,1601. It becam e necessary to return 

to m ore basic first principles, and it was during the au th o r’s study o f  sym bolic logic that axiom atic set 

theory presented the necessary isom orphism s upon which to base HM.

A xiom atic se t theory has taken on various form s [1 ,16 ,153], but every form is based on the classical 

theory developed by Z erm elo and Fraenke! [80] and which is generally referred to as Z F set theory, o r just 

ZF. T his convention is adopted in the sequel, for brevity’s sake. ZF requires only the predicate calculus 

and is thus derived purely from logic, w ithout any extra-logical o r other em pirical influences.

ZF deals w ith groups o f  com pletely general entities; a  group o f entities is called a set. T he theory 

form alizes the nature o f  sets to such a degree as to perm it the derivation o f  alm ost ail the classical 

branches o f  m athem atics and logic, including arithm etic, algebra and calculus [153]. T he m ost interesting 

im plication o f  set theory as far as the author is concerned regards consistency o f  theories that arc supersets 

o f  classical axiom atic set theory. In [80], it is proved that any axiom system  that can be rewritten in terms 

o f  Z F  w ithout introducing any new atomic statem ents, quantifiers o r connectives, is consistent (insofar as 

Z F  is consistent). In ZF, the prim itives are =  and 6; connectives are binary operators such as n and u; 

and the quantifiers are V and 3. As will be seen, this consistency criterion is satisfied by HM . T his m eans 

that we know  at once that HM is no less consistent than ZF.
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8.2.1.2 U niverse o f  D iscourse and  Design E ntities

The term universe o f  discourse  denotes the overall dom ain w ithin which all interesting argum ents are 

made. The entities contained within the universe o f discourse com prise a com plete vocabulary.

In this work, the universe o f  discourse is that o f  design inform ation ; that is, the specification o f  -  

o r statem ent o f  facts about -  a design problem and the various com ponents and aspects o f  its solution, 

without consideration to any processes required to generate that solution. W ithin th is universe o f  discourse, 

the entities o f relevance arc whatever design entities are available to the designer in order that he/she may 

fulfill the task at hand. T his greatly restricts the space o f  possible entities (as com pared to . for exam ple, 

ZF, where any item at all may be considered to fall w ithin the universe o f  discourse). It is exactly  because 

o f  the specific nature o f  the entities involved that m uch m ore can be said about them  than is norm ally 

possible (as, again fo r exam ple, in ZF). The notion o f  a  restricted universe o f  d iscourse is  essen tia l in 

order to he  able to derive H M  at all.

The author inform ally defines a design entity in HM as som e real-world structure that is m eaningful from 

a design point o f  view. T his unit need not be physically realizable p e r  se: it can be a  purely conceptual 

item , such as a run o f  a finite elem ent program o r  a m anufacturing process plan. It can a lso be a  fea ture, 

in that threads, holes, fillets, etc. are also design entities. HM deais, then, w ith the form alization o f  design 

entities. In the Sections follow ing, the exact form alization is stated and discussed.

8.2.2 Theory of Logical Types and Set Theory

In ZF, if  a universe o f  discourse consisting o f  all the possible sets is considered, it is very easy to generate 

a num ber o f  paradoxes that cause the theory to become inconsistent [80 ,153]. A num ber o f  schem es 

have been suggested over the years to avoid these paradoxes. Two o f  the classical approaches are the 

type-theoretic approach, and the approach o f  class-inclusion.

C lass inclusion assum es a universe o f  discourse containing both sets and “classes”, the latter being 

collections o f  sets (not sets o f  sets). The resulting theories are quite powerful, but tend to hide som e o f 

the features o f set theory that the author considers im portant for design. T he type-theoretic approach, on 

the o ther hand, tends to be more explicit, but m ore com plicated to m anage as well.
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In a  type-theoretic set theory, logical paradoxes arc avoided by restricting the kinds o f  individuals that 

can ex ist in various sets. At the lowest level in the typc-thcorctic approach exist the individuals in the

universe o f  d iscourse and the attributes that can be predicated on them (i.e. acted on by functions). At

the next higher level exist sets (collections o f  individuals) and the attributes that c;ui act on these sets ;utd 

on  individuals. At the 3rd level exist sets o f  sets and the attributes that arc prcdicablc on sets o f  sets and 

entities at low er levels; and so forth. There arc an infinite num ber o f  levels.

Furtherm ore, equations in a type-theoretic system  cannot mix predicates from different levels ad-hoc, but 

only according to the follow ing rules:

x ' =  <j (8.1)

x 1' 6 y i+l (8.2)

w here i  represents the level o f  an entity. T he first rule states that entities that are equal m ust exist at the 

sam e logical level; i.e. they m ust be, for exam ple, both sets, o r both sets o f  sets. T he second rule states 

that i f  one item (x )  is a m em ber o f  another (y),  then the form er m ust be one logical level low er than the 

latter. T hus, if  we consider that (a) x  is a set, and (b) that x  g  y, then the rules o f  type theory tell us that 

y  m ust belong to the level containing sets o f  sets (since x  is itself a set).

T he problem  w ith the type-theoretic approach is that the bookkeeping required to d istinguish betw een the 

various levels com plicates the notation. Fraenkel’s solution is to add an axiom  (the axiom o f  replacem ent) 

that em beds the concept o f  logical types, leaving the axiom which defines sets (the axiom  o f separation) 

untouched. Z erm elo ’s (and Suppes’) solution em beds the concept o f  logical types into the axiom  o f  

separation. O f all the choices, the author prefers Zerm elo’s for the follow ing reasons. Firstly, it em beds 

all necessary inform ation w ithout unnecessary additions to the num ber o f  axiom s or to the notation. 

Secondly, in the universe o f  discourse o f  design information, as will be seen, only a very few levels o f 

logical types are needed, and distinguishing between theirelem ents is relatively easy; it seem s unnecessary 

to include all o f  the theory o f  logical types, which is, after all, intended to distinguish betw een entities 

that w ould be difficult to differentiate otherwise. Thirdly, and m ost im portantly from o ur point o f view, 

the Zerm elo  solution, flows quite naturally from design considerations and is a natural form o f expression
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o f  types o f  inform ation relevant to design.

8.2.3 Fundamental Structures and Isomorphisms

The fundam ental logical structure in HM is an object. An object captures a unit o f inform ation that is 

m eaningful to a  designer. Thus, an object is the formal representation in H M  o f  the inform al notion o f  a 

design  entity. Sets will be used to represent objects. The fimdam ental isom orphism  o f  HM , then, is that a 

design entity  corresponds to an object (or set). The isom orphism  is not part o f  HM  itse lf (o r Z F  for that 

m atter), but is an extralogical relationship discerned by the author betw een design and form al logic, and 

w hich g ives m eaning to the form al system (HM ) from the point o f  view  o f  design.

A bolt, a  truss, an airplane, a  hole and a run o f  a finite elem ent program  w ould all be represented by 

objects. O bjects m ay “contain” other objects (this is discussed below). T he entity  represented by an 

object need not be physically  realizable (for exam ple, a hole o r  a fillet), thus it includes fea tu re s  [42,53]. 

O bjects m ay represent m achining and o ther m anufacturing processes.

T he use o f  objects is im portant because it perm its encapsulation  o f  inform ation, i.e., the discretization 

o f  a  quantity  o f  inform ation into m eaningful structures that can be treated as single units. Encapsulation 

leads to the construction o f ordered  collections o f  inform ation. T his can greatly  sim plify  m anipulation 

o f  the inform ation. For exam ple, the alphabet is a structure containing the ordered sequence o f  written 

expressions o f  the phonem es that com pose the English language. Sim ilarly, a  screw  is an ordered collection 

o f  inform ation that m odels a device used in the real world as a  k ind o f  fastener.

Let the set o f  all objects be denoted by 0 ,  and let X ,  Y , Z  be m em bers o f  th is set (i.e. individual objects).

A xiom  I  (U n ifo rm ity  o f  S tru c tu re )  A ll design entities are represented b y  objects.

A xiom  2 (U n iqueness o f  O b jec t Iden tifiers) A unique object has a  unique identifier.

A lthough the relevance o f  axiom  2 m ay seem at first glance to be triv ial, there is also a  m ore basic, 

philosophical concern. We m ust be able to identify any design  entity  if  w e are to use it. T he process o f 

identification is essential in distinguishing betw een entities in the universe o f  discourse. T he m anifestation 

o f  the process o f  identification is the attachm ent o f  an identifier to an entity. Since objects m odel design 

entities directly, we m ust also be able to identify objects.
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At a m ore practical level, an object is a conceptual tool that perm its us to abstract, infer, ;uid deduce 

inform ation about design entities, and to classify them by their conceptual definitions.

One o f  the principal concerns in any theory o f information is that o f  ordering or organizing the infomiation. 

T hat is, the definition o f  relationships between entities is o f prim ary im portance. It is a m eans o f making 

explicit inform ation that would be otherw ise only implicit w ithin a collection o f  data. In HM, this is done 

w ith relations  and fun c tio n s  as defined in ZF.

A relation is a statem ent that defines a relationship betw een entities. G iven a collection o f  sets 

(A , B , C , . . .) , a relation R  applied to the collection yields a set o f ordered sequences {«, 6 , < •,...) such 

that a €  A, 6 S B  and so on. The ordered sequence is often used as a representative notation for the 

relation  itself. T hat is, ( x , y )  (where x  €  A  and y  e  B)  represents all ordered pairs arising from the 

application  o f  som e relation R  on two sets A and B.

A function  is  defined the sam e as a relation, with the added restriction that the relation R  can m ap a single 

value o f  x e  A to exactly one m em ber o f  y e  B.  Functions are often written f  : X  — Y  and arc read " /  

is a  function  that m aps the m em bers o f set A' to the m em bers o f  set Y "  [80].

It is noted  that functions and relations as defined w ithin Z F  provide the formal grounds not only for 

m athem atical functions and relations as they are understood outside the field, but also for relations 

in  relational databases, m ethods in object oriented system s, procedures and routines in conventional 

program m ing languages and links in hypertext. They are also essential to  the developm ent o f  data 

m odeling  languages such as “ Z” [165] and EXPRESS, w hich is the base language for the PD ES/STEP1 

project.

Functions and relations are used to o rder m em bers o f  sets, and their form alization is a  key part o f  the 

au th o r’s work. T his further extends the isom orphism  betw een set theory and design inform ation. HM 

currently  supports five ordering m echanism s for design inform ation based on functions and relations. 

T hey  are d iscussed in C hapter 10.

1PDES is the American Product Description Exchange Standard project; STEP (Standard for the Exchange o f Product Model 
Data) is its European equivalent.
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8.3 Summary

T his C hapter has introduced the fundamentals upon which HM is constructed. An exam ination o f  the 

design process (Section 8.1) indicates that the separate treatment o f  design inform ation and the processes 

that act on that inform ation is possible and desirable. Furthermore, an understanding o f  relevant design 

inform ation is a necessary prerequisite before an analysis o f the design process itse lf can be attempted. 

Conceptual notions o f  logic, particularly than o f  logical types from set theory, are introduced as relevant 

building blocks from which HM is developed. The fundamental structures and isom orphism s o f HM 

arc introduced. In particular, the notions o f  a design entity and an object are introduced as the atomic 

inform ation units from which design m odels are constructed.
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The Structure of Objects

9.1 Introduction

In this C hapter the nature o f  individual objects and their internal structure is explored and defined. The 

treatm ent is analogous to the basic definitions o f  sets in ZF. Only a few new  term s and special sets are 

introduced to m ake the resulting theory specific to engineering design. T his too is acceptable from a set 

theoretic po in t o f  view. No new prim itives, quantifiers o r  connectives are introduced, thus m aintaining 

logical validity. T he special sets -  A, D, 0  and R -  are needed only to distinguish  betw een the various 

base entities in HM , they will be defined as they are introduced in the text.

9.2 Definition of Objects

A design entity  is defined by its observable, o r otherw ise known, attributes. A ttributes define the structure 

of, and function provided by, the entity. For exam ple, a  tree is defined by its shape, size, strength o f  the 

w ood, etc. In fact, the concept “tree” is really nothing bu t a label attached to a set o f  observed attributes 

that are shared by all trees [131,166]. A ttributes are im portant in design because they m odel identically 

the properties o f  entities in the real world (as opposed to the perceived, conceptual o r o ther worlds).

L et the se t o f  all attributes be denoted by A, and let a, 6, c denote m em bers o f  that set.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

80

D efinition 1 (D efinition o f an  O b ject by its  S tru c tu re ) An object is a  set o f  unique, identifiable, m ea­

surable  attributes.

T he set o f  all attributes A can be regarded as the set o f  all design variables (like S uh’s design param eters 

[31]). Objects m ay then be seen as a natural form o f grouping and treating these param eters.

A unique  design entity is one whose attributes differ in som e way from  the attributes o f  all o ther design 

entities. If  tw o attributes (from tw o different design entities) are the sam e, then any operation that can 

be perform ed on the attributes will yield the sam e results. Since a design entity  is a  se t o f  a ttributes, an 

operation applied to  a design entity will yield unique results only i f  there is at least one attribute w ith 

a unique value in that entity. Therefore, design entities m ay be equated by exam ining the results o f  the 

application o f  operations to them , rather than exam ining their internal structure directly. Since objects in 

HM  m odel design entities, we have the follow ing axiom:

A xiom  3  (Id en tity  o f  O b jects) I f  the sets o f  a ll attributes o f  any tw o objects have identical m em bers, 

a n d  i f  corresponding a ttributes in each object have equal values, then the tw o objects are  identical.

V (A ) [(X  e  O ) => ( S E T ( A ) ) .  (V(a) [(a 6  X )  => (a  6  A ) ] ) ] . (9 .1 )

Since A is the se t o f  a ll a ttributes, we can also write this as:

V(A') [(A  €  O ) => ( X  C A)] • (9 .2)

V (A ) [V (y) [(A  = Y )  = M P ) i P ( X )  =  P (K ))) ]J (9 .3 )

where P  is  any unary predicate.

We note that axiom  3 is the sam e as the Axiom o f  Extensionality in  Z F  [80], i.e.:

(.A  =  B )  = d} V (x )((*  €  A )  =  (x  e  B ))
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but is derived from design considerations rather than purely m athematical considerations.

9.3 Views of Objects

A num ber o f  properties o f objects are very important front the point o f  view o f design; these properties 

reinforce the isom orphism  between set theory and design infom iation. In this Section and those to follow, 

these properties will be introduced and examined.

T he first property is term ed relevance  by the author, and it is m anifested as views o f  objects.

One o f  the m ost useful innate hum an intellectual abilities is to m ask out certain aspects o f an object 

in favor o f  other aspects o f the object that are o f  importance to us. For exam ple, a person could very 

easily  sort a  collection o f  books by their size, though, if asked shortly thereafter, be com pletely unable to 

describe the colors o f  the books’ covers. Being able to selectively ignore o r recognize inform ation lets us 

isolate and focus o u r attention only on areas o f  interest. The im portance o f  filtering inform ation in design 

environm ents has been recognized in the literature [17,31].

A  view  o f  an object partitions its attributes, m aking only som e visible and m anipulablc. Views do not affect 

the ob ject itself, but establish a projection o f  the object wherein only certain  attributes are accessible. A 

view  partitions the attributes o f  an object according to criteria explicit in the view  itself. A fter partitioning, 

the rem aining attributes form a subset o f  the attributes o f  the object being view ed, that is, a  view  object. 

An attribute m ay be act’ ve in a num ber o f  view s but need not be active in all views.

E pistem ologicaJ’.y, we can also m ake the follow ing aigum ent to support this approach.

A n “ ideal” object is or.e that m odels a  design  entity in every detail, property, behavior, etc. Such a  detailed 

m odel o f  reality  is unlikely to be possible to construct, yet we can im agine it from a theoretical standpoint. 

In fact, w e can likely not even form such a  m odel mentally, but we can im agine that such m odels m ight 

exist. From  a design  point o f  view, not only is it likely im possible to construct such ideal m odels, but it 

is also unw arranted. In design, we are specifically concerned w ith only subsets o f  all the attributes o f a 

design  entity. T hus, the logical notion o f  a  view perm its us to project an ideal m odel o f  a  design entity 

onto  a  relevant design m odel o f that entity.

We see, then, that the isom orphism  betw een set theory and design form s a connection that extends from
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the very notion o f  existence to a specifiable formal model o f existence.

If we consider a particular object to be a “com plete” model o f  some design entity, then any proper subset 

o f  the m em bers o f  the object can be considered a specific view o f the object w ith respect to the selected 

m em bers.

Using the definition o f  subsets in [80], we can write in the notation o f HM:

V(.Y)(V(K) [(A’ C Y )  = d/ V(x) [(* 6  X )  => (x  €  V ) ] ] ).

If (A' c  Y )  but (A ' ^  K), the subset is a proper subset. The n u m b ero f possible view s o f  an object is the 

cardinality o f  the pow er set V ( X ) o f  the ob ject1.

M any o f these view s would be trivially unim portant to a designer. But there is no  w ay to define a-priori 

only the view s that are relevant. Yet, we can restrict our definition o f  a  view  in a m anner sim ilar to the 

way that the definition o f  a subset is restricted in ZF. This kind o f restriction also happily  prevents certain 

k inds o f  logical paradoxes that would render the theory as a whole invalid.

We begin w ith w hat is generally called the Axiom  o f  Separation.

3 (5 )  [V (x)((x 6  5 )  =  ((x  €  A )  • ¥>(*)))]

where there are no free occurrences o f  5  in 9 . T his says that for any set A ,  and any propositional function 

(i.e. predicate) 9 . there is a set 5  that is a subset o f  A  and that contains only m em bers o f  A  that satisfy <p.

W hen we say that there can be no free occurrences o f  5  in ip, we m ean only that <p m ust no t contain 

occurrences o f  3 ( 5 )  o r V (5) since this would im ply that 5  is defined in  term s o f  itse lf and w ould lead 

to paradoxes. T his is not a real problem in HM  itself, because it would be m eaningless to define a view 

with respect to  itself, so a designer would likely never attem pt it. However, it is enforced in  HM  for 

com pleteness and consistency.

We refer to  the Axiom  o f  Separation as an axiom -schem a  because the sym bol p  represents a  group  o f 

'T he power set is a well-defined entity in classical set theory [80]
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predicates. We m ay write the set o f  all predicates y? as <t>. The equation above therefore actually represents 

a  group o f  axiom s, each having a different predicate substituted for y> 6  <l>. In Section X.2.1.2, it was 

explained that the restricted nature o f the universe o f  discourse o f HM lets us investigate the nature o f 

entities w ithin that universe m uch more closely than is possible in ZF. Here is one exam ple o f the degree 

o f  detail that is possible: in ZF, little can be said about the actual predicates that can be substituted for yr 

in the Axiom  o f  Separation: but, as we shall sec h low, in HM we can investigate a num ber o f  important 

groups o f  predicates that apply to design. Views arc the lirst such case.

We interpret the A xiom  c f  Separation for HM view s as follows: For an object X  tmd any predicate <p. 

there is another object Y  whose set o f  attributes is a  subset o f  the attributes o f  .V, all the m em bers o f 

which satisfy <p.

T he A xiom  o f  Separation is an axiom  schema, in HM  the axiom  o f  views is in fact a subset o f that o f the 

A xiom  o f  Separation. It can be written as follows:

A xiom  4 (A xiom  (Schem a) o f  Views)

3 ( F )  [V (a)((a e Y ) =  [(a  6  X )  .  7 (a )])] (9 .4)

where  7  contains no fre e  occurrences o f Y .

7  is a  new  sym bol, and is used to represent a subset o f all possible predicates that satisfy the Axiom 

o f  Separation. In particular, 7  represents a  predicate that “defines" a view; different 7  predicates will 

produce different view s. 7 , then, is the criterion by which a specific view is defined. These criteria 

are attribute-specific. For exam ple, if  7  were such that only attributes that m odeled spatial dim ensions 

satisfied it, the resulting view  o f an object would be its 3D geom etric representation.

Let the se t o f  all v iew s be denoted by T, and let 7  be a m em ber o f that set.

The no tion  o f  a view  being a subset o f  an object is captured by the follow ing definition.

D efin ition  2 (V iews) V IE W () is a binary fu n ction  whose param eters are an object a n d  a  view criterion  

specification, and  whose result is another object called a  v iew  object whose a ttributes are a subset o f  the  

attribu tes o f  the input object selected according to the given criterion.
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V(X ) [V( 7 )(3( Y ) [(Y  =  VIEW (X ,  7 )) •  ( Y  C A ')])] . (9.5)

Wc can write this in a  functional notation as

VIEW  : 0  -  V ( 0 ) .

Objects that are the sam e in every regard are identical. T h is applies to view  objects as w ell. However, 

this notion also suggests a relationship between the objects from which the view s were generated. I f  there 

exists a view object that can be derived from two non-identical objects through the use o f  a single view 

criterion 7 , then we define the two non-identical objects as being sim ilar objects.

T he inclusion o f  sim ilar objects in HM is m otivated by the observation that for m any design tasks, only 

a certain  view o f  an object is sufficient to perm it com pletion o f  the task. Since view s are projections o f 

objects, it becom es im portant to be able to m ake statem ents about the objects that g ive rise to such view 

objects.

Theorem 1 (Similarity o f Objects) Two objects are  sim ilar i f  the application o f  a  given view  criterion  7  

to the objects produces identical view objects.

V(.Y) [V(7 ) [V (1')((A ' ~  Y )  =  (VIEW (JY,7 ) =  V E W ( y ,7 ) ) ) ] ] . (9.6)

T he sym bol ~  is used to denote sim ilarity o f  objects.

The au thor's m otivation to have view s o f design inform ationis five-fold. First, we have the epistem ological 

argum ent presented earlier. Secona. completeness requires that HM  extend to cover the entire  universe 

o f  discourse; and in a  design environm ent, the universe o f  d iscourse includes view s as relevant design 

entities. Third, from the standpoint o f  conciseness, view s perm it a  structure to exist in  the sim plest form 

that m aintains its sem antics. Fourth, from an organizational standpoint, view s perm it inform ation  to be
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ordered by its relevance to a task. Fifth, and lastly, views im plem ent infom iation hiding, which is desirable 

practically  for a  num ber o f  reasons. The designer will have a sim pler task if only relevant infom iation 

is visible. Infom iation selected by view can be presented to the user in a m ore understandable fomi. 

Superfluous inform ation can be excluded to increase efficiency and robustness. More practically, views 

can provide uniform  interfaces to parts o. database even though the internal structure o f the objects in 

the database m ay change.

Views are an especially powerful tool when defined as com ponents o f  attributes. For exam ple, an attribute 

occurring in tw o different view s m ay indicate coupling between the views. Alternatively, the sets o f views 

o f  tw o  objects can be intersected, whereupon the cardinality o f  the intersection set can be used to measure 

functional o r o ther coupling. Similarly, sm all sets o f  views can be used in order to study how different 

types o f  attributes affect the coupling o f two objects.

9.4 Domains and Ranges of Attributes

9.4.1 Set Theoretic Foundations

T he second im portant property o f  objects has to do with the structure o f  the attributes that com pose them. 

Here, we introduce the necessary set theoretic background to form alize object attributes in HM. We begin 

by considering  the formal definition o f  a relation on sets.

V ( s )  [ ( x  €  R )  => ( 3 ( u )  [ 3 ( v ) ( x  =  ( u , « ) ) ] ) ]

w here x  is an ordered pair, u £  U  and v £  V  (U  and V  are sets) and II is a  relation.

T h is  is the  definition o f  the cartesian product U  x V  = R . The dom ain and range o f  II are given by:

dom (A ) =dj {z : 3 ( y ) ( { x , y )  £  R ) }  

ran(U ) =«/; {y  : 3 ( x ) { ( x , y )  £  R ) } .
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Lei D be the set o f  all possible attribute dom ains and R be the set o f all possible attribute ranges. We may 

now write:

A =  D x R (9 .7)

and dom (A ) =  D and ran(A) =  R. Also, because o f  definition 1, we can w rite for an  object X :

<i om(X)  C D (9.8)

ra n (X ) C R . (9.9)

9.4.2 Domains and Ranges in HM

An attribute representing a property o r b eh av io ro f a  design entity is specified by  tw o pieces o f  inform ation. 

First, the concept that typifies the attribute is needed: its domain. In the m ost general sense, dom ains 

o f  attributes can include integers, real num bers, text, arrays, etc. The dom ains o f  attributes relevant to

engineering design are discussed below. Second, a specification o f  how  the property is exhibited by a

particular entity  is required. The set o f  possible values that an attribute can have is called the range  o f  the 

attribute.

D efinition 3  (D o m ain  o f  A ttrib u te s) The  dom ain o f  an attribute is the abstracted, observable, quantifi­

ab le  property o f  a design entity that the attribute represents. The dom ain o f  an attribute includes an  

associated  d im ensional unit.

D efinition 4  (R ange  o f  A ttrib u te s) The  range o f  an attribute is  the set o f  a ll values that are m eaningful 

within the dom ain o f  the attribute, and  any one o f  which m ay be the actual value w ithin an  arbitrary object 

containing that attribute. The se t o f  values can be discrete or continuous, single-valued or multiple-valued.

T he d im ensional units m entioned in these definitions are discussed below.

Let D be restricted to the set o f all attribute dom ains in HM  only, and let R be the set o f  all attribute ranges 

in HM  only.
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D efin ition  5 (A ttrib u te s) Attributes are ordered pa irs (d , r) where d  € D and r 6  R, a nd  the set o f  all 

attr ibu tes is  the cartesian product D x  R.

The definition o f  the cartesian product and its relationship to ordered pairs is defined w ithin ZF. We use 

Z F here to provide a form al definition o f attributes.

T h eo rem  2 (Id en tity  o f  A ttrib u tes) Two attributes are identical i f  their dom ains are identical and their 

ranges are equal.

9.5 Dimensions of Measurement

There is  an im portant observation that m ust be m ade at this point regarding attributes for engineering 

design. To be m eaningful, attributes m ust not only be observable; they m ust also be m easurable If an 

attribute is n o t m easurable, its value cannot be compared to o ther values o r used in com putation, and would 

hence be com paratively m eaningless. Therefore, the dom ains o f  attributes m ust include dim ensions o f  

m easurem ent against w hich the attribute can be compared. T h is is another im portant property o f  objects 

in HM .

In o rder to satisfy the condition o f m easurability o f  attributes given above, the au thor has defined the 

m em bers o f  the set o f  attribute dom ains D to contain dim ensional properties. T he m em bers o f  D in 

H M  are: length, m ass, tim e, cost, quantity (o r enum eration), NDU (non-dim ensional units, for ratios, 

etc.) o r  any com bination o f  these (e.g. velocity, energy, and so on). A lthough only length, m ass and 

tim e are com m only  considered, the author has elected to add other d im ensions because o f  their relative 

im portance in  engineering environm ents. T his approach is far m ore powerful than schem es that only 

represent num eric quantities because it is a  natural form o f  expression that is physically  meaningful, 

and because it captures all the necessary sem antics o f  dim ensional standards at the axiom atic level. For 

exam ple, correct dim ensional analysis becom es an inherent property o f HM. D im ensional information 

has a lso been found to be o f  great assistance in dealing with spatial constraints [ 167 J.

T he m em bers o f  R, the set o f  ranges, in HM  are: integers ( I ) ,  real num bers (7Z), boolean values (3 )  and 

text (7 1 . T he author is undecided as to w hether com plex num bers should also be included as possible
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range values: though they are o f  use in m any design m ethodologies (particularly in the area o f  analysis), 

they can also be considered as com posites made up o f two real num bers.

T he author believes this approach to be superior because it is a very natural form o f  expression that 

is physically m eaningful, and it captures all the necessary sem antics o f  dim ensional standards at the 

axiom atic level.

9.6 Constraints and Attributes

Constraints are the principal driving force o f  the engineering design process. T hey are m anifested as 

relationships betw een inform ation regarding design entities. Insofar as constraints are vital to design 

inform ation specification, they m ust be represented by HM.

A s w ith view s (Section 9.3), constraints operate at the attribute level w ithin HM . B oth attribute dom ains 

and ranges m ay be constrained. A ttribute dom ains m ay be constrained to be o f  specific types (e.g. m odular 

assem bly com ponents m ight have a constrained kind o f  shape o r  m aterial), and attribute values m ay be 

constrained to be constant-valued, single-valued o r m ultiple-valued, continuous o r discontinuous, and so 

on.

T he issue o f  constraints in design is far m ore com plex than m ay be im plied here. In general, the co ru u tfn t 

satisfaction problem  is characterized as NP-com plete [55-57], w hich m eans the tim e required to solve the 

problem  varies exponentially  w ith the size o f  the problem . F or even sm all design  problem s, the required 

com putation can be intractable. However, the process o f  constraint satisfaction is a  com ponent o f  the 

design  process itself, and therefore falls outside the bounds o f  the im m ediate concent o f  the au thor in 

this work. W hile th is sim plifies o u r task, we recognize that m ore w ork is needed before HM  can support 

constraints appropriately. However, it should be clear that the specification  o f  constraints, in the form  o f 

functions and relations that define subsets o f  attributes and objects, is inherent to  HM .

It is noted that the set D x  R (discussed above) contains attributes that are m eaningless in a  design 

environm ent. For exam ple, an  attribute with the dom ain o f  quantity  cannot have a range w ith in  the  set o f  

real num bers. Clearly, som e constraints will be necessary ju s t to keep a  m odel consistent w ith  respect to 

attribute definition.
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9.7 Summary

In th is Chapter, the basic structure o f  individual objects and their internal structure has been presented 

formally. A n object m odels a design entity, and is defined as a set the m em bers o f  which arc attributes. 

Each a ttribute has a dom ain, a range, and an associated dim ension o f  m easurem ent. A view o f an object 

is a  subset com posed o f  attributes o f  the object that satisfy som e predicate. Views permit the isolation o f 

relevant attributes based on externally supplied criteria. Various p-.niiitivc relationships between objects 

(e.g. identity, sim ilarity) are also form ailized. Three which issues rem ain for which further research 

is indicated. First, the iole o f  view s has been identified as key to a num ber o f  application dom ains, 

especially that o f  database design for engineering environm ents [94,168,1691; a detailed study o f  views 

could be h ighly  beneficial to such efforts. Second, the unique approach taken w ith rcgaids to dim ensions 

o f  m easurem ent should be investigated m ore hilly. Third, the pivotal role played by constraints in the 

design  endeavor m akes their further study relevant and important.
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Chapter 10

Ordering Mechanisms for Design 

Information

10.1 Introduction

In th is Chapter, the author identifies various ordering schem es (abstraction m echanism s) that can be 

im posed on engineering infom iation to m ake sem antic content explicit. T hese m echanism s are derived 

from  considerations o f  the types o f  infom iation available to a designer and are defined w ithin a se t theoretic 

fram ew ork (i.e. HM ). T hey represent prim itive ontological notions based on how  designers regard the 

universe. T hese notions cover the classification o f  design entities according to various criteria; though 

extralogical in and o f  them selves, these notions are well founded in em pirical research in philosophy, 

psychology, and artificial intelligence [28,131,166].

T he m atter dealt w ith in this and the following Sections occupies a higher level o f  abstraction than the 

m atte r o f  C hapter 9: we discuss statem ents about collections  o f  objects, rather than ju s t  individual objects. 

These collections are (classical) sets o f  objects, and they obey all the notions and axiom s o f  Z F set theory.

O bjects are organized by establishing relationships betw een them . T he kinds o f  re lationships are inde­

pendent o f  the  objects that take part. Consider, for exam ple, X  = f ( Y ) ,  where X  and Y  are objects. The 

function /  m ay be applied to m any objects, and yield m any objects. It thus defines sets o f  objects C\  and

90
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Cj  such that X  €  6 ', and Y  € Cj .  The organization o f objects, then, proceeds by defining the relations 

that in turn deline sets o f  objects.

We recognize now that the set 0 .  the set o f all objects, is one o f  these collections. T he relationship 

between the m em bers o f  this set is that every m em ber is an object. S im ilar argum ents m ay be m ade for 

each o f ihc sets introduced in C hapter 9.

10.2 Types of Objects

One o f the m ost natural and useful abstraction m echanism s for ordering (or classifying) entities is by 

structural (as opposed to behavioral) sim ilarities o f  the entities. Som etim es called “classification" o r 

“typ ing”, this m echanism  is also a basis o f  hum an cognitive function in  general. O rdering schem es o f  this 

type are only partial because m any such schemes m ay be im posed on the  sam e collection o f  entities, each 

yielding a differently ordered collection. The hum an m ind thinks about en tities so  grouped by thinking 

about an abstracted (or generalized ) entity that captures only that w hich is com m on to  the m em bers o f  the 

collection and leaving indeterm inate (or at least variable) o ther aspects o f  the m em bers o f  the collection. 

In HM , the generalized, conceptual entity m eant to represent a  partially  ordered collection  o f  design 

entities is called a type. T he partial orders that types impose on  collections o f  entities define relationships 

shared by the m em bers o f the collections, thus m aking infom iation regarding the  m em bers explicit. Since 

objects in HM  model real world entities, and since objects are defined in term s o f  attributes, types in  HM  

m ust model relationships betw een objects by m odeling relationships betw een attributes o f  objects.

T he d istinction betw een a  type and the collection o f  objects that the type m odels m ust be  kep t clear. A 

collection o f  partially ordered objects is, essentially, a set o f sets, and hence exists at a  d ifferent degree o f  

abstraction (or logical level) than do objects. A type, on the other hand, m odels  a  collection o f  objects, and 

therefore exists at the sam e  logical level as do objects. T his distinction becom es crucial i f  we are to insure 

that HM is consistent. The notion o f  logical levels descends from R ussell’s T heory  o f  Logical Types [153] 

and is a generalized m echanism  to distinguish between sets, based on the degree o f  abstraction required 

to create the sets. The A xiom -Schem a o f  Separation, as it is used in [ 1 ,80 ,15  3] and by  the author, im plies 

this sam e d istinction betw een logical levels. Thus, Z F supports the d istinction  o f  logical levels according 

to R ussell’s theory. The distinction is also im portant to HM.
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T he key to providing a consistent theory o f design inform ation lies w ith the Axiom  o f Separation, which 

we have already seen in Section 9.3. Again, our approach is to interpret the Axiom  o f  Separation in tenns 

o f  design  considerations and eventually draw forth a group o f  predicates that can he substituted for in 

the Axiom  w hich has m eaning from a design standpoint.

F o r a  g iven  object, we m ight expect predicates such as "This entity has a threaded sha ft"  o r “This entity is 

m ade o f  cold-rolled steel’’. For a  type collection, we might expect predicates such as “This entity is a holt” 

o r “This entity  occupies space and is m ade o f  metal". In considering type collections, we disregard ;uty 

predicates that depend on the values o f  attributes o f  objects; i.e. we know at once that a predicate such as 

“This entity  is  3 .5  centimeters long p lu s or m inus 1 m illim eter" applies to an object, while a predicate such 

as “This entity  has a  dimension that we call its length" is clearly a predicate on  a type. T he distinction 

is that the  form er is a predicate on a design entity and the latter is a  predicate on an abstract entity that 

generalizes som e aspect o f  the former. A lso, the form er m entions an attribute dom ain (length) and a range 

value (3.5 centim eters . . . )  while the latter m entions only a domain.

In o th er words, the process o f generalization o f  attributes involves neglecting the values o f  the attributes 

and dealing  on ly  with their dom ains. T hat is, attributes that are predicable on  type collections are not 

predicable on  design entities o r the objects that model them , but on  generaliza tions  o f  the design entities.

In a  m ore practical sense, we m ay state this as follows:

In H M , objects are typed  (or classified) by their structure: sim ilarities in structure arc expressed by 

sim ilarities in the dom ains o f  the attributes o f  objects. A ttributes o f objects are quantitative m easures and 

represent in H M  only those quantitative aspects o f  design entities.

T h e  criterion  used to define a collection o f  objects is based on attribute dom ains. An object is included 

in the collection  i f  the dom ains o f  all its attributes m ap identically to all the dom ains in the criterion. 

Inform ation  defining the criterion is supplied by the type.

A x io m  5 (A b s trac tio n  o f  S tru c tu re ) Abstraction o f  object structure is based  on generalization o f  object 

a ttr ibu tes a n d  results in types, which are objects that m odel collections o f  objects that share structural 

fea tures.

L et a  type  collection  be denoted by C 7 .
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D efinition 6  (Type C ollections) A type collection is  a se t o f  objects, the dom ains o f  the attributes o f  all 

the m em bers o f  which are the same.

3(CV) [V(-V) [V(T) [((.V €  C'r) € CT)) =  (dom (A ') =  dom (V '))]]] . (10 .1)

Wc note that the phrases (.V €  C'r) and { Y  €  C'r) obey the rules o f  logical types (see Section 8.2.2).

We can represent all the information necessary to define a collection Cr  for types by m eans o f  an object. 

Specifically, for a  type collection Cr. a type T  is defined as an object whose dom ain  is the sam e as the 

dom ain o f  every m em ber o f  C 'r- This defines the m inim um  necessary inform ation to  capture the notion 

o f  type collections.

Because types and type collections are based on object dom ains only (i.e. range inform ation  is ignored), 

then any m em ber o f  a  type collection C t  can fill the role o f  type T .  T hat is, fo r a type collection  C j ,  

wc m ay lake any m em ber object from C t  and successfully use it as a type for that type collection. Thus 

type objects T  are not actual objects distinct from other objects, but are rather ordinary objects that we 

consider in the role  o f  representatives o f  their type.

\
Wc m ay denote the set o f  all types by T. therefore T  e  T  and T  C 0 .

We define the binary predicate IS .A  to capture the type relationship betw een two objects.

D efinition 7 (T he T ap in g  P red ica te)

V(A') [V (y ) [ IS -A (X ,F )  S  (d o m (A ) =  d om (y))]] . (10 .2)

The author notes that if  V were defined to be the type for its type collection, then IS_A could  be used to 

determ ine if  arbitrary objects were "o f a given type”.

Furtherm ore, it is redundant to have m ore than one type object fo r a  given type collection . However, 

nothing has been said yet that would prevent two objects o f  a  g iven type collection from  being  considered 

types. We can capture the uniqueness o f  type objects using a notation suggested in  [1 ] to indicate the 

existence o f  unique individuals.
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T h eo re m  3 (T heorem  o f  Type U niqueness)

V(Cr)[ !3(T) (7' eC'r ) ] .  (10.3)

T he notation  !3 m eans " . . .  there exists exactly one 

Now  let us return to the Axiom  o f  Separation. It is written:

3 (S )  [V(x)((* £  S ) =  ( (*  <E A ) » f ( x ) ) ) \

and states that there exists a subset S  o f  a set A  all the m em bers o f  which satisfy f  (w ith no free occurrences 

o f  S  in if).

W ith regard to types, the author interprets the axiom as follows: there exists a subset .V o f  the set o f  all 

objects 0  all the m em bers o f  which satisfy a predicate 6. In this case, 0 is the predicate that differentiates 

objects by  type -  in o ther words, IS_A. We can then write the Axiom  o f  Separation for types in HM as 

the fo llow ing axiom  schema:

A xiom  6  (A xiom  o f  Types)

V (F )  3 ( C r )  [V (X )((A -€ C T) =  [(X  e  0 ) » I S - A ( X , y ) ] ) l . (10.4)

T he space separating “ V (T )” from the rest o f  Equation 10.4 is a  convention used in sym bolic logic to 

indicate the extent o f  an axiom  with respect to a  set o f entities. In this case, it binds the use o f  Y  in the 

axiom  so  as to explicitly  define the range o f  values that Y  can  attain w ithin the axiom.

Types them selves represent ou r abstract concepts o f  design entities based on their quantifiable attributes; 

they  define the properties o f  a se t o f  design entities w ithout defining the degree to w hich each real world 

entity  exhibits those properties.

In attem pting  to relate objects and types, the distinction betw een types and the collections o f  objects that 

types m odel is essential. C ollections o f  objects are not d irectly  com parable to objects because they are o f 

different degrees o f  abstraction (see Section 8.2.2); that is, apparently intuitive statem ents such as X  n  C r
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and .V e  T  arc invalid, the system resulting from their inclusion would becom e inconsistent, and there 

would be no way o f assuring that all statem ents that can be form ulated in HM  can be proved. On the other 

hand, statem ents o f  the form 0  n  T =  T. o r A' € C 'r. are acceptable because 0  and T. and A' and C t .  

arc o f  the sam e degree o f abstraction.

T his is a  good exam ple o f the pow er o f set theory: it forces us to think m ore clearly by giving us a  system  

wherein logical errors are m ore easily detectable, without restricting ou r freedom  to express consistent, 

relevant inform ation. The m ajority o f logical errors are delectable because “statem ents” in HM  are 

theorem s; i f  they can be proved within the system , they are valid (correct). N ot all errors can be caught 

this way because o f the inherent incom pleteness o f  formal system s (see Section 5.1).

T he relationship between a type and objects o f  that type (the type-object relationship) is a  one-to-m any 

relationship. But the relationship betw een an object and its type (the object-type  relationship) is one-to- 

one. We w ould have to be outside the system  to "see” that the current ob jec t’s type has m ore than  one 

instance; this would introduce self-reference that we want to avoid. B ecause one-to-one relationships are 

dealt w ith in a straight-forward fashion w ith functions, and because o f  the added com plexity  o f  dealing 

w ith both objects and type collections o f  objects, HM m odels objects as having types, ra ther than  types 

as having collections o f  objects.

Furtherm ore, types collections ( C t )  are not considered to be prim ary entities in HM . D esign entities 

arc the only  entities o f  prim ary im portance, since they are identified w ith real-w orld entities relevant to 

designers. Types collections, though essential on  the theoretical grounds discussed above, are derived  

from objects. They are thus regarded as m utable, built from objects that are know n o r presum ed to exist 

in som e way. T his m ust be the case because the underlying requirem ents o f  the criteria fo r the form ation 

o f  types can change during the course o f  a  design process, o r as o u r collective understanding o f  design 

evolves. If we were to define types as im m utable structures, we w ould be locking ourselves in  to  a 

particular v iew point o f  the nature o f  design which m ight turn out to be  insufficient.

10.3 Aggregations of Objects

Wc have seen  that types perm it the ordering o f  objects, using abstraction o f  the attributes o f  objects.
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An aggregate is also an ordering device for objects, but it works through a different abstraction m echanism: 

recursive containm ent. Put simply, an aggregate is just a collection o f objects. M em bership in aggregate 

collections is based on entirely arbitrary criteria that depend on the exigencies o f  the problem  at hand. 

T his d istinguishes aggregates from types, for which the defining criterion is precise and known a-priori.

A ggregates perm it the hierarchical ordering o f objects o f the same degree o f abstraction (i.e. aggregates 

cannot m ix objects and types). Design is strongly hierarchical. Parts m ay be assem blies o f  other 

parts. Even processes (fo r exam ple, a finite element analysis, or a m achining pntccss) arc composed of 

subprocesses. T he larger the design problem , the more important hierarchical ordering becomes.

Once again, we rely on the Axiom o f  Separation to guide us in form alizing ou r notion o f  aggregates. In 

this case, we write the Axiom as follows:

A xiom  7 (T ria l A xiom -Schem a o f  A ggregates) There exists a collection o f  objects C'a  .a ll  the members 

o f  which sa tisfy  a  particu lar predicate b,

3 ( C > t ) l V ( X ) P 6 C A ) s [ ( J f € 0 ) * < ( J f ) ] ) ] .  (1<>.5)

C a  is an aggregate collection, and 6 is one o f  a set o f predicates A used to define m em bership in the 

aggregate object that m odel these collections.

However, we observe that (1) C a  and 0  are collections o f  objects; and (2) 6 applies only to single objects 

in  Ca-  Defining S in term s o f  C a  breaks the restriction o f  free variables on  the axiom o f  separation. 

T herefore, axiom  7 itse lf is not enough to define the relationship betw een m em bers in an aggregate.

T he generally  accepted theory o f  classes o f  sets [170], which accounts not only for sets but also for 

collections o f  sets, achieves nothing for us except the replacem ent o f  predicates like b by classes o f 

objects that are defined in term s o f  b.

Alternatively, we m ight consider defining b in term s o f  fj,: c ;(a .)  where a , e  C'a  and c, is som e predicate 

constrain ing a,-. But in this case each constraint depends on only one m em ber o f  C a . whereas we need a 

sing le  relationship over all the m em bers o f  Ca-

To solve th is problem , let us begin by saying that a  relationship is needed to define the nature o f  the 

com ponen ts’ use in the assembly. T he relationship takes the form o f  a  constraint on the attributes o f  the
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assem bly (an aggregate object). Thus, the constraint is at the same logical level as the aggregate, not at 

the level o f  the objects that compose the aggregate. Let k represent these constraints.

In general, a constraint o f  this kind on an aggregate will not act on all the attributes in the aggregate. For 

exam ple, a  constraint defining the relationship between two links in a four-bar linkage need not act on the 

other links. So, in general, a constraint will act on a subset o f the attributes o f  an aggregate.

Now, a view (sec Section 9.3) is a subset o f  an object. If we define a certain view  o f  the aggregate 

to contain only the attributes acted upon by som e aggregation constraint k, we m ay then say that the 

constraint acts on  all the attributes o f  the view. Now, we can begin writing another axiom , based on views 

o f  an aggregate. Each constraint k  can be used to define a view criterion 7 , w hich in tu rn  defines a  view. 

Thus a collection o f  constraints «,• for an aggregate leads to a collection o f  view  criteria  7 ; and a collection 

o f  view objects V,. We now define C'a more precisely: C a  =d{ V).

A xiom  8  (A xiom -Schem a o f  A ggregates) There exists a collection o f  views C a  o f  an aggregate object, 

all the m em bers o f  which satisfy a particular predicate S.

3 (C /t) [V (V )((K  6  C A) s  [(V  €  0 )  •  (10.6)

where 6 ( 1 0  m ust be true for all views in (7 ,4 ; that is.

( 10-7 )
i

T his equation will be true if  at least one k ,  is true. It is noted that this is counter-intuitive: w e m ight have 

assum ed that all constraints m ust be sim ultaneously true (i.e. f),- «;)• but this is no t the case.

Since attributes appearing in more than one view  object o f  an aggregate are identical (no t only equal o r 

equivalent -  see Section 9.3), we can create the aggregate object itself by sim ple union: Y  =  { J C a  = 

U Vi.

A graphical depiction o f  the aggregation o f  four links to com pose a four-bar linkage is given in Figure 

10 . 1, including the link objects g r o u n d ,  i n p u t ,  c o u p l e r  and o u t p u t ,  all v iew s, v iew  criteria  7 ; and 

constraints k,.
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four-bar linkage

LEV EL OF 
ASSEM BLY

LEVEL OF
j ground |  |  input 1 |co u p le r| [ output [ |  COM PONENTS

Figure 10.1: Aggregation o f a  Four-Bar Linkage in HM.
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The predicate set A is an im portant one: its elem ents provide the m eans o f defining all the necessary 

relationships in an aggregate object. The consequences o f this statem ent are m ade quite clear by  consid­

ering a sim ple physical assem bly o f  components. Objects would model each com ponent. An aggregate 

object would model the assembly. It would be the role o f the 6 predicate for that assem bly not only to 

partition objects according to which arc needed in the assem bly and w hich are not, but also to provide the 

exact relationship that exists between the com ponents in the assembly. In o ther words, it is the aggregate 

predicates A that perm it the definition o f how components in a physical assem bly m ate, the tolerances o f 

the lit, the m anner in which the m ating occurs (the assem bly process itself) and so forth.

An aggregate object need not contain only  o ther objects, but can itself have attributes. One obvious 

exam ple o f  the kind o f  attributes that an aggregate itself m ight have are size and shape. T hese clearly 

cannot be derived from the com ponents o f the aggregate alone (e.g. inform ation about a  bolt tells us 

nothing about the assem bly in which the bolt is to be used). T h is too is perm itted by HM . Aggregate 

objects, then, are not ju s t sets o f  objects, but an object w ith attributes w hose values are o ther objects.

A t this juncture, we could begin  a detailed study o f  the properties o f  the predicates in A, but shall not. 

T his docum ent is m eant to be both an overview o f  HM and a statem ent o f  the fu n d a m en ta l axiom s that 

com pose it. In this spirit, then, we defer such discussions to future work.

10.4 Classes of Objects

In addition to classification by structure using types, objects can be also classified by the function they 

arc m eant to provide. The im portance o f  capturing sem antic content o f  function is best exem plified by 

conceptual design.

Conceptual design  is one o f  the first steps in a design process, and has the greatest im pact on downstream  

decisions [ 17,42,171]. In general, conceptual design is considered to be the m apping betw een the function 

provided by som e entity and the physical specification o f  the entity. Very little is know n about conceptual 

design and we do not presum e a  sim ple solution to the problem  here. However, the au thor has devised a 

m echanism  to ease the developm ent o f  a system  o f  classification by  function.

T he m apping betw een structure and function is not necessarily one-to-one: a particular structural com ­
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ponent m ay provide m ore than one function, o r vice versa. The mechanism o f  types discussed in Section 

10.2 is inappropriate: the m apping between objects and types is one-to-one. Therefore, the structural 

properties o f  the entity do not capture sem antics o f  function. A m echanism  different from typing is 

required.

The au tho r defines a class o f  objects as an aggregate object whose m em bers all represent design entities 

that exhibit a  given function. HM considers inclusion o f an object in a class sufficient to establish that the 

object exhibits a given function.

It is unclear to the author at this tim e w hether a class should include inform ation for m odeling o f  the 

function itself, o r w hether this inform ation should be contained by the m em ber objects, o r by the h 

function o f  the aggregate that relates them . The relationship m odeled by the function w ould permit access 

to the m em bers o f  the class, m uch as IS-A provides, but without the constraints that IS .A  im poses on  the 

attributes o f  m em ber objects.

10.5 Specialization and Generalization of Objects

10.5.1 Specialization of Types

T he abstraction  m echanism  o f specialization  is implemented in HM  by inheritance o f  type. Inheritance 

is a  m echanism  sim ilar to aggregation, but is controlled by the operation o f  set union.

T he difference betw een inheritance and aggregation is very im portant from a sem antic point o f  view. For 

exam ple, to  say that an autom obile inherits the attributes o f  its engine (e.g. pow er) is m eaningless; the 

reason w hy hum ans can m ake sense o f  such statem ents is because we can interpret it correctly and extract 

the necessary im plicit inform ation from the statem ent. However, this highly  informal and subjective 

approach is very undesirable. T he correct statem ent that can be supported by  a form al theory would 

be that the autom obile is an aggregate, one com ponent o f which is an engine that has a certain pow er 

rating. B ecause HM  is m eant to form alize design information, the d istinction between aggregation and 

inheritance becom es essential.

A type, then, is the union o f  all the attributes o f  the types that are inherited by it. Union o f sets is very
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well understood in set theory and provides a sim ple and rigorous way to form alize specialization through 

inheritance.

Using the A xiom -Schcm a o f Separation again, wc can write the following.

A xiom  9 (A xiom  o f  Specia lization) F or a given type T , i f  there exists a collection o f  types C's such that 

T  contains a ll the a ttributes o f  a ll the m embers o f  C s . then T  is sa id  to  inhcrit/row t the m em bers o f  C s ,  

and T  is a type specialized from  the types in C's.

V (T) 3 ( C s ) [ w m  ecs)= [ ( u e j ) * ( U c T ) ] ) ] .  ( 1 0 .8 )

Wc can define the predicate INHERITS as:

D efinition 8  (T he  In h e ritan c e  P red ica te)

V (T) [V((/) [INH ERITS(T, U)  = {U C T)]}  . (10.9)

The phrase IN H E R IT S ^ , U ) is read “type T  inherits the attributes o f  type U".

As in the standard definition o f  the union operation, duplicate elem ents are excluded from  the union set. 

T he identity axiom  (axiom  3) defines the criterion by w hich duplicates are identified in HM .

In design, specialization is an im portant m echanism  because it perm its the creation o f  specialized types 

from a collection o f  m ore general, abstract types. It is, therefore, a  top-down  procedure.

Design also tends to be a top-down process [4 3 ,4 9 ,6 9 ,1 0 6 ,1 2 6 ,1 6 7 ,1 7 2 ] , m oving  from  the general 

(conceptual design) to  the specific (detailed design). T his impacts on  how  we treat design  inform ation. 

Because design begins from the general and m oves to the specific, we can expect that a t an arbitrary point 

along the developm ent o f a design artifact, inform ation regarding the artifact w ill be incom plete in detail.

Specialization, then, being a top-down process, is used in HM  to perm it incom plete inform ation  about 

design entities to be captured in a  consistent m anner, and to perm it the generation o f  (application) specific 

types from general types.
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10.5.2 Generalization of Types

G eneralization  is the inverse o f  specialization, and from the purely theoretic point o f view of HM. the 

relationship betw een the two is bidirectional (i.e. specialization and generalization are opposites but 

equivalents). Thus:

A xiom  10 (A xiom  o f  G enera liza tio n ) / /  all the members o f  a collection o f  types ( Vv hove som e attributes 

in com m on, then there is a  generalized type T  that contains those common attributes, a n d  a ll the types in 

C o  inherit the common attributes fro m  T .

3 ( T )  3 (C c ) [V(U) ( ( U € C g ) s  [(V  €  T ) •  (V  C ( / ) ] ) ] .  (10.10)

G eneralization is im portant to design too, for two reasons. The first is quite practical: in an environm ent 

where a  num ber o f types o f  design objects have been generated independent o f  each other, generalization 

provides a  form al m echanism  by which we can unify  o u r m odels o f the objects. T h is kind o f  unification 

m inim izes the am ount o f  inform ation needed to com pletely specify a design artifact m odel, m aking the 

m odel sim pler and clearer1.

T he second reason that generalization is important has to do  with theoretic, taxonom ic concerns. One 

obviously  desirable goal in design theory is the generation o f  usable, globally  applicable taxonom ies 

o f  design entities. T he issue o f  taxonom y in design dieory was discussed in Section 4.2. Taxonom ies 

them selves can help standardize our m odels o f  design entities and control the inform ation required for the 

m odels. G eneralization in HM  gives us a  very specific formal m ethodology for generating design entity 

taxonom ies. Taxonom ies resulting from the application o f  generalization to types in HM would result in 

inheritance netw orks o f  types that would permit the classification (at least in theory) o f arbitrary kinds of 

design  entities. T he issues involved in generating such taxonom ies arc interesting and m any, and arc not 

dealt w ith  specifically in this docum ent.

'T h is  corroborates Suh's second axiom of information minimization (31J.
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10.5.3 Relationship Between Specialization and Views

Assum e tw o types, T  and U, and a view criterion '/ j  that only exam ines object dom ains. If  the types are 

sim ilar under the view criterion, then the view objects formed by application o f the criterion to the type 

objects arc identical. Therefore, the view object itself is seen as a type from which types T  and U inherit 

attributes. This m ay be written in the notation o f HM as

T h eo rem  4 (S im ilarity  o f  Types)

V( T) [ V( ( / ) [ V( 7(i) [ (V IE W (r ,7lf) =  V IE W ([/,7d) =  V ) =  (10.11)

(IN H E R IT S ^ , V ) •  IN H ER ITS((/, V ))]]] .

T h is further reinforces the importance o f  views as an organizational m echanism : we see that view s can 

be used to define the conditions whereby inheritance between object types occurs.

10.6 Summary

T he author has presented in this Chapter five ordering m echanism s for objects: typing (by structure), 

aggregation, classification (by function), specialization, and generalization. T hese five m echanism s 

provide the m eans o f  organizing collections o f  objects in m eaningful ways (in a  design context); such 

organization o f inform ation is essential to m axim izing the am ount o f  explicit inform ation a  designer has 

available to him/her, w hich in turn can decrease the chances o f  m isinterpreting design inform ation. The 

ordering m echanism s are based on ontological considerations o f  real-world entities, not on  the em pirical 

evidence as provided by the conventional understanding o f  design. In this way, independence from  design 

is m aintained; we m ay then be m ore confident o f  the universal applicability o f  these m echanism s.
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Discussion

11.1 General Summary

H M  is an evolving, grow ing structure, but the core o f  the m odel as presented here is accurate and will not 

change as the m odel develops. HM  is a variant o f  classical Z F  set theory, extended and interpreted to suit 

engineering  design inform ation. HM  provides the isom orphism s that perm it us to view  design inform ation 

in  an objective, form al way. Specifically, these isom orphism s perm it design entities to be represented by 

se ts  that can  be grouped into subsets using criteria all finding their roots in the Axiom  o f  Separation as 

defined in ZF; that is, the organizational axiom s o f  HM  (Chapter 10) are all axiom sub-schem a o f  the 

A xiom  o f  Separation.

O ther researchers [ 162,173] have suggested extending formal system s to suit design, but the author is not 

aw are o f  any attem pts as detailed o r w ell-grounded in accepted logic system s as is HM.

H M  is n o t intended to autom ate the design process, but rather to provide a structured notation that makes 

inform ation  about design entities clearer and thus perm its the designer to apply w hatever thought processes 

he/she prefers. The au tho r perceives the designer as existing in a  sym biotic relationship w ith design tools 

such as HM , rather than being replaced by them.

H M  is based on  a functional m odel o f  the engineering design process that view s design  inform ation as 

separate from  the various processes that act on this inform ation during the course o f  design developm ent.

1 0 4
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T he key issue lhat perm its HM to be stated at all is that therein the universe o f  discourse o f  Z F  is restricted 

to only those entities pertinent to design. In this way, we can m ake m ore specific statem ents (i.e. axiom s) 

than ZF alone permits.

The axiom s o f  Z F are not altered by HM, and no new prim itives, connectives and quantifiers are introduced. 

For these reasons, we are assured that HM represents a valid, consistent form al system  o f  logic [80] (with 

respect to set theory), specifically geared to design information.

Objects arc se ts o f  attributes, and capture meaningful information about design  entities. T his provides 

a natural form o f  expression for design information because objects are conceptually  equivalent to the 

entities they m odel. A ttributes are defined in terms o f  dom ains and ranges; dom ains o f  attributes in 

HM include generalized dim ensions o f  m easurement. Views perm it objects to be partitioned according 

to criteria  specific to particular design tasks. Relations and functions are used to define general classes 

o f  operators on  objects, and provide a flexible, extensible m echanism  for the logical representation o f 

various k inds o f  relationships and constraints. The specific relationships o f structural sim ilarity, functional 

sim ilarity, aggregation, specialization, and generalization are all captured form ally by HM .

Since HM  applies to different design tasks, such as solid m odeling, analysis, and so on, it presents 

an integrated  approach to the specification o f  design inform ation that is ex tensible: new  entities and 

relationships can be specified using the m odel without altering the m odel itself.

HM  provides (a) a  basis for building taxonom ies o f design entities, (b) a  generalized approach for m aking 

statem ents about design entities independent o f  how  the entities were generated (i.e. independent o f  the 

design process used to create them ) and (c) a formal syntactic notation for the standardization o f  design 

entity  specification.

11.2 Future Work

There are various fronts on which work o n  H M  can continue. T he role o f  constrain ts in the  hybrid m odel 

m ust be exam ined, and suitable theory generated. A review o f  the current literature indicates that relatively 

little w ork has been done in this area. T his m ay be because the design  entities that are constrained have 

been vaguely and/or im precisely defined in the past. T he formal understanding o f  these entities provided
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by HM  m ay also help us understand the constraint satisfaction problem better.

C lassification o f  design entities by function is another area where current understanding can be improved; 

em phasis will be placed on this in the future w ork o f  the author.

D ue to the hierarchical nature o f  design entities (particularly mechanical design entities), aggregation is 

a key abstraction m echanism . Further study o f  the A predicates that HM supports for (he definition of 

aggregates is warranted.

At the theoretical level, a  formal theory o f  design information will be a useful tool for the study o f the design 

process itself by providing a uniform lexicon and gram m ar for inform ation specification. T he author notes 

that it is possib le to blend ZF and first order predicate calculus [80]. T he predicate calculus is the formal 

basis o f  such tools as expert and knowledge processing system s. Also, fuzzy logic [ 147,148.174] presents 

a  unique opportunity  for representing the notion o f uncertainty in purely formal term s. It is interesting 

to speculate on  the nature o f the com bination o f  these tools with HM . and their possible applications to 

design  theory.

A t a  m ore practical level, application o f  the theory to real design environm ents has the potential to improve 

com m unications betw een designers by providing a com m on vocabulary, to assist in the standardization o f 

design specifications, and to lead to new  and more powerful software tools to aid the designer. The latter 

avenue is explored in the next Part o f  this document.
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Chapter 12

Introduction

T he w ork presented thus fa r has been quite abstract. T his has been necessary because little fundamental 

w ork ex ists in the area. B ecause o f  its abstract nature, practical applications o f  the au th o r’s work may 

seem  difficult to identity. In o rder to address this problem, the au thor has included a m ajor application: the 

im pact o f  H M  on engineering com puting. The intention is to extend the perspective afforded by HM  into 

m ore practical issues o f  com putation in design environm ents. In particular, a  software system  developed 

by the author, called D e s ig n e r , will be presented and discussed as a  dem onstration o f  the  gains that can 

be expected from the application o f form al techniques.

T he influence o f  com puter technology in design has becom e a strong one. C om puters and com puter 

softw are system s are used in every aspect o f  the engineering enterprise, from concurrent engineering, 

to C A D  and analysis, sim ulation, m anufacturing and production, and m arketing. A lthough som e m ay 

argue that th is dependence is som ehow  detrim ental to the profession o f  engineering, there is little doubt 

that com puter technology represents the only currently available, feasible m eans by which to control the 

com plexity  o f  the engineering enterprise.

T he Inform ation R evolution the world is currently experiencing is related to its predecessor, the Industrial 

R evolution. "B y dram atically reducing the costs o f  coordination and increasing its speed and quality, 

these new  [inform ation] technologies will enable people to coordinate m ore effectively, to do m uch m ore 

coordination  and to form  new coordination-intensive business structures [ 18].” C oordination, in th is case, 

is the  ab ility  to organize, o r  order, what we do, and the inform ation we use to do it. O ne o f  the principal
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gains wc m ay expect, then, from formal theories like HM is the ability to  generate software system s far 

m ore capable than existing ones to assist designers in their work. Indeed, successful softw are system s 

based on formal theories can provide a strong indication o f the suitability  o f  the theories them selves.

Currently available program m ing and database systems arc insufficient for engineering applications [32, 

4 2 J. T he high degree o f com plexity  o f  m odem  design artifacts, the richness o f the num ber and kinds 

o f  interrelationships in inform ation, and the imprecision w ith w hich term s (such as design intent and 

fu n c tio n a l description) arc used have all contributed to this problem . T oday’s continuing and ever- 

increasing rate o f  new engineering software developm ent m akes it evident that these issues have not yet 

been addressed properly.

As well, there have been a num ber o f  arguments made recently in favor o f  a  “language-based approach” 

to design ( e.g. [162,175]). Such an approach entails the developm ent o f  languages that perm it the 

expression o f  design inform ation in a computational environm ent that do  no t tie the user to a  single 

m ethodology o r solution technique. In this way, relatively sm all languages can  perm it the capture o f 

relatively laigc quantities o f  inform ation, while perm itting the users a  certain  freedom  o f  expression  that 

w ould be m issing i f  a precise m ethodology had been specified. T he au th o r’s approach throughout the  work 

presented herein has been to separate inform ation from procedures that use  the inform ation, at both  the 

theoretical and practical levels. T he language-based approach, then, is quite sym pathetic to  the au th o r’s 

approach, and the program m ing language to be described in this Part m ay be regarded as a  contribution  

to such language-based research in design.

T he inherent com plexity and relatively ad-hoc  nature o f  the design enterprise can  overw helm  even the 

m ost powerful system s. In o rder to  com bat this, engineering softw are developers and researchers have 

rightly  searched for m ethodologies em phasizing organization and ordering o f  inform ation: increasing the 

degree o f  organization in a collection o f  information m akes it m ore accessible, m ore concise and less 

likely to be a source o f  error for designers. However, the exact nature o f  the organizational form s that 

w ould best suit the engineering enterprise in general have to date eluded discovery.

O ne problem  not addressed in o ther current research in this area is that o f  general engineering com puting 

[173]. Not since the creation o f  Fortran has a  language been targeted in tentionally  fo r use by engineers 

(w ith the possible exception o f  Ada, whose success in this area has yet to be proven). C onsidering 

the great evolution that has occurred in design, it is not surprising that Fortran is unable to m eet the
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program m ing requirem ents o f  m odem  engineering enterprises. Given the high degree o f  com plexity o f  

design inform ation, it is important that the paradigm match the conceptual m odel o f the users.

In order to m otivate the arguments presented in this work, wc shall hegin by exam ining the relationship 

betw een softw are system s and engineering in an abstract way. This will penn it us to d istinguish between 

the general exigencies o f  engineering com puting and the requirements o f  particular software systems.

The dom ain  o f  a  software system is the collection o f  the kinds o f problem s to which the system can 

be applied. T he software system m aintains an internal computational m odel o f  its dom ain; that is, the 

system  is a m anifestation o f  this model. T his domain-specific com putational model is a unification o f 

a fo rm a l  conceptual m odel plus a general m odel o f  com putation. For exam ple, continuum  m echanics 

and m athem atics provide a formal model for finite clem ent analysis; this, com bined w ith a program m ing 

environm ent (which is a m anifestation o f  a general model o f  com putation), provides the com putational 

m odel for finite elem ent software systems.

Engineers use a  software system to solve problem s w ithin the system 's dom ain; they are using the 

sy s tem ’s m odel o f  the problem dom ain to perform  a given task. In o rder to do this, they must at least 

have som e understanding o f  the system ’s com putational model. T his includes the fom ial model and also 

(unfortunately) som e aspects o f the general com putational model.

How ever, the users also have their ow n m ental, o r cognitive , m odels o f  the problem  dom ain. If the 

u se r’s m odel o f  the dom ain is incom patible w ith e ither the formal dom ain m odel inherent in the software 

system  o r the com putational model o f  the softw are system  itself, an im pedance m ism atch  |2 7 | results. 

A s the nam e im plies, an im pedance m ism atch represents an efficiency loss in inform ation m odeling. In 

th is sense, the word “efficiency” refers to the ability o f  a system  (fom ial or  softw are) to precisely and 

correctly  m odel necessary inform ation in a tim ely m anner with respect to the u se r’s m odel. The greater 

the m ism atch , the  less usable the software system  becomes, and the m ore likely inefficiencies and errors 

will dom inate its use.

Im pedance m ism atches between the au tho r’s formal dom ain m odel (HM ) and the u se r’s cognitive model 

are handled by the isom orphism  described in Part III. T he isom orphism  provides a  correspondence 

betw een the form al system  and design inform ation that effectively elim inates im pedance m ism atches 

arising  from  the use o f  HM  in a  design environm ent. In this Part, the author is concerned prim arily with 

con tro lling  im pedance m ism atches betw een the com putational m odels o f  engineering softw are system s
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and Ihc user's cognitive model.

Impedance m ism atches arc not bugs. Bugs arc sim ple mechanical errors remedied in a relatively straight­

forward way. Rather, impedance m ismatches arise from lim itations in the program m ing paradigm  selected 

for the design and im plem entation o f  the software system . These mismatches are problem atic. T hey define 

from the outset the lim its o f  the software system 's functionality, and guide the p rogram m ers throughout 

the developm ent o f  the system. The paradigm provides the conceptual fram ework fo r general com putation 

w ithin which the software will be created. Any lim itations in this fram ework w ill be inherited by the 

software. If  ihc selected paradigm is incom patible with the formal m odel o f  the problem  dom ain or 

the users’ gnitive m odel, the resulting software will be clum sy and error-prone, and its results will be 

difficult to interpret and use. But m ost importantly, there is no sim ple solution to th is k ind o f  impedance 

m ism atch short o f  choosing another program m ing paradigm and rewriting the softw are from scratch.

Clearly, then, the investigation and selection o f  program m ing paradigm s is the key to  controlling m is­

m atches and im proving the quality o f  software system s. Engineering researchers, as experts in the problem 

dom ain for w hich suitable software systems are to be developed, are likely candidates to be able to carry 

out such investigations successfully.

The author expects that successful efforts will bring to existence entirely new program m ing paradigm s 

evolved from existing  ones, but significantly different in the com putational m odels they support. These 

m odels will be based on formal theories about design that are currently under developm ent by  many 

different researchers, thus providing continuity o f  formal rigor from the dom ain  m odel through to the 

im plem entation o f  support software. The design theories will provide the necessary form al background, 

and the com putational m odels will provide the bridge from the purely theoretic w orld to the software 

system s that will be able to address real engineering problem s.

In the Sections that follow, a  program m ing language fo r design inform ation, called D e s i g n e r , will be 

introduced and discussed. D e s ig n e r  is an im plem entation o f  a com putational m odel based on HM , and 

must thus satisfy  its axiom s. Since HM describes the structure o f design inform ation w ithout making 

statem ents about the use o f  that information. D e s ig n e r  will deal w ith sta tic  data  m odeling  only; that 

is, it will deal w ith the representation o f  inform ation, not w ith its m anipulation. C hapter 13 presents 

the requirem ents for a  new com putational paradigm  for engineering. Based on these requirem ents, three 

program m ing paradigm s arc identified as the bases o f the current work. C hapter 14 then introduces
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c e r ta in  k e y  n o t io n s  a n d  th e  b a s ic  s y n ta c tic  fo rm s  o f  th e  DESIGNER la n g u a g e . C h a p te r  15 fo llo w s  u p  w ith  

s e v e ra l  e x a m p le s  in d ic a t in g  h o w  th e  D e s i g n e r  la n g u a g e  c a n  c a p tu re  d e s ig n  in fo rm a tio n  e f fe c tiv e ly  a n d  

c o n c is e ly .
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Chapter 13

Requirements for a New Programming 

Paradigm

M any different program m ing paradigm s have been used to develop engineering softw are, including 

functional, logic, im perative, object-oriented, and relational [176-178]; none have succeeded universally. 

The latest attem pts, and those show ing the m ost prom ise, are those that blend tw o o r  m ore paradigm s. 

T h is is because each paradigm  alone represents a particular projection  o f  the “ real” world to that o f  

com putation; that is, each paradigm  perform s only certain classes o f  com putations very well, and in their 

purest forms do so to the exclusion  o f  other kinds o f  com putation. A lthough there are m any problem  

dom ains where one paradigm  alone can perform  well, engineering, for all its com plexity, is not one o f  

them . Engineering problem s can cover both num eric and geom etric dom ains, both the precisely analytic 

and the num erically approxim ated, the ethereal (for exam ple, using chaos theory to m odel turbulent fluid 

flow) and the practical (m anufacturing process planning, am ongst others). Clearly, an appropriate solution 

for the engineering enterprise m ust perform  com putations efficiently, yet rem ain flexible enough to meet 

its w idely divergent requirements.

Som e o f the requirem ents o f  a new program m ing paradigm for engineering have already been m entioned. 

To reiterate, a candidate paradigm  must: (a) be supported by a form al m odel o f  the application  dom ain; (b) 

capture the com plex data structures typical o f  m any engineering applications; (c) capture and m anage the 

rich interrelationships that exist between these structures; (d) be representable by a form al com putational
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m odel; and (e) elim inate, o r at least m inim ize, impedance m ism atches. The author considers one other goal 

as well: the paradigm  should provide an environm ent for continued research in engineering com puting 

and design  theory.

It is noted that due to the current lack o f formalism in engineering design, it is difficult to expect the 

im m ediate satisfaction o f som e o f these requirements. Wc can. however, use such form alization as 

currently  exists, and tailor our results in the future as our understanding deepens. Thus llexibility becomes 

another goal o f  the paradigm . In this context, flexibility is the ability to try new program m ing and modeling 

techniques easily w ithout significant alterations to existing software. Wc m ay in this way substitute our 

lack o f  form al understanding o f  design with empirical analysis and the ability to experim ent.

The au thor has identified three program m ing paradigm s as being o f  particular relevance in engineering 

applications: functional program m ing, sem antic data m odeling and objcct-oricntation. Wc now briefly 

introduce these paradigm s.

13.1 Functional Programming

The fundam ental paradigm  o f  functional program m ing is that a com putation can be represented by a 

co llection  o f  (possibly com plex) operations acting on (relatively sim ple) data structures. In the ideal 

case, no  assignm ents ever occur, that is, there are no variables in functional program s, only functions and 

constants (e.g. num bers, strings, etc.). Though this approach is very elegant from a theoretical point o f 

view, it does not take into account the exigencies o f  practical com putation; for exam ple, the inlcgcr 10 

is represented in a  purely functional environm ent as the application o f  a function called s u c c e s s o r  

to the in teger 0 ten tim es. In a real program m ing environm ent, the com putational overhead o f  such 

an approach w ould be com pletely unacceptable. Thus, m ost functional languages perm it at least single  

assignm ent, i.e. a  variable can be assigned a value only once during its lifetim e. O ne docs not change 

the value o f  a variable, but rather elim inates it in favor o f  an entirely new variable that has the new value 

assigned to it. T his approach, though an acceptable com prom ise between the practical and theoretical 

aspects o f  com putation, results in a com putational model that is rather counter-intuitive and difficult to 

use, especially  by people unaware o f  the theory o f functional program m ing. To offset this, m any currently 

popu lar functional languages (particularly LISP and Scheme) perm it m ultiple assignm ent, but only in
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certain controlled ways. A lthough it is com m only said that the functional paradigm  does not perm it the 

capture o f  state, th is is a m isconception. Functional program m ing only requires that m anipulation  o f  the 

state o f a  program be explicit. T his ensures that unwanted and often difficult to identify side-effects do  not 

occur in functional program s. References [176,179,180] discuss various aspects o f  functional languages, 

and 1181 ] discusses som e o f  the advantages o f using the functional paradigm  in engineering applications.

One o f  the m ost novel ideas o f the LISP family o f  functional languages is that o f  meta-circularity. A 

m eta-circular language is defined largely in term s o f itself, turning program s w ritten in that language 

into extensions o f  the language itself. This perm its the creation o f  self-m odifying program s and active 

data structures. M eta-circularity also unifies the roles o f  program m er and user: it becom es easie r fo r the 

“program m er” to understand the user’s needs and for the “user” to have control over softw are program m ed 

by others. It also perm its the developm ent o f  software in m odular layers, all w ritten in the sam e language, 

each layer expanding upon the capabilities o f  the preceding layers.

The ability o f  these languages to treat program s as data (i.e. perform  sym bolic com putation  [179]) is o f 

particular advantage in applications involving design inform ation m odeling. We can w rite functions that 

can exam ine design m odels and check for satisfaction o f  various kinds o f  constraints. T h e  constraints 

m ay be specific to the dom ain (e.g. constraining weight o r size o f  a com ponent in an assem bly), bu t they 

may also be com putational in nature (e.g. database integrity constraints, norm alization, etc.). We can thus 

unite database schem a and instances o f  those databases (i.e. m odels o f  actual design  artifacts), treating 

them with a single language and computational paradigm . T his further integrates the roles, and thus blurs 

the distinction, betw een program m er and user.

The greatest advantage o f  functional program m ing is the sound and detailed theoretical background upon 

which it rests [99 ,182]. Firstly, the X-calculus presents a  general m athem atical theory o f  functions, and 

is based on set theory. Secondly, denotational sem antics provides a  notation (based on the  A-calculus) 

for the representation and study o f  com putation, perm itting the evaluation and m anipulation  o f  program s 

as if  they were algebraic expressions. Such formal com putational theories provide the  bridge betw een a 

fom ial design theory, and the im plem entation o f  software system s based on that theory.

A lthough Schem e and LISP are rather similar. Schem e [183-185] was chosen as the  base  language for 

D e s ig n e r  because its sem antics is defined in m uch m ore formal term s than LISP. T h is m eans Schem e 

exhibits a  h igher degree o f  robustness and formal rigor than its predecessor. A particular im plem entation
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o f  Scheme, Elk [186], was used because because it provides certain im plem entation features that made the 

developm ent o f  D e s ig n e r  quicker and easier in a Un i x 1 environm ent. It is noted, however, that D e s ig n e r  

has also been ported to another version o f  Scheme, called SCM 2, which is more rigorously adherent to 

the existing Scheme standard [ 184] than is Elk. This indicates conclusively that D e s ig n e r  is a legitimate 

extension o f  Scheme.

Finally, it is notew orthy that there has been some effort [181.187] to study and implement Ihc notion of 

a database based on the functional paradigm. The significant advantage o f  the functional paradigm in 

this area is that the explicit m anagem ent o f program state can make database update m anagem ent and 

norm alization easier than in conventional approaches.

The one notable disadvantage o f  the functional program m ing paradigm  is that com plex data structures 

are norm ally not supported. 1 his restricts the organizational structures that can be imposed on design 

inform ation. However, as will be demonstrated below, this deficiency can be remedied by the use of 

concepts from object-orientation. Although recently developed functional languages (e.g. ML, Haskell) 

have richer type system s3 and data structures, it is not yet clear how  these m echanism s can he best used in 

an engineering environm ent. As well, the type system s supported by these languages arc not necessarily 

com patible w ith the formal design theories they are intended to support. The author therefore favors the 

use o f  an untyped language (like Scheme) into which can be built w hatever type inform ation is found 

necessary.

13.2 Semantic Data Modeling

Sem antic da tam odeling  was originally conceived o f  to perm it the creation and description o f data schema 

that would then be coded into relational im plem entations [111]. It presented the advantage o f  ignoring 

im plem entation issues in favor o f  achieving a deeper conceptual understanding o f the problem  domain. 

Im plem entation issues were then dealt w ith using the relational data model [1 0 8 ] , Eventually, it was 

recognized that there were application dom ains where the richer assortm ent o f  abstraction m echanism s

1 UNIX is a trademark o f AT&T.
2SCM is maintained by Aubrey Jaffer, copyright © 1989 Free Software Foundation, Inc.
3In computational theory, type systems deal with the specification o f kinds o f data structures (e.g. integers, character strings, 

records, procedures, etc.). This is not to be confused with the use o f the term “ type" in HM.
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available in sem antic m odeling would be o f  great advantage. Engineering was identified as one such 

dom ain. Since then, a num ber o f different sem antic data m odels have been generated and im plem ented. 

Two good surveys o f  the field arc [28, 111],

Because o f  the diversity o f approaches taken by various researchers in sem antic data  m odeling, it is 

difficult to identify key notions representative o f the general approach. However, one very relevant notion 

has found use in the definition and im plem entation o f D e s ig n e r , and is worthy o f  note here. Attributes 

o f  data structures in sem antic data m odels arc regarded as functions m apping one (group of) object(s) to 

another (group of) objcct(s). This is noticeably different from the view  taken in object-orientation (see 

below), wherein attributes are com m only seen as constituent parts o f  data objects and are thus considered 

m ore structural than procedural. For exam ple, given som e objects m odeling engines and som e other 

objects m odeling fuels, sem antic m odeling would define an attribute u s e s - f u e l  as a  function m apping 

engine objects to fuel objects; alternatively, in object-orientation, an attribute f u e l  w ould be a  com ponent 

o f  engine objects whose values are chosen from available fuel objects.

T he author has found that the sem antic m odeling view  o f  attributes is quite useful in im plem enting an 

object-oriented system  w ithin a functional language (i.e. D e s ig n e r ). T his is particularly  interesting 

because it indicates a  relationship between two very different com putational paradigm s (functional and 

object-oriented program m ing) by way o f  a data m odeling system  not originally  intended for such a 

purpose. Exactly how  attributes are dealt w ith in D e s ig n e r  will be discussed in the Sections to follow.

13.3 Object-Orientation

O bject-orientation has had as its goal, since its origins in the language Sim ula, the m odeling o f  entities o f 

interest to the user in a very high-level and thus usable m anner [188]; in o ther words, object-orientation 

perm its the creation o f  software m odels o f “ real-world” entities that are very sim ilar to the users’ mental 

m odels o f  those entities. By definition, then, object-orientation has at least the potential o f  m inim izing 

im pedance m ism atches in applications where the inform ation to be m odeled m ust be presented and 

m anipulated in as straight-forward a m anner as possible [27], such as engineering design.

An object is generally defined as an entity that can capture all relevant inform ation about a  particular 

real-world entity. O bjects encapsulate  their im plem entation, th js  m aking their usage en tirely  independent
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o f  how  they function internally. T his frees the user from having to understand the details o f how  the 

data structures operate. Encapsulation has been show n to provide m any advantages in the developm ent 

and use o f  software from the points o f  view o f  both com puter science [ 159,188-1901 and engineering 

[2 5 .112 .191 ,192],

C om m unication between an object and another object o r  a user occurs by passing m essages  between 

objects; a  m essage is a request that an operation be carried out by an object o r group o f  objects. Objects 

can be active (dispatching m essages to each other) passive (requiring an external agent for m essage 

dispatch), o r som e m ix o f  the two. Sim ilar kinds o f  objects can be grouped together in various ways, 

perm itting  different organizations o f collections o f  objects that reflect the requirem ents o f  the problem 

dom ain. These abstraction m echanism s  are particularly im portant in a  dom ain like engineering, where 

the nature o f  relationships betw een data can be both very com plex and very im portant.

T he greatest advantage o f  object-oriented system s is that they perm it the m odeling o f  com plex, highly 

interrelated entities (such as those found in an engineering environm ent) in a  m ore sim ple, flexible and 

elegan t w ay than can o ther program m ing paradigms. T he principal disadvantage o f  object-oriented 

system s is that there is still no consensus on exactly what the nature o f  objects should be; there are 

no  form al m odels for com puting with objects. It should be noted, however, that there are a  num ber o f  

on-going research efforts aim ed at providing a m ore formal footing forobjecl-oricnta tion  (e.g. 1193—195 J) 

both  as a program m ing paradigm  and as a database m odel.

T h e  a u th o r  h a s  id e n tif ie d  th re e  p a ra m e te r s  th a t  in d iv id u a te  o b je c t-o r ie n te d  te c h n o lo g ie s .  T h e s e  p a ra m e te r s  

a re  d i s c u s s e d  h e re  in s o f a r  a s  s e le c t io n  o f  a l te rn a t iv e  a p p ro a c h e s  b a s e d  o n  th e m  h e lp e d  fo rm  th e  o v e ra ll  

s t r u c tu r e  o f  DESIGNER.

13.3.1 Message Passing Protocols

T he first param eter deals w ith protocols for m essage passing. A recent report by the O bject Oriented 

Database Task G roup o f  ANSI [196] differentiates between tw o kinds o f  m essage passing protocols. The 

first, classica l m essage passing, is sim ilar to that provided by  languages like S m a l l t a l k -8 0  [197] and 

C++ [198]. T h e  protocol defines a  particular object as the recipient o f  the m essage. T he m essage contains 

a selector, w hich is used by the receiver to identify a  suitable procedure (called a m ethod) to be invoked.
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M ethods are defined w ithin object classes (see below). O ther argum ents to the m ethod m ay also be 

provided by the m essage. The m ethod is evaluated with respect to the receiver o f  the m essage and the 

result is returned to the sender o f the message.

The second form o f  m essage passing is called generalized o r canonical m essage passing. In this protocol, 

a m essage takes the form o f  a function call. There is no explicitly defined receiver, rather, all objects 

are passed as arguments and treated equally. The result o f  the evaluation o f  the m essage is returned to 

w hatever environm ent originally dispatched it.

T he classical m essage passing protocol perm its m ethods to be associated only w ith those objects fo r which 

evaluation  o f the m essage is m eaningful. Depending on the approach taken to define m ethods, this can 

im prove encapsulation and is thus advantageous. However, it can also introduce asym m etry in  the way 

actions on  objects are regarded by the user.

For exam ple, in S m a l l t a l k -8 0 , the m essage 3 + 4 is evaluated as follow s: the  object identified as 3 

is sent the expression + 4; a  m ethod associated with the appropriate class o f  objects is identified based 

on the receiver (in this case, integer addition) and evaluated by  taking the value o f  the argum ent (4 ) and 

adding it to the value o f  the receiver. Now, if  we had previously defined x  +- 3 and y  «— 4, evaluation 

o f  the m essage x  + y  would result in x  taking the value 7 , w hile y ’s value rem ained 4. T he asym m etry 

is  m anifested in the different roles played by the two term s x  and y :  a lthough they would conventionally  

be considered equivalent in that they both sim ply represent values, classical m essage passing causes the 

role o f  x  to be active and that o f  y  to be passive. This asym m etry can  becom e confusing , especially  in 

m ore com plicated cases typical in design. Furthermore, classical m essage passing causes side-effects; 

that is, the change in the value o f  x  is an im plicit change in  the state o f  the  program  that is uncontrollable  

by the user. The existence o f  side-effects can prevent verification o f  softw are m odels o f  design  entities; 

they are thus detrim ental to the construction o f reliable software system s.

O n the o ther hand, the canonical m essage passing protocol w ould evaluate x  + y  by using the function + 

to create a  new object whose value is the sum  o f  the argum ents. T h is form  elim inates the asym m etry and 

appeals to the intuition m ore than the classical form. The function is not bound directly  to a  type o r  class 

o f  object. Though this m ay be seen as a violation o f encapsulation (i.e. the function is not defined w ithin 

an object class), techniques exist to offset this loss while m aintaining the advantages o f  the classical form . 

T hese techniques will be discussed below  in conjunction w ith the description o f  D esig n er .
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Finally, the canonical m essage passing protocol elim inates the requirement for the special mcta-variablc 

self, w hich  refers to the receiver o f  a m essage. In the classical protocol, m ethods arc attached to object 

classes; there is no way to determ ine a-priori which particular object will have to evaluate a  given method 

in response to a m essage. Therefore, there is no a-priori way to identify the receiver o f  a m essage. To 

circum vent th is problem , researchers use a special variable com m only nam ed se l f  which, at any point in a 

com putation , identifies the receiver o f  the currently active method. The problem  is that s e l f  is an inherently 

self-referential structure, and m akes verification o f program s and software m odels very difficult. Since the 

canonical m essage passing protocol does not explicitly associate m ethods w ith objects o r  object classes, 

there is no  need for this special variable, and we are spared a great deal o f  com plexity.

13.3.2 Abstraction Mechanisms

T he second issue regards the abstraction m echanism s used to group objects. T here are tw o abstraction 

m echanism s currently com peting as the principal m echanism  for this purpose: classes  and prototypes. 

T hey  are both  based on  grouping objects by sim ilarities in their properties. G enerally know n as “clas­

sification” o r  “ typing” , this m echanism  is also a basis o f  hum an cognitive function in general, and is 

recognized as such by psychologists, philosophers, and artificial intelligence researchers [28 ,131,166],

C lasses are the  o lder o f  the two forms, and are used in such languages as S m a l l t a l k -8 0  and C++. 

T hey  define the structure and behavior o f  collections o f  objects. C lasses are m ore abstract entities than 

are objects: the latter describe real entities to be m odeled, whereas the form er describe the objects 

them selves. T hey are com m only dealt w ith using the sam e syntactic form s as plain objects (instances), 

but have significantly different sem antics.

Prototypes, on  the o ther hand, are plain objects that are used as tem plates to create o ther objects. They are 

entirely  different from  classes because classes are m ore abstract m odeling entities than objects, whereas 

any  ob ject m ay  be a  prototype. Thus, the sam e syntax a n d  sem antics can be used uniform ly throughout 

prototype-based system s.

Prototype-based languages have the potential to replace class-based system s as the standard for object- 

oriented program m ing because prototype-based com putational m odels are sim pler than class-based ones, 

but retain  the  lu ll expressive pow er o f  the latter [199].
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There are problem s w ith class-based system s that are dealt w ith better by prototypes, especially  in engi­

neering com puting. Firstly, schem a -  o r m eta-data -  evolution is orthogonal to the developm ent o f  objects 

in class-based system s, because classes and their instance objects are o f different degrees o f  abstraction. 

In prototype-based system s, there is no orthogonality. This sim plification can be o f  great assistance 

especially in engineering, where relationships are already complex w ithout the added requirem ents o f 

different orthogonal system s for data and meta-data. Secondly, version control, w hich is very im portant 

in m aintaining accurate histories o f  designs, is greatly simplified in prototype-based system s. Thirdly, 

one-of-a-kind m odeling o f  design artifacts is m uch m ore straight-forward using prototypes, since there is 

no need to generate classes for w hich there will ever be only single instances. SELF [200] is one system  

that has been dem onstrated to provide potentially all o f  the benefits o f  classes w hile m aintain ing  the h igher 

flexibility associated w ith prototypes.

13.3.3 Hierarchical Construction of Objects

The finai issue that d istinguishes various object-oriented languages is the m anner by w hich hierarchies o f  

objects are constructed. Again, there are tw o principal alternatives. In inheritance , g iven  a  m essage, the 

corresponding m ethod is searched for and used by the receiver in the evaluation process. T he criterion 

upon which the search process is based depends on prescribed relations betw een various ob ject classes. 

One class inherits from  a super-class i f  its instances respond to all the m essages to  w hich instances o f  the 

super-class also respond. In o ther words, the receiver o f  a m essage in  inheritance-based system s evaluates 

m ethods that have been located in o ther objects.

D elegation , on  the o th er hand, can be viewed as m essage transform ation: g iven a  certain  m essage, the 

delegation constructs and transm its a  new m essage based on the given one. T he new  m essage replaces 

the original and is re-dispatched in its place. Thus, in delegation-based system s, the receiver object is 

sent as an additional argum ent to whatever object has the m ethod used to evaluate the m essage; this is 

the converse o f  w hat happens in inheritance-based system s. In general, inheritance is used in class-based 

languages and delegation  is used in prototype-based languages. Though both these approaches have been 

used in various language im plem entations to date, neither has show n m arked advantages o v er the other.
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13.4 Combining Object-Orientation and Functional Programming

A lthough functional program m ing and object-oriented program m ing arc often considered to he at opposite 

ends o f  the language spectrum , it is interesting to note that m any functional languages have had object- 

based o r  object-oriented extensions for som e time. Scheme (and LISP) have both been used to generate 

object-oriented system s [201-206], but alm ost all these system s have been class-based. Som e system s 

(e.g. [207]) have supported prototypes rather than, o r in addition to, classes, but none o f  these efforts 

capture the intention o f  a  system  that w ould be useful for design. T hey arc general purpose program m ing 

languages o r  platform s for language research, and too prim itive to be applied to formal design  theories 

such as HM .

It m ay be argued that a d istinct sim ilarity exists between the theoretical notions o f  an object and a 

closure  [208]. A closure is a data structure often used in functional program m ing to  represent the 

conjunction  o f  a function w ith an environm ent, providing values for any variables o r  identifiers not 

otherw ise defined w ithin the  function itself. Both objects and closures arc capable o f  capturing the state  

o f  a  com putation. A lthough this sim ilarity is quite evident, it is no t sufficient to com pletely unify the two 

program m ing paradigm s. However, it is a  good sign, and indicative o f  possibilities fo r success.

O ne d istinct difference betw een functional and object-oriented program m ing that m ust be reconciled in 

any attem pt to m erge the tw o is the issue o f static versus dynam ic scope. In static scoping, values for 

variables m ay be identified by  static lexical analysis o f  the program  text. T h is m eans that the environm ent 

used to  evaluate a  given function is the environm ent that w as current when the function was defined. In 

dynam ically  scoped system s, the environm ent used to evaluate a  function is that which exists when the 

function  is called. A rguably, functional program m ing is at its best in a statically  scoped system  [176], 

w hereas, since the first version o f  S m a l l t a l k -8 0 , object-oriented languages have favored dynam ic 

scoping. Various approaches have been suggested in the literature [176,202,209]; a definitive solution to 

the problem  does not appear to exist yet. T he au thor’s approach takes advantage o f  m ultiple assignm ent in 

Schem e to provide the m inim al dynam ic scope needed to  support encapsulation o f  state. It is interesting to 

note, how ever, that the first object-oriented language, S im ula, used static rather than dynam ic scope [209].
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13.5 Summary

T his C hapter has introduced the requirements for a  new program m ing paradigm  for design, and identified 

three key existing paradigm s that can be used to meet these requirem ents. T he tw o principal requirem ents 

arc: that the paradigm model design information in as direct a  m anner as possible (so as to elim inate o r at 

least m inim ize im pedance m ism atches), and that formal rigor be m aintained as far as possible betw een the 

form al dom ain m odel (HM ) and the im plem entation o f the program m ing paradigm  as a  real com puterized 

tool. Objcct-oricntation provides the m odeling constructs needed to m eet the first requirem ent, while 

functional program m ing provides the degree o f form alization needed to  m eet the second requirem ent. 

A lso, notions from sem antic data  m odeling provide a unique, expressive and efficient m echanism  fo r the 

treatm ent o f  attributes (as defined in HM ) within a com putational fram ework.
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Chapter 14

Concepts and Forms in Designer

T his C hapter introduces the key notions and syntactic forms o f  D e s i g n e r , a prototype-based object- 

oriented language implemented in Scheme. T he prim ary goal o f  this exposition  is to dem onstrate (a) how 

object-oriented and functional program m ing can be effectively com bined, and (b) that there are significant 

advantages in the use o f  formal tools to design and build software system s for engineering applications.

O n ly  th e  p r in c ip a l  D e s ig n e r  fo rm s  w il l  b e  in tro d u c e d  in  th is  C h ap te r . O th e r ,  a n c i l la r y  fo rm s  w ill b e  

in t r o d u c e d  in  th e  n e x t  C h a p te r  a s  re q u ire d  f o r  th e  v a r io u s  e x a m p le s .

In o rd er to avoid circularity w ithin the definition o f DESIGNER, a d istinction  is m ade between actions 

o f  objects, and actions on objects. T h is d istinction prevents the definition o f  D e s ig n e r  from being 

self-referential. Since D e s ig n e r  is m eant to satisfy HM, which is no t self-referential, it too m ust not be 

self-referential.

A ctions o f  objects are the operations they are m eant to carry out. R equests fo r such operations take the 

form  o f  m essages. Actions on objects occur at a  different degree o f  abstraction; in D e s ig n e r , these 

actions are captured by regular Scheme functions.

124
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14.1 Syntactic Conventions

Since D e s ig n e r  is an extension o f Scheme, it obeys Schem e's syntactic rales. Schem e is sim ilar to LISP 

in that its fundam ental structure is a list, denoted by values enclosed in parentheses. Function calls take 

the form o f  lists whose first clem ent is the name o f  the function. For exam ple: (+  3 4 )  is a function call 

to +, with argum ents 3 and 4 . In the general case, we write a kind o f statem ent (i.e. a  fo rm )  in D e s ig n e r  

using the form al:

(FUNCTION-NAME ARGUMENT ARGUMENT. . . )

where capitalized words represent the denotation intended o f  data in those relative positions w ithin the 

call. An ellipsis ( . . . )  indicates zero o r m ore item s o f  the sam e kind as that im m ediately  preceding it. 

T hus we could generalize (+ 4 5) as:

(A R ITH -O P  NUM BER.. .)

w h e re  a r i t h - o p  s ta n d s  fo r  a n y  a r i th m e tic  o p e ra to r  a n d  N U M B E R .. .  s ta n d s  f o r  a  s e q u e n c e  o f  a t  le a s t  

o n e  n u m b e r ' .

C om m ents in Schem e are started by a sem icolon and continue to the end o f  the line.

14.2 Creating Objects

Objects in D e s ig n e r  are representations o f objects as defined in HM . A D e s i g n e r  object is a  passive 

store o f  attributes: this treatm ent is in keeping with the selected m essage-passing m echanism  (see Section 

14.6. below ), the general philosophy o f  the functional paradigm , and the definition o f  objects in HM.

T h e re  a rc  th re e  w a y s  to  c re a te  n e w  o b je c ts  in  D e s ig n e r . T h e  f irs t is  th ro u g h  th e  u s e  o f  g e n - o b j e c t :

( g e n - o b j e c t )

'In  Scheme, arithmetic operators can lake any number o f arguments; for example (+ 2 ) simply returns 2. and (+ 3 4 5 
6 1 returns 18.
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T his is the m ost prim itive object-form ing function. It returns a new, em pty data structure representing 

an object. T he object has no attributes, will respond to no messages, and is in no way related to any 

o ther object. At the u se r’s level, this function is o f little use: however, it is at the heart o f  all o ther more 

sophisticated object-form ing functions.

A n object is im plem ented as a vector2 containing (a) a list o f  the object's attributes, (b) a list o f  the object's 

parents, and (c) a  list o f  constraint relationships between attributes in that object. T he notions o f parents 

and constraints w ill be discussed below.

Secondly, existing objects can be cloned  to form new ones using the form:

( c l o n e  OBJECT)

T he argum ent o f  c l o n e  m ay be any object. A clone has all the attributes o f its paren t. the object from 

w hich it was cloned. T he parent is the prototype for the new object. The attributes o f  the new object 

are autom atically initialized to have values equal to the values o f  the parent’s attributes. T he parent/child 

relationship betw een an object and its clones is sim ilar to the relationship between classes and instances in 

languages like S m a ll ta lk - 8 0 ,  in that the parent provides the inform ation needed to dclinc the structure 

o f  the child. C loning is generally not intended for the user, but can be utilized in creating hierarchies o f 

objects and quickly creating copies o f objects.

T h e  th ir d  w a y  to  c re a te  o b je c ts  is  w ith  th e  n e w  fo rm :

( n e w  PARENT-SPEC A T T R -S P E C  I N I T - S P E C )

Because D e s ig n e r  is a prototype-based language w ithout the notion o f object classes, n e w  provides the 

functionality  to instantiate existing prototypes as well as the functionality to create new  prototypes. It re­

places both the class instantiation and subclassing m echanism s in conventional object-oriented languages. 

It is noted that n e w  satisfies the axiom  o f specialization in HM.

PARENT-SPEC is e ither a single object o r a parenthesized list o f  objects that will be the parents of 

the new  object. T he set o f  attributes o f  the new object is the cartesian product o f the a ttribute sets o f  its

2Scheme vectors are fixed-Ienglh sequences whose values are indexed much as one-dimensional arrays are accessed. Fur­
thermore, the elements o f a vector may be arbitrary Scheme objects, including number, strings, functions, etc.
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parents. Since an object can have m ore than one parent. DESIGNER provides a kind o f  m ultip le inheritance. 

However, the axiom  o f  specialization in HM restricts objects to be form ed only by a union operation o f 

disjoint parent objects; that is, the parents o f  an object cannot share attributes.

O ther attributes not available in any o f  the parent objects can be defined by m eans o f  A T T R - S P E C ,  a list 

o f  attribute specifications. If no extra attributes are needed to define a new  object, an em pty list, ( ) .  must 

appear as the second argument o f  new . The exact syntax o f attribute specifications is described in the 

next Section.

Finally, I N I T - S P E C  is a sequence o f forms providing initial attribute values. T he syntax o f  an 

I N I T - S P E C  form is:

(ATTRIBUTE-NAME IN IT IA L -V A L U E !

w h e re  A T T R IB U T E -N A M E  is  th e  s y m b o l  b y  w h ic h  a  p a r t ic u la r  a t t r ib u te  is  id e n tif ie d , a n d  I N I T I A L - V A L U E  

is  a  D e s ig n e r  fo rm  th a t  is  e v a lu a te d  to  p ro v id e  th e  in itia l v a lu e  o f  th a t  a t tr ib u te .  O n ly  th o s e  a t t r ib u te s  fo r  

w h ic h  d e fa u l t  v a lu e s  a re  in s u ff ic ie n t n e e d  b e  in it ia l iz e d ; d e fa u l t  v a lu e s  a re  ta k e n  f ro m  th e  p a re n ts  o f  th e  

n e w  o b je c t .

All constraints arc checked before a final value is returned from new .

Finally, som e general rem arks regarding these forms are in  order.

Identity o f  objects is based on the corresponding axiom in HM  (axiom  3). To be exact, tw o objects 

are identical if  the sets o f  attributes o f  the objects correspond, and if  the values o f  the m em bers o f  each 

corresponding pair o f  attributes are equal.

All the object-form ing functions described above perm it at m ost the addition o f  a ttributes to objects; no 

facility is currently provided for the removal o f attributes.

A clone keeps track o f  all o f  its parents. The sequence containing all parents o f an object, all parents o f  

the parents, and so on, is called the lineage  o f an object. A ny object occurring in the lineage o f  an object 

is referred to as an ancestor  o f  the object. Inform ation regarding parents o f  objects is im portant fo r two 

reasons. First, it is used to create attributes in cloned objects, thus defining object state. Second, it perm its 

sharing procedural inform ation betw een objects o f  sim ilar kinds: since an object know s w hat objects it 

descends from, it can behave like its parents.
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T he au tho r has found that a prototype-based approach can also capture the conventional notion o f object 

classes. In fact, the definition o f  a class-like object using only the low-level functions provided by 

D e s i g n e r ’s prototype system  has been successfully im plemented. T his supports the notion that the 

p rototype-based approach is at once m ore general than, yet as equally expressive as, the class-based 

approach o f  languages like S m a l l t a l k -8 0 .

14.3 Attributes

A ttributes in D e s ig n e r  are constrained values stored in objects. T he constraints lim iting the types o f 

values an  attribute can have are referred to as domain constraints. Exam ples o f dom ain constraints 

include i n t e g e r ?  and C u b o id ?  which are unary predicates that return True only if  their arguments 

are integers o r "C uboids”, respectively. The dom ain o f  an attribute in D e s ig n e r  is the set o f  values 

that satisfies the attribute’s dom ain constraint. A ttributes are identified by a nam e unique am ong all the 

attributes o f  an object.

A ttributes are added to objects w hen they are created, using the n e w  fom i introduced above. Attributes 

are defined w ith in  n e w  by giving a specification o f  its com ponent parts using the syntax:

(NAME DOMAIN IN IT IA L -V A L U E )

where NAME is the nam e by w hich the attribute shall be iden tified , DOMAIN is a unary predicate defining 

the dom ain  constraint, and INITIAL-VALUE is an optional initial value. If the initial value is om itted, 

the a ttribute is given the value n o - v a l ,  a special sym bol in D e s i g n e r  indicating no assignm ent has 

been m ade, n o - v a l  satisfies any constraint in DESIGNER, and is intended to differentiate betw een object 

c reation  and assignm ent o f  values to object attributes. Such a d istinction is im portant because a user will 

often  know  that a  certain  object will be used, but m ay not a-priori know exactly  what the specific nature 

o f  the ob ject will be [2],

W hen an  a ttribute is defined. D e s ig n e r  autom atically defines a  query fu n ction , used to  query the attribute 

for its value, and a setter function , used to set its value. T he syntax o f  these two kinds o f  functions is 

given as:

(QUERY-FN OBJE CT)
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( S ETTER-FN  OBJE CT VALUE)

A query function takes an object as its single argument and returns the current value o f  the corresponding 

attribute in that object. A setter function takes an object and a  value as its argum ents and assigns the value 

to the corresponding attribute in that object. A ssignm ent occurs i f  the dom ain constraint is satisfied; if  a 

dom ain constraint violation occurs, an error message is displayed and no assignm ent occurs.

The nam es o f query and setter functions arc based on the name of the attribute. For exam ple, creating an 

attribute nam ed l e n g t h  causes the creation o f  a query function nam ed ? l e n g t h  and a  se tter function 

nam ed l e n g t h : .  ? l e n g t h  and l e n g t h :  will function correctly for all objects w ith  an attribute 

nam ed l e n g t h ,  and are created only once. T his convention does not clash w ith S chem e’s  convention o f 

nam ing predicates w ith a trailing question m ark, yet provides sufficient connotation to m ake the m eaning 

o f  these functions clear.

T he query and setter functions o f  an attribute are representative o f  the attribute itself; the  im plem entation 

o f  attributes in D e s ig n e r  is not visible to the user. From the user’s point o f view, these functions are the 

attribute. T hus we are taking advantage o f  the sem antic data m odel’s notion  o f  attribu tes  as functional 

m appings betw een objects.

We note finally that the setter function m akes use o f  the s e t ! prim itive in Schem e to a lte r the state o f  

an attribute in an object. T he author feels justified in this “corruption” o f  the functional paradigm  insofar 

as attribute state is strongly encapsulated w ithin objects; the side-effects are therefore controlled by  the 

sem antics o f the setter function and beyond the reach o f  o ther objects and the user.

14.4 Constraints between Attributes

Dom ain constraints on  single attributes are defined v ia  dom ain predicates. C onstraints can  a lso be imposed 

betw een m any attributes in a given object. These constraints are referred to as object constraints, and are 

defined using the follow ing form;

( c o n s t r a i n  OBJE CT ( ( N A M E . . . )  F O R M .. . )  . . . )
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where O B J E C T  is the object to be constrained, (N A M E .. . )  is a list o f  the attribute nam es involved in 

the constraint, and the rem aining forms F O R M .. .  arc the body o f the constraint, the evaluation of which 

should return a boolean value. To facilitate adding many constraints to a single object, more than one 

constraint can be given in each c o n s t r a i n  form.

Object constraints in D e s ig n e r  arc passive structures. That is. if a constraint is evaluated and found 

to be not satisfied. D e s ig n e r  will signal this fact to the user, hut will not attempt to alter the model in 

order to satisfy the constraint. T he author reasons that the responsibility o f such alterations should fall on 

either the user o r som e software system  o f a higher level than D e s ig n e r  (e.g. a expert system , neural net, 

o r o ther know ledge-based controlling system). D e s ig n e r  is meant only to capture design inform ation 

statically; it is not a  goal-oriented m anipulatory system. Put another way. D e s ig n e r  is intended to answer 

the question What is th is design?  rather than How was this design created?

A particular object constraint is checked whenever an assignm ent is attem pted to any attribute involved 

in the constraint. However, the assignm ent occurs whether the object constraint is satisfied o r not. This 

is acceptable due to the exigencies o f  design. It is often the case that in the course o f  a design process, 

various constraints m ay not be satisfied. This is quite normal in design [2) and does not necessarily mean 

the design is inadequate. It m ay be that the constraints o r the design problem itself arc not wcli-poscd. 

T hat is, in design, the m odel o f  the artifact evolves as design proceeds, and it is nonnal for there to be 

instants w hen the m odel is inconsistent. These are not, and should not be treated as, fatal errors, but rather 

as interm ediate steps.

14.5 Function Overloading

In Schem e, one m ay create and use a function w ithout assigning the function a particular name. Such 

functions are called anonym ous  functions. Overloading o f function nam es is achieved in D e s ig n e r  hy 

grouping a n u m b ero f anonym ous functions in a list accessible only to a  special, generic  function. Various 

definitions o f  the term s “overloading” and “generic functions" have been suggested in the literature 

(e.g. [1 9 7 ,1 9 8 ,2 1 0 ,2 1 1 ]). Here, we use the term “overloading" to denote a language sym bol that 

has m ultiple, non-exclusive definitions, and “generic function” to denote a function that can operate 

successfully  on  a num ber o f  different types o f objects, where object types are defined by their ancestry.
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In order to distinguish between different anonym ous functions bound to the sam e generic function, each 

anonym ous function has associated with it a signature  indicating the num ber o f  param eters required by toe 

anonym ous function and a (possibly complex) predicate that is true only for sets o f  actual param eters that 

arc acceptable for that anonym ous function. The generic function is bound to a user-supplied nam e. W hen 

a generic function is called (by referring to its name), the actual param eters are com pared by the system 

to the signatures attached to each anonym ous function. The first anonym ous function w ith a signature 

m atching the actual param eters is applied to those param eters, and the resulting value is returned.

Generic functions are created in Designer using the o v e r l o a d  form:

( o v e r l o a d  NAME K I D . . . )  ( P R E D I C A T E . . . )  F O R M .. . )  . . . )

where NAME is the sym bol to be overloaded as a  generic function, ( ID .. . )  is a list o f  form al param eters to 

be used in thcd efin itio n o fap articu la ran o n y m o u s function, and (PREDICATE...) is a  list o f  predicates 

that, together w ith the list o f  parameters (ID . . . )  .fo rm  the signature o f  the anonym ous function. FORM... 

is the body of the anonym ous function. To facilitate writing m any overloadings o f  a  single sym bol at 

once, o v e r l o a d  can accept m any anonym ous function definitions.

By convention, nam es o f  generic functions begin with a  colon (e.g. : v o lu m e ) .

Generic functions com bined with object lineage inform ation perm it the sharing o f  functions that act on 

objects (i.e. m ethods in conventional object-oriented languages). A signature n a y  contain a  predicate 

that checks for m em bership o f  an aigum ent in the lineage o f  an object. T h is is equivalent to the IS_A 

relationship in HM  and im plies that the child object inherits  from its parent. T hus, we can  cause different 

behaviors in generic functions depending on the ancestry o f  its arguments. Exam ples are g iven  in the next 

Section that dem onstrate how  this m echanism  is sim ilar to polym oiphism  in conventional object-oriented 

languages.

14.6 Message Forms

T his au thor has found that the canonical m essage passing protocol lends itse lf well to im plem entation in 

a functional environm ent, especially if  generic functions are used. It also m aintains a  single, consistent 

syntactic convention for the expression o f  both function calls and m essages. A lthough classical m essage
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p a s s in g  h a d  b e e n  im p le m e n ie d  in  e a r l ie r  v e rs io n s  o f  D e s ig n e r , th e  c a n o n ic a l  fo rm  is  fo u n d  to  b e  e a s ie r  

to  im p le m e n t ,  m u c h  m o re  e ff ic ie n t, a n d  h a s  led  to  a  m u c h  m o re  u s a b le  s y s te m .

T he canonical form dim inishes the importance o f  inheritance and/or delegation. T his is because it 

establishes m ethods to exist outside objects rather than to be part o f  them . Nonetheless, the u ltim ate goal 

o f  inheritance and delegation -  the sharing o f  behavior (actions) between objects without requiring the 

existence o f  object classes o r other higher-ordcr structures -  is achieved.

14.7 Intentional Versus Extensional Attributes

In D e s i g n e r , w e distinguish betw een extensional and intentional attributes. An extensional attribute is 

one that has an actual value assigned to it, whereas the value o f  an in tentional attribute is derived from 

the values o f  o ther attributes. Extensional attributes are static; that is, their values are not procedural. 

T hey are stored w ithin objects them selves and are representative o f  the state  o f  the object. Intentional 

a ttributes, however, are procedural (active) in nature. M essages im plem ented w ith generic functions 

capture intentional attributes. Exam ples o f this are given in the next Section.

T he au thor notes that it is not alw ays obvious w hether a particular property o f  a design entity  should be 

m odeled w ith  an extensional attribute o r an intentional attribute. The criteria  for m aking this decision 

are bound up in the requirem ents o f  the design process used, and can vary widely. For exam ple, if  the 

w eight o f  a  particular com ponent is to be constrained, it m ay be preferable to m odel the com ponent’s 

d im ensions extensionaliy. and its volum e intentionally. However, if  the constraint is based on a restriction 

o f  space that the com ponent m ay take up, then it m ay be preferable to model its volum e extensionaliy  and 

its dim ensions intentionally (e.g. as param eterized functions o f the volum e). T h is indicates a  relationship 

betw een constraint and attribute specifications. An in-depth study o f  this relationship is deferred for future 

work.

14.8 Summary

In th is Chapter, the author has introduced the principal notions and syntactic form s o f  D e s i g n e r , a com ­

puter p rogram m ing language that com bines object-orientation in a functional program m ing environm ent
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such that the axiom s o f  HM are satisfied. In this way, continuity o f  form al rigor is m aintained from 

the logical aspects o f  HM through to the implementation o f  D e s ig n e r  itself. Though unconventional in 

som e regards, the D e s ig n e r  language provides a num berof m echanism s for the direct m odeling o f  design 

inform ation in a  concise manner.
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Chapter 15

Examples

D e s i g n e r  is an extension o f  the Schem e program m ing language, providing a prototype-based object 

system . A signature-based, canonical m essage-passing m echanism  perm its overloading o f  function 

nam es. T hus, D e s ig n e r  objects satisfy the axiom s o f  HM w hile also providing certain  very convenient 

program m ing m echanism s to increase usability and efficiency.

In add ition  to the actual object-oriented extensions o f  Scheme, D e s ig n e r  also includes a library o f 

generally  useful objects. T he library can be expanded by the user. Inform ation used to generate som e o f 

the a lgorithm s im plem ented in D e s ig n e r  and in the prototype library was taken from [212-215]. The 

com plete  source o f  D e s ig n e r  and o f  the prototype library is given in the Appendices.

15.1 Simple Examples

A  sim ple  exam ple o f  the definition o f  two object prototypes is given in Figure 15.1.

T h e  first s tatem ent in the exam ple defines C u b o i d  to be an object. It is generated by specializing  a single 

object. O b j e c t ,  defined within D e s ig n e r  as the root parent o f  all o ther objects. T he statem ent is noi 

a  m essage because it acts on objects. It is taken as a  convention in D e s ig n e r  that objects intended to 

be used as prototypes have capitalized nam es (e.g. O b j e c t ,  C u b o i d )  while o ther objects have nam es 

consisting  entirely  o f  lower-case letters. T h is rule is not enforced by the syntax o f  D e s i g n e r , but is used

134
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( d e f i n e  C u b o i d
( n e w  o b j e c t

( ( x  n u m b e r - g t O ?  1) 
ly  n u m b e r - g t O ?  2;
( z  n u m b e r - g t O ?  1) ) ) )

( i;iah e - t y p e - p r e d i c a t e  C u b o i d )

( d e f i n e  S p h e r e
( n e w  O b j e c t

( ( r a d i u s  n u m b e r - g t O ?  1 ) ) ) )
( m a k e - t y p e - p r e d i c a t e  S p h e r e )

( o v e r l o a d  i v o l u m e  ( I s )  ( ( S p h e r e ?  s ) ) (* ( /  4 3 )  P i  ( **  ( ? r a d i u s  s )  3 ) ) )
( ( c )  ( ( C u b o i d ?  c ) )  (* ( ? x  c )  ( ? y  c )  ( ? z  c ) ) ) )

Figure 15.1: Definition o f  tw o Objects.

only to improve readability.

Three extensional attributes are then added to C u b o id ,  nam ed x , y  and z , representing the  d im ensions o f 

the entity. All three attributes are constrained to be num bers greater than zero by the dom ain  specification 

n u m b e r - g t  0 ? (assum ing we accept a physical dim ension to be positive and non-zero). A  default value 

o f  1 is assigned to each attribute.

The second statem ent, ( m a k e - t y p e - p r e d i c a t e  C u b o i d ) ,  creates a  predicate C u b o id ?  that 

takes a  single argum ent and returns True o r False, depending on w hether the argum ent is an  object and an 

ancestor o f  C u b o id .

In the exam ple, a S p h e r e  object is also defined, as well as a  predicate S p h e r e ? .  S p h e r e  has one 

attribute representing a radius.

Next, the sym bol : v o lu m e  is overloaded for both C u b o id s  and S p h e r e s .  It accepts a  single argum ent 

descended from either C u b o id  or S p h e r e ,  calculates the volum e o f  its argum ent, and returns this 

value. T his m eans that any object cloned from C u b o id  o r S p h e r e  is a  valid argum ent. : v o lu m e  

is an exam ple o f  an  intentional attribute; that is, an  attribute defined as a  function o f  o ther attributes. 

Representing intentional attributes as functions assures that the values o f  these attributes will always 

refiect the m ost recent values o f  the attributes upon w hich they depend.

D om ain constraints on  extensional attributes are checked only w hen new  values are about to be  assigned 

to the attributes, since assignm ent is the only operation that can change their values. I f  the  new  value does
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not satisfy these constraints, the assignm ent does not occur and an error is signalled.

C onstraints m ay also be im posed between attributes in an object. For exam ple, if we w ished to constrain 

the  C u b o id  object such that its y  dim ension is always twice its x  dim ension, we could write a constraint 

as in Figure 15.2.

( c o n s t r a i n  C u b o i d  ( ; x  y )  (= y  (* 2 x ) ) ) )

Figure 15.2: A constraint on Cuboid.

T h is object constraint w ill autom atically be checked each tim e an attempt is made to assign values to 

e ither the x  o r y  d im ensions o f  C u b o id  o r any object cloned from C u b o id .  However, as discussed in 

the previous Section, v iolation o f  object constraints does not prevent assignm ent from occurring.

C onstraints on intentional attributes are represented differently. Since intentional attributes do not have 

explicitly  defined values and are represented by functions o f  objects, constraints on  these attributes occur 

at a  d ifferent level o f  abstraction. For exam ple, if  there were a circum stance that required constraining a 

C u b o id - lik e  object so that its volum e were not to exceed 100 units, we could use form s sim ila r lo those 

in  Figure 15.3.

( d e f i n e  T h i n g
( n e w  o b j e c t

( ( b o x  C u b o i d ? )
( m a x - v o l  n u m b e r ?  1 0 0 ) ) ) )

( c o n s t r a i n  T h i n g  ( ( b o x  m a x - v o l )  (<= ( v o l u m e  b o x )  m a x - v o l ) ) )

Figure 15.3: Exam ple o f constraint on intentional attributes.

T h is restriction on  the form ation o f  constraints on intentional attributes is reasonable because such 

constrain ts arise from the  interaction o f  objects (design entities) w ith their environm ent, i.e. o ther objects 

w ith  w hich they interact. In the exam ple, the m axim um  volum e is not a  com ponent o f  our m odel o f  

cuboids. It is inappropriate, then, to em bed such constraints w ithin an object when they in fact model 

relationships betw een (possibly) m any objects.

A t any tim e, the constraints on  an object m ay be checked w ith the function c h e c k -  o b j  e c  t  -  c o n s  t  r a  i n t  s ,  

w hich takes an object as its single argument, and returns a  boolean value indicating w hether the constraints
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on the ob jec t’s attributes are satisfied or not.

( d e f i n e  boy.  ( n e w  C u b o i d  ()  ( x  3)  ( y  6)  ( z  5 ) ) )
( ? x  boy.)
( :  v o l u m e  boy.)
( d e f i n e  b a l l  ( n e w  S p h e r e  ( r  5 ) ) )  
( : v o l u m e  b a l l )

=> 3 
=> 90

=> 5 2 3 . 5 9 8 7 7 5 6

Figure 15.4: Exam ples o f  D e s ig n e r  queries a n d  m essages.

Figure 15.4 show s exam ples o f  DESIGNER queries and messages. T he text follow ing the =► sym bol show s 

the return value when these statem ents are evaluated. The first statem ent defines a  new  C u b o i d  object 

whose dim ensions are initialized to 3 ,6  and 5 respectively.

The second statem ent in Figure 15.4 is ( ? x  b o x ) . This is a  query fo r the value o f  the attribute called x  

in object b o x . It returns the value 3.

The third statem ent shows the retrieval o f  the current value o f  an intentional attribute o f  b o x :  its volum e. 

T his is actually a m essage, though in form  it appears the sam e as a  function call. Because its single 

argum ent is a  descendant o f  C u b o id ,  the anonym ous function w ithin : v o lu m e  that returns the volum e 

o f  C u b o id  objects is evaluated.

It is noted that C u b o id  and b o x  are both objects, and that there is no essential difference betw een them . 

In particular, e ither one m ay be used as a  prototype for the generation o f  o ther objects.

We then create a new S p h e r e  object, nam ed b a l l ,  w ith a  radius o f  5 units. T he v o lu m e  m essage is 

then evaluated again. But because its argum ent descends from  S p h e r e  th is tim e, a  different anonym ous 

function is evaluated.

D e s i g n e r ’s ability  to define functions that act differently depending on their argum ents is sim ilar to 

polym orphism  and dynam ic binding in class-based, object-oriented languages. In the term inology o f  

these m ore conventional languages, we w ould say that v o lu m e  is a  m essage accepted by  instances o f  

both S p h e r e  and C u b o id  classes, but im plem ented by different m ethods in each class.
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15.2 Multiple Inheritance

D e s i g n e r  supports a  form o f  m ultiple inheritance. Objects m ay inherit from m ore th;ui one parent object, 

but none o f  the parents m ay share attributes; that is, the sets o f  attributes contributed by each parent must 

be d isjo in t from the sets o f  attributes o f  all o ther parents. T his restriction is im posed by HM to m aintain 

its logical validity. O ther object-oriented languages have attempted to support m ultiple inheritance of 

overlapping parents o r  classes, but none has succeeded completely. Indeed, the author considers the 

problem atic nature o f  m anaging overlapping parents and classes in inheritance to be a clear indication o f 

inconsistency, and prefers to restrict the possible kinds o f  relationships that can be specified for the sake 

o f form al rigor.

In o rd er to introduce the notion o f m ultiple inheritance as supported by D e s i g n e r , w c  include a small 

exam ple based on  an exam ple in [210 ,216] which deals w ith the conceptual m odeling o f  vehicles, 

m achines, and autom obiles. Figure 15.5 gives both a graphical depiction o f  the m odel and the D e s ig n e r  

form s used to  im plem ent the appropriate prototypes.

In  th e  e x a m p le ,  A u t o m o b i l e  in h e r its  f ro m  b o th  V e h i c l e  a n d  M a c h i n e .  T h e  la s t  th re e  fo rm s  a rc  

q u e r ie s  d e m o n s t r a t in g  th a t  th e  a t t r ib u te s  o f  b o th  p a re n ts  h a v e  b e e n  p a s s e d  o n  to  A u t  o m o b  i  1 e .

A l th o u g h  o n e  m a y  q u e s t io n  th e  v a l id i ty  o f  m o d e l in g  a n  a u to m o b ile  a s  in  th is  e x a m p le ,  i t  is  u s e d  h e re  o n ly  

to  d e m o n s t r a te  th e  s t ra ig h t- f o rw a r d  n a tu re  o f  th e  m u l t ip le  in h e r i ta n c e  m e c h a n is m  p ro v id e d  b y  D e s ig n e r . 

T h e  v a l id i ty  o f  u s in g  m u lt ip le  in h e r i ta n c e  a s  in  th is  e x a m p le  is  in  i t s e l f  w o r th y  o f  s tu d y ; h o w e v e r ,  w c  

d e f e r  s u c h  d i s c u s s io n  s in c e  i t  d o e s  n o t  b e a r  d ir e c t ly  o n  th e  s u b je c t  a t h a n d .

15.3 Mimicry of Classes

A nother exam ple indicating the flexibility o f  D e s ig n e r  involves the generation o f  a  class-like object as 

m igh t b e  found in other object-oriented languages (such as S m a l l t a l k -8 0 ) .  The im plem entation o f  this 

object requires the use o f the low-level functions o f  D e s ig n e r  and is less than 70 lines o f  code. A sim ple 

exam ple o f  its use for queue objects (first-in, last-out lists) is given in Figure 15.6.

The exam ple  dem onstrates that the d istinction is m ade betw een classes (e.g. Q u e u e )  and iastanccs (e.g. q ),
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Vehicle Machine
speed fuel

Automobile 
speed 

 fuel

( d e f i n e  V e h i c l e
( n e w  o b j e c t

( ( s p e e d  n u m b e r ?  0 ) ) ) )

( d e f i n e  M a c h i n e
( n e w  o b j e c t

( ( f u e l  s y m b o l ?  n o - v a l ) ) ) )

( d e f i n e  A u t o m o b i l e
( n e w  ( V e h i c l e  M a c h i n e ) ) )

( f u e l :  A u t o m o b i l e  ' g a s o l i n e )

( ? s p e e d  A u t o m o b i l e )
( ? f u e l  A u t o m o b i l e )
( ? f u e l  M a c h i n e )

Figure 15.5: An exam ple o f  m ultiple inheritance in D esig ner .

=*• o
=> g a s o l i n e  
=> n o - v a l
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( n e w - c l a s s  Q u e u e  ()  ( 1 s t  0  ' ( ) ) )

( o v e r l o a d  p u s h  ( ( q  v )  ( ( Q u e u e ?  q )  ) ( 1 s t :  q  (cons v (? l s l  q) I ) )) 
( o v e r l o a d  p o p  ( ( q )  ( ( Q u e u e ?  q ) )

( i t  ( n o t  ( ? l s t  q )  ) ( e r r o r  ' p o p  - q u e u e  i s  e m p t y . - ) )  
( l e t  ( ( r  ( c a r  ( ? l s t  q ) ) ) )

( 1 s t :  q  ( c d r  ( ? l s t  q ) ))  
r )  I I

( o v e r l o a d  a s - l i s t  ( ( q )  ( ( Q u e u e ?  q ) ) ( ? l s t  q ) ) )

( c l a s s ?  Q u e u e )  => t r u e
( i n s t a n c e - v a r i a b l e s  Q u e u e )  => ( 1 s t  ( ) )

( d e f i n e  q  ( i n s t a n c e  Q u e u e ) )
( i n s t a n c e ?  q )
( c l a s s ?  q )
( i s - a  q )

( p u s h  q  1)
( p u s h  q  2)
( p u s h  q  3)

( a s - l i s t  q )  = > ( 1 2  3)

Figure 15 .6 : Example o f use o f  D e s ig n e r  Class object.

and that the im portant relation i s - a  correctly returns the class o f  an instance. A lso, in the n e w - c l a s s  

form , the first em pty parentheses are for a list o f  (possibly m any) superclasses, thus providing support for 

m ultip le inheritance. In th is particular exam ple, no superclasses arc specified.

15.4 Preliminary Design/Synthesis -  Four-Bar Linkage

T his Section describes a  m ore complex exam ple o f  the kinem atic synthesis o f  a four-bar linkage given 

three precision points. T he three point synthesis technique used here is taken from [34], pages 103-110.

Figure 15.7 presents a schem atic representation o f the geom etry o f  the four-bar linkage with various 

objects labelled, and a single link with its various parts labelled. T he objects them selves arc discussed 

below.

T he four-bar linkage is m odeled as an object ( 4 b a r ,  see Figure 15.8) with five attributes, b a s e - a  and 

b a s e - b  are the base connections o f  the driver and output links respectively. T he attributes i n p u t ,

=> C r u e  
=> f a l s e  
^  Q u e u e
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c o u p l e r

output

i n p u t

base-a base-b

c-length

joint-b
shaft

joint-a

.Origin o f  local
c o o rd in a te  f ra m e  

Figure 15.7: Schematic geometry o f  4bar and L ink objects.

4bar object

Link object
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c o u p l e r  a n d  o u t p u t  m o d e l th e  th re e  m o v in g  l in k s  o f  th e  m e c h a n is m .

( d e f i n e  I b a r  
( n e w  P a r t

( ( b a s e - a  C o o r d ? )
I b a s e - b  C o o r d ? )  
( i n p u t  L i n k ? )  
( c o u p l e r  L i n k ? )  
( o u t p u t  L i n k ? ) ) ) )  

( m a k e - t y p e - p r e d i c a t e  - i b a r )

Figure 15.8: Definition o f four-bar linkage object.

O u r  d e f in i t io n  o f  4 b a r  d e p e n d s  o n  th re e  o th e r  o b je c ts :  C o o r d ,  P a r t  a n d  L i n k .  T h e s e  o b je c ts  a re  

p ro to ty p e s  d e f in e d  in  th e  D e s ig n e r  p ro to ty p e  lib ra ry . C o o r d  m o d e ls  3 D  p o in ts .  P a r t  re p re s e n ts  

m e c h a n ic a l  p a r ts ;  d e s c e n d a n ts  o f  P a r t  m a y  b e  c o m p o n e n ts  o r  a s s e m b lie s ,  a n d  a re  a g g re g a te s  o f  o th e r  

o b je c ts  m o d e l in g  a  p h y s ic a l  p a r t ’s g e o m e tr ic  a n d  p h y s ic a l  p ro p e r t ie s  (i .e . m a te r ia l  ty p e , e tc .) .  L i n k  is  a  

s p e c ia l iz a t io n  o f  P a r t  s p e c if ic  to  th e  d e v e lo p m e n t  o f  th e  fo u r -b a r  l in k a g e  m o d e l ,  a n d  is  d e f in e d  in  F ig u re  

15 .9 .

( d e f i n e  L i n k  
( n e w  P a r t

( ( c - l e n g t h  n u m b e r - g t O ?  1) 
( s h a f t  P a r t ? )
( j o i n t - a  P a r t ? )
( j o i n t - b  P a r t ? ) ) ) )  

( m a k e - t y p e - p r e d i c a t e  L i n k )

Figure 15.9: Definition o f L ink objects.

T he geom etry  o f  L i n k  is a com plex one which could be based on a solid m odel. Its attributes include a 

shaft and tw o jo in ts . The jo in ts are used to connect links to one another. In addition. L i n k  has one other 

attribute: a  characteristic length that represents the distance from one jo in t o f  the link to the other. It is 

used as a constrain t on  the geom etry o f  the link and is generated as part o f  the solu tion  o f  the three-point 

synthesis technique. T he values o f  the s h a f t  and j o i n t  a t t r ib u te s a r c n o - v a l  by default; as the actual 

geom etry o f  individual links is defined, we can add constraints to L i n k  that will assure that the geometric 

p roperties o f  the s h a f t  and j o i n t s  m aintain a relationship defined from the synthesis m ethod via the 

lin k ’s characteristic length (see Figure 15.10).
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( c o n s t r a i n  L i n k  ( ( c - l e n g t h  s h a f t  j o i n t - a  j o i n t - b )
( : =  c - l e n g t h

( : i n t e r s e c t  ( ? a x i s  j o i n t - b )  ( ? a x i s  s h a f t ) )
( : i n t e r s e c t  ( ? a x i s  j o i n t - a )  ( ? a x i s  s h a f t ) ) ) ) ) )

( m a k e - c o n s t r u c t o r  L i n k  ( c l )  ( n e w  L i n k  ()  ( c - l e n g t h  c l ) ) )

Figure 15.10: Geometric constraints for L in k  objects.

The definition o f L in k  introduces a new D esign er  function, m a k e - c o n s t r u c t o r .  This function is 

meant for convenience and creates a constructor  function that facilitates the instantiation o f  prototypes. 

In this case, m a k e - c o n s t r u c t o r  will create a function @ Link that creates a new  L in k  object and 

uses its single argument to initialize the link's characteristic length. Many, though not all, prototypes in 

D esig n er  have constructors defined for them.

The three-point synthesis technique is implemented in D esig n er  as a method activated by the message 

O p t - s y n t h e s  i s  . . . )  and is given in Figure 15.11.

A detailed explanation o f  the 3 p t - s y n t h e s i s  m ethod is unnecessary here. E ssentially , the technique 

uses various angular and linear displacem ents o f  the four-bar linkage through the three prescribed points 

to generate enough inform ation to create a  new 4 b a r  object that satisfies the input param eters. A series 

o f  exam ples taken from [34] were used to test the algorithm ; ou r results were num erically  identical to 

those given in the reference. The heart o f  the m ethod is the last form , (n e w  4 b a r  . . . ) ,  w hich actually 

creates a clone o f  4 b a r  and returns it.

The author notes that the 3 p t - s y n t h e s  i s  m ethod is not covered explicitly  by  H M  itse lf because it is 

a  procedural com ponent o f  design; it is included here as a  vehicle by w hich design m odels created w ith 

D esig n er  can be d irectly  m anipulated to perform  useful design operations.

T his representation o f  a  four-bar linkage is a param eterized m odel suitable fo r a  num ber o f  purposes. If, 

for exam ple, a  kinem atic analysis o f  the four-bar linkage were to be perform ed, the 4 b a r  object could be 

extended to capture the inform ation needed to constrain the com ponents o f  the four-bar linkage assembly. 

These constraints can be specified in D esig n er  with the form s in Figure 15.12.

T he base points b a s e - a  and b a s e - b  are not considered part o f  the geom etry o f  the linkage itself, but 

rather com ponents o f constraints placed on parts o f  the geometry. Specifically, the ends o f  the input
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( o v e r l o a d  3 p t - s y n t h e s i s
( ( D2 D3 p h i 2  p h i 3  g a m ma ?  gamraa3 p s i 2  p s i 3 l

( ( C o m p l e x ?  D 2 ) ( C o m p l e x ?  D3)  ( n u m b e r ?  p h i 2 )  ( n u m b e r ?  p h  13)  
( n u m b e r ?  g a m m a ? )  ( n u m b e r ?  gamma3)  ( n u m b e r ?  p s i 2 )  ( n u m b e r ?  p s i 3 )

( l e t  ( ( C p h i 2  ( O C o m p l e x  ( c o s  p h i 2)  ( s i n  p h i 2)  ) )
( C p h i 3  ( O C o m p l e x  ( c o s  p h i 3) ( s i n  p h i 3 ) )  )
( Cgamma2 ( O C o m p l e x  ( c o s  g amma 2 )  ( s i n  g a m m a 2 ) ) l  
( Cgamma3 ( O C o m p l e x  ( c o s  gamma3)  ( s i n  g a m m a 3 ) ) )
( C p s i 2  ( O C o m p l e x  ( c o s  p s i 2 )  ( s i n  p s i 2 ) ) )
( C p s i 3  ( O C o m p l e x  ( c o s  p s i 3 )  ( s i n  p s i 3 ) ) )
( 2 1  n o - v a l )  (Z2 n o - v a l )  (Z3 n o - v a l )
(Z4 n o - v a l )  ( Z5 n o - v a l )  (Z6 n o - v a l ) )

( s e t !  Z1 ( /  ( -  (* D2 ( -  Cgamma3 1 ) )  (* ( -  Cg a mma ?  1) D 3 ) I
( -  (* ( -  C p h i 2  1)  ( -  Cgamma3 1 ) )  (* ( -  Cganuna2 1)

( s e t !  Z2 ( /  ( -  (* ( -  C p h i 2  1 )  D 3 ) (* D2 ( -  C p h i 3  1 ) ) )
( -  (* ( -  C p h i 2  1)  ( -  Cgamma3 1 ) )  (* ( -  Cgamma2 1)

( s e t !  Z3 ( /  ( -  (* D2 ( -  Cgamma3 1 ) )  (* ( -  Cg a mma ?  1)  D 3 ))
( -  (* ( -  C p s i 2  1)  ( -  Cgamma3 1 ) )  (* ( •  Cgamma2 1)

( s e t !  Z4 ( /  ( -  (* ( -  C p s i 2  1)  D3) ( '  D2 ( -  C p s i 3  I D )
( -  (* ( -  C p s i 2  1) ( -  Cgamma3 1 ) )  ( '  ( -  Cgamma2 1)

( s e t !  Z5 ( -  Z2 Z 4 ) )
( s e t )  Z6 ( -  (+ Z1 Z5 )  Z 3 ) )

( n e w  4 b a r  ( b a s e - a  ( O C o o r d  0 0 0 ) )
( b a s e - b  ( O C o o r d  ( ? r e a l  Z6)  ( ? i m a g  Z6)  ( z  0 ) )  
( i n p u t  ( @L i n k  ( m a g n i t u d e  Z l ) )
( c o u p l e r  ( @L i n k  ( m a g n i t u d e  Z 5 ) )
( o u t p u t  ( @L i n k  ( m a g n i t u d e  Z 3 ) ) ) ) ) ) ) ) > )

Figure 15.11: Three point synthesis method.

( -  C p h  i 3 H D D  

( -  C p h  i 3 D I D )  

( -  C p s i  3 1 ) 1 1 ) 1  

( -  C p s i  3 D  ) ) ) I
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( c o n s t r a i n  4 o a r
I ( b a s e - a  i n p u t )  

l i l o t a t e  i n p u t  ( l a m b d a  ( p  o)
( a n d  (= ( ? x  p )  ( ? x  b a s e - a ) )

( = ( ? y  p )  ( ? y  b a s e - a ) )
(= ( ? z  p )  ( ? z  b a s e - a ) ! ) ) ) )

( ( i n p u t  c o u p l e r )
( : l o c a t e  c o u p l e r  ( l a m b d a  ( p  o )

( a n d  (= ( ? x  p )  ( ? c - l e n g c h  i n p u t ) )  
(= ( ? y  p )  0)  (= <?z  p )  0 ) )  )

i n p u t ) )
( ( c o u p l e r  o u t p u t )

( : l o c a t e  o u t p u t  ( l a m b d a  (p  o)
( a n d  (= ( ? x  p )  ( ? c - l e n g t h  c o u p l e r ) )  

( = (?y p)  0)  (= ( ? z  p)  0 ) ) )
c o u p l e r )  )

( ( o u t p u t  b a s e - b )
( : l o c a t e  o u t p u t  ( l a m b d a  ( p  o )

( a n d  (= ( ? x  p )  ( ? x  b a s e - b ) )
(= ( ?y P) ( ?y b a s e - b ) )
(= (?z p )  ( ? z  b a s e - b ) ) ) ) ) ) )

Figure 15.12: Kinematic constraints fo r 4 b a r  objects.

and outpul links o f  the four-bar linkage are constrained to rem ain at the coordinates defined by the base 

points, though they are free to rotate, and successive links in the linkage are sim ilarly  constrained. In 

the constraint specification, b a s e - a ,  b a s e - b ,  i n p u t ,  c o u p l e r  and o u t p u t  refer to attributes in 

a 4 b a r  object; : l o c a t e  is an overloaded m essage to any P a r t  that takes tw o o r three arguments. 

T he first argum ent is an attribute whose value is to be spatially  constrained. T he second argum ent is a 

function definition (a lambda  form) that specifies the nature o f  the constraint, and takes tw o argum ents: the 

position and orientation o f  the attribute to be constrained. T he optional third argum ent is another attribute 

in whose coordinate fram e the spatial constraint is to occur. T he representation o f  spatial coordinates w ith 

respect to non-global coordinate fram es is rem iniscent o f  the relative coordinate form ulation o f  variational 

solid m odeling taken by Fogle [75]; in that work, it is dem onstrated that the  use o f  relative coordinate 

fram es can sim plify  the specification o f  spatial relationships. The current w ork  w ith  D e sig n e r  appears 

to corroborate Fogle 's findings.

T he first constraint is betw een the base point b a s e - a  and the i n p u t  link: : l o c a t e  is used to constrain 

the position  o f  i n p u t  to m ap exactly to the position o f  b a s e - a .  T he second constrain t is betw een the 

i n p u t  and c o u p l e r  links, and constrains the origin o f c o u p l e r  to be a t the end o f  i n p u t  opposite
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where i n p u t  is attached to b a s e - a .  In this case, the constraint is defined w ith respect to the coordinate 

system  o f  i n p u t .  T he other constraints are sim ilarly defined.

T he 4 b a r  object defined herein m odels a four-bar linkage that satisfies the input data at an abstract, 

conceptual level. A lthough the actual shape o f  the links has not been defined, their one essential property, 

their characteristic length, has been captured. The value o f  these attributes becom e constraints on the 

actual geom etries o f  the links.

T his exam ple dem onstrates that D esigner  is capable o f  m ore than ju st m odeling design artifacts 

them selves; it provides the m eans to capture inform ation about the entire design. For exam ple, the 

3 p t - s y n t h e s  i s  m ethod defines a  relationship between the functional requirem ents o f  a four-bar link­

age, and the key design param eters that define the physical solution. T his indicates that D esig n er  can 

represent the relationship between functional requirements o f  a  design problem specification end the 

physical param eters that define a solution. Specifications expressed as generic functions acting on objects 

define relationships betw een the requirem ents o f  a  design artifact and the objects them selves capture key 

design param eters that define the physical solution. T his indicates that D esig n er  can represent the rela­

tionship  betw een functional requirem ents o f a  design problem  specification and the physical param eters 

that define a  solution.

15.5 Hierarchical Organization -  Thermal Analysis of a Wall

T his final exam ple shall focus on the organization o f  design  inform ation with D esign er . Specifically, 

we shall present (a) a  param eterized r.todel o f  a wall, and (b) a representation o f  steady-stale heat flow 

fo r the wall m odel. T h is exam ple is inspired by the m aterial in [97]. It is noted here at the outset that 

the  m odel presented below  is not the only  way one could represent a wall in D esigner; this particular 

m odel was chosen because (a) it m atched the au thor’s cognitive model o f  walls and (b) it is sufficient for 

dem onstration  purposes in this document.

T hroughout the follow ing text, the reader m ay refer to Figure 15.13; this figure depicts graphically the 

structure o f  the wall m odel, including all objects as well as all inheritance and aggregation relationships.
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” In c re a s in g  A ggregation  '

| Geometry [D E SIG N E R  A N D  
D E S IG N E R  L IB R A R Y

r— — » '  - I ♦
 >|M aterial LayeTl-""! 11 ~H  Shape

| O p en in g  |brick , Rectangle

Wdw

EXAMPLE
PROTOTYPES

1 ■ Inheritance  R elationsh ip  

  A ggrega tion  R elationsh ip

Figure 15.13: Inheritance/A ggregation N etw ork for Wall Exam ple.
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15.5.1 Structural Modeling Considerations

There are tw o im portant aspects that m ust be considered to generate a useful m odel o f  a wall: its geometry 

and its com position.

T he w idth and height o f  a  wall are im portant in defining its relationship to o ther structural elem ents, but 

are not essentially  tied to its com position1. The constraints on wall w idth and height exist at the level of 

assem blages o f  m any walls and thus are beyond our single-wall model; so, from the point o f  view of this 

exam ple, heigh t and w idth are arbitrarily defined values.

T he thickness o f  a wall, however, m ust be treated differently because it depends on  the w all’s composition. 

A wall is com posed o f  various layers, each serving a specific purpose -  load bearing, insulation, covering, 

and so on. Each layer is constrained according to the requirements o f  that particular wall, which in turn 

constrains the w all’s overall thickness. So though the height and w idth o f  a wall are arbitrary (from the 

po in t o f  view  o f  the wall model), its thickness is not.

Therefore, we will represent height and w idth as purely geometric extensional attributes and thickness as 

an intentional attribute depending on the w all’s composition.

15.5.2 Thermal Analysis Modeling Considerations

For the  therm al analysis portion o f  this exam ple, we will m ake use o f  the follow ing physical relationships 

(draw n from  [97] and a standard therm odynam ics text [214]).

T he heat flow through a  wall is represented approxim ately by;

0  =  (15.1)

w here A T  is the change in tem perature through the wall from the w anner side to  the coo ler side, I and A 

are the thickness and area o f  the wall respectively, and k  is the therm al conductivity  o f  the wall.

Furtherm ore, by  analogy w ith electrical system s, we m ay define an overall coefficient o f  therm al conduc-

'F o r stress analysis and structural integrity, we would likely need to constrain the size o f the wall based on its composition: 
it m ust be able to carry its own w eight However, we are only interested in thermal analysis for this example.
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livity, U, for a wall o f  m any layers o f constant area as:

U = (15.2)

where r, is the therm al resistance  o f  the ith layer o f the wall, defined by:

(15.3)

15.5.3 Definition of Wall Prototype Objects

We begin by defining a prototype for sim ple planar geom etric S h a p e  objects (F igure 15.14), w ith 

attributes o f  h e i g h t  and w i d t h .  S h a p e  objects will be used to define the m ajo r com ponents o f  walls. 

T he area o f  these shapes will be o f  importance in the therm al analysis, so we include the definition o f 

an intentional attribute : a r e a .  S h a p e  inherits from G e o m e tr y ,  an object defined in the D esig n er  

prototype library w hich m odels an arbitrary spatial object, providing a  local coordinate fram e for the 

object and m essages to perform various transform ations.

( m a k e - t y p e - p r e d i c a t e  S h a p e )  ; a b s t r a c t  p r o t o t y p e
( d e f i n e  S h a p e  

( n e w  G e o m e t r y
( ( w i d t h  n u m b e r - g t O ?  1)

( h e i g h t  n u m b e r - g t O ?  1 ) ) ) )

( m a k e - t y p e - p r e d i c a t e  T r i a n g l e )  ; s u b t y p e  f o r  t r i a n g l e s
( d e f i n e  T r i a n g l e  ( c l o n e  S h a p e ) )

( m a k e - t y p e - p r e d i c a t e  R e c t a n g l e )  ; s u b t y p e  f o r  r e c t a n g l e s
( d e f i n e  R e c t a n g l e  ( c l o n e  s h a p e ) )

( o v e r l o a d  : a r e a
( ( t ) ( ( T r i a n g l e ?  t ) )  (* ( ? w i d t h  t )  ( ? h e i g h t  t )  0 . 5 ) )
( ( r ) ( ( R e c t a n g l e ?  r ) )  (* ( ? w i d t h  r )  ( ? h e i g h t  r ) ) ) )

Next, we need to represent the notion o f  a layer o f  a wall. We shall assum e that a  single layer is com posed 

o f  a single m aterial and is o f  constant thickness. L a y e r  objects are defined in Figure 15.15. F o r the

Figure 15.14: 2D Shape objects.
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sake o f  the therm al analysis, we include a m essage definition for : t h e r m - r e s i s t ,  which returns the 

therm al resistance o f  a layer o f  a given thickness and material.

( m a k e - t y p e - p r e d i c a t e  L a y e r )
( d e f i n e  L a y e r  

( n e w  O b j e c t
( ( m a t e r i a l  M a t e r i a l ? )

( t h i c k n e s s  n u m b e r - g t O ?  1 ) ) ) )
( m a k e - c o n s t r u c t o r  L a y e r  (m t )  ( n e w  L a y e r  0  ( m a t e r i a l  m) ( t h i c k n e s s  t ) ) )

( o v e r l o a d  : t h e r m - r e s i s t a n c e
( ( 1 )  ( ( L a y e r ?  1 ) )  ( /  ( ? t h i c k n e s s  1) ( ? t h e r m - c o n d  ( T m a t e r i a l  ] ) ) ) ) )

Figure 15.15: Layer objects.

T he M a t e r i a l  prototype is defined in Figure 15.16; for brevity, we have included only one necessary 

property, therm al conductivity, and the few instances needed for this exam ple. Therm al conductivity  data 

w as taken from [214], Num eric values are in SI units.

( m a k e - t y p e - p r e d i c a t e  M a t e r i a l )
( d e f i n e  M a t e r i a l

( n e w  O b j e c t  ( ( t h e r m - c o n d  n u m b e r - g t O ?  1 ) ) ) |

( d e f i n e  b r i c k , c o m m o n  ( ne w M a t e r i a l  ( )  ( t h e r m - c o n d  0 . 6 9 ) ) )  
( d e f i n e  b r i c k , f a c e  ( n e w  M a t e r i a l  0  ( t h e r m - c o n d  1 . 3 1 ) ) )
( d e f i n e  g l a s s , w i n d o w  ( ne w M a t e r i a l  ( )  ( t h e r m - c o n d  0 . 7 8 ) ) )  
( d e f i n e  p l a s t e r , g y p s u m  ( ne w M a t e r i a l  0  ( t h e r m - c o n d  0 . 4 8 ) ) )  
( d e f i n e  w o o d , p i n e , y e l l o w  ( n e w  M a t e r i a l  ( )  ( t h e r m - c o n d  0 . 1 4 7 ) ) )  
( d e f i n e  w o o d , p i n e , w h i t e  ( ne w M a t e r i a l  ( )  ( t h e r m - c o n d  0 . 1 1 2 ) ) )  
( d e f i n e  w o o l , r o c k  ( n e w  M a t e r i a l  0  ( t h e r m - c o n d  0 . 0 3 9 ) ) )
( d e f i n e  a i r  ( n e w  M a t e r i a l  ( )  ( t h e r m - c o n d  0 . 0 2 6 2 4 ) ) )  ; a t  300K

Figure 15.16: M aterial Prototype and Instances.

In o rder to perm it the creation o f  w alls with m ore com plex geom etries than those described by S h a p e  

objects, we define a segm ent to be an area-wise com ponent o f  a wall. Segm ents will be defined with 

S h a p e  and L a y e r  objects. We will also be able to use segm ents to define w alls that have regions 

com posed o f  different layers. However, before we define a  prototype to represent wall segm ents, we 

m ust consider one o ther com positional elem ent o f  walls: openings. An opening is intended to generalize 

the no tion  o f  passages through a  wall. For this exam ple, we will only consider doors and windows. 

A n opening exhibits the same properties as segm ents: they occupy a certain area, and are com posed
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o f  p o s 'lb ly  many layers (e.g. m ulti-paned windows). Since it is desirable to m inim ize the inform ation 

content o f  our m odel, we will begin by defining a WallAtom object that will capture those properties 

com m on to both wall openings and segm ents (see Figure 15.17). It is noted that none o f  these prototypes 

will use the Shape prototype defined above for planar shapes. WallAtom and its descendants are used 

lo capture inform ation specific to walls o ther than their shape. We will, however, m ake use o f the shape 
prototype later.

( m a k e - t y p e - p r e d i c a t e  Wa 11A t  oin)
( d e f i n e  W a l l A t o m  ( c l o n e  O b j e c t ! )

( o v e r l o a d  : t h i c k n e s s
( ( a l  ( ( W a l l A t o m ?  a ) )

( a p p l y  + ( f o r e a c h - a t t r i b u t e  a  L a y e r ?  ? t h i c k n e s s ) ) ) )

( o v e r l o a d  : t h e r m - c o n d
( ( a )  ( ( W a l l A t o m ?  a ) )

( /  1 . 0
( a p p l y  + ( f o r e a c h - a t t r i b u t e  a  L a y e r ?  : t h e r m - r e s i s t a n c e ) ) ) ) )

Figure 15.17: Atom ic wall com ponents for openings and segm ents.

The : t h e r m - c o n d  m essage calculates the overall coefficient o f  therm al conductivity  o f  a W a llA to m  

according to the mathematical m odel in Section 15.5.2. T he instances o f  f o r e a c h - a t t r i b u t e  

gathers all attributes in W a llA to m  objects that are L a y e r s ,  applies a  function to them  ( ? t h i c k n e s s  

and : t h e r m - r e s i s t a n c e  respectively), and returns the list containing the results o f  the function 

applications.

Now we can use W al 1 A tom  to define prototypes for wall openings and segm ents. T he only real d istinction  

betw een openings and segm ents is that segm ents m ay contain openings, but openings cannot contain  other 

openings (i.e. a w indow cannot have another w indow as a com ponent).

( m a k e - t y p e - p r e d i c a t e  O p e n i n g )
( d e f i n e  O p e n i n g  ( c l o n e  W a l l A t o m ) )

( o v e r l o a d  : s p e c - h e a t - f l o w
l ( o )  ( ( O p e n i n g ?  o ) ) (* ( : t h e r m - c o n d  o )  ( : a r e a  o ) ) ) )

Figure 15.18: Prototype for wall openings.

First, we define an O p e n in g  object in Figure 15.18. The specific hea t flo w  o f  an  O p e n in g  is de ­
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fined as the rate o f  heal flow per degree o f  temperature, and is represented by the intentional attribute 

: s p e c - h e a t - f l o w .

( m a k e - t y p e - p r e d i c a t e  S e g m e n t )
( d e f i n e  S e g m e n t  ( c l o n e  W a l l A t o m ) )

( o v e r l o a d  : o p e n i n g - a r e a
( ( s )  ( ( S e g m e n t ?  s ) )

( a p p l y  + ( f o r e a c h - a t t r i b u t e  s  O p e n i n g ?  : < u e n ) M )

; ; ;  w a l l  s e g m e n t  a r e a  = t o t a l  a r e a  -  o p e n i n g  a r e a  
( o v e r l o a d  : s e g m e n t - a r e a

( ( s )  ( ( S e g m e n t ?  s ) )  ( -  ( : a r e a  s )  ( : o p e n i n g - a r e a  s ) ) ) )

( o v e r l o a d  : s p e c - h e a t - f l o w
( ( s )  ( ( S e g m e n t ?  s ) )

(+ ( a p p l y  + ( f o r e a c h - a t t r i b u t e  s  O p e n i n g ?  : s p e c - h e a t - E l o w ) )
(* ( : t h e r m - c o n d  s )  ( : s e g m e n t - a r e a  s ) ) M )

( o v e r l o a d  : h e a t - f l o w
( ( s  d t )  ( ( S e g m e n t ?  s )  ( n u m b e r ?  d t ))

(* ( : s p e c - h e a t - f l o w  s )  d t ) ) )

Figure 15.19: Prototype for wall segm ents.

Second, w e define a S e g m e n t  object in Figure 15.19. In this case, we differentiate betw een the total area o f  

the wall segm ent, the area o f  all the openings (represented by the intentional attribute : o p e n i n g - a r e a )  

and the area o f  actual w all m aterial (represented by the attribute : s e g m e n t - a r e a ) .  T he specific heat 

flow ( :  s p e c - h e a t - f  lo w ) o f  a segm ent is the sum  o f  the specific heat flows o f each opening and the 

specific heat flow o f  the  rest o f  the wall. We finally define the attribute : h e a t - f l o w  to calculate the 

actual heat flow through a  given S e g m e n t  for a  g iven tem perature difference.

Next, we shall specialize Opening for both doors and windows. First, we define Door in Figure

15.20. Door inherits m ultiply from both Opening and Rectangle: the form er provides those aspects 

that represent design intent and function (at least, insofar as thermal analysis is concerned) as well as 

com position , whereas the latter provides those aspects representing its o ther geom etric characteristics. 

T he @Door constructor (created by make-constructor) sim plifies the creation o f  single-layered 

doors. I f  som e particular door has more than one layer (unlikely though that m ight be), it can be created 

using new.

Various prototypes are created for different kinds o f  w indows in Figure 15.21.
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(in;.! k o  - t y p e  - p r e d  i c a  t  e  D o o r )
( d e f i n e  D o o r  ( n e w  ( O p e n i n g  R e c t a n g l e )

( ( l a y e r  L a y e r ? ) ) ) )
( m a k e - c o n s t r u c t o r  D o o r  (in w h t )

( n e w  D o o r  0
( l a y e r  ( n e w L a y e r  ( )  ( m a t e r i a l  m) ( t h i c k n e s s  c ) ) ) 
( w i d t h  w)
( h e i g h t  h)  ) )

Figure 15.20: Prototype object for doors.

( m a k e - t y p e - p r e d i c a t e  Wdw)
( d e f i n e  Wdw ( c l o n e  O p e n i n g ) )

( m a k e - t y p e - p r e d i c a t e  W d w , I P a n e )
( d e f i n e  W d w , I P a n e  

( n e w  Wdw
( ( p a n e  L a y e r ?  ( n e w  L a y e r  0  ( m a t e r i a l  g l a s s , w i n d o w ) ) ) ) ) )  

( m a k e - c o n s t r u c t o r  W d w , I P a n e  ( t )
( l e t  ( (w ( c l o n e  W d w , I P a n e ) ) )

( t h i c k n e s s :  ( ? p a n e  w) t )  
w) )

( m a k e - t y p e - p r e d i c a t e  Wdw, 2 P a n e )
( d e f i n e  W d w , 2 P a n e  

( n e w  Wdw
( ( p a n e l  L a y e r ?  ( n e w L a y e r  ( )  ( m a t e r i a l  g l a s s , w i n d o w ) ) )  

( g a p  L a y e r ?  ( n e w  L a y e r  ()  ( m a t e r i a l  a i r ) ) )
( p a n e 2  L a y e r ?  ( n e w  L a y e r  0  ( m a t e r i a l  g l a s s , w i n d o w ) ) ) ) ) )  

( m a k e - c o n s t r u c t o r  W d w , 2 P a n e  ( t - p a n e l  t - g a p  t - p a n e 2 )
( l e t  ( (w ( c l o n e  W d w , 2 P a n e ) ) )

( t h i c k n e s s :  ( ? p a n e l  w) t - p a n e l )
( t h i c k n e s s :  ( ? g a p  w) t - g a p )
( t h i c k n e s s :  ( ? p a n e 2  w) t - p a n e 2 )  

w) )

( m a k e - t y p e - p r e d i c a t e  W d w , I P a n e ,  5)
I d e f i n e  W d w , I P a n e , 5 ( S W d w , I P a n e  0 . 0 0 5 ) )

( m a k e - t y p e - p r e d i c a t e  W d w , 2 P a n e ,  5 - 4 - 5 )
( d e f i n e  W d w , 2 P a n e , 5 - 5 - 5  ( 0 W d w , 2 P a n e  0 . 0 0 5  0 . 0 0 4  0 . 0 0 5 ) )

Figure 15.21: Prototype objects for windows.
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We begin  by defining a sim ple Wdw object, specialized from O p e n in g .  Wdw is then specialized into 

single-paned (Wdw, I P a n e )  and doublc-pancd (Wdw, 2 P a n e )  types. In both cases, glass is used as the 

m aterial for the panes, and in the case o f Wdw, 2 P a n e , the interstitial space contains air. Constructors 

(@Wdw, I P a n e  and @Wdw, 2 P a n e )  arc created for convenience. Finally, in the last four lines o f Figure

15.21, tw o specific kinds o f  w indows are created: Wdw, I P a n e ,  5. a single-pancd w indow with a 5 

m illim eterpane  o f  glass: and Wdw, 2 P a n e , 5 -  4 -  5, a doublc-pancd window with two 5 m illim eter panes 

and a  4  m illim eter air gap betw een them.

O ne last prototype needs to be defined: the wall itself. Since all the important functions for thcnual 

analysis have been defined w ithin S e g m e n t and O p e n in g ,  the W a l l  object need not be m uch more 

than an aggregate used to gather together various S e g m e n t objects. W a l l  is defined in Figure 15.22. 

O ur m odel provides intentional attributes for the overall area o f  a wall ( :  a r e a )  and the total area o f  all 

openings in a wall ( :  o p e n i n g - a r e a ) .  It also provides a m essage : h e a t - f  lo w  that calculates the 

total heat (low through a  wall for a given tem perature difference.

( m a k e - t y p e - p r e d i c a t e  W a l l )
( d e f i n e  W a l l  ( c l o n e  G e o m e t r y ) !

( o v e r l o a d  : a r e a
( (w) ( ( W a l l ?  w) ) ( a p p l y  + ( f o r e a c h - a t t r i b u t e  w S e g m e n t ?  : a r e a ) ) ) )

( o v e r l o a d  : o p e n i n g - a r e a
( (w) ( ( W a l l ?  w ) )

( a p p l y  + ( f o r e a c h - a t t r i b u t e  w S e g m e n t ?  : o p e n i n g - a r e a ) ) ) )

( o v e r l o a d  : h e a t - f l o w
( (w d t )  ( ( W a l l ?  w) ( n u m b e r ?  d t ) )

(* ( a p p l y  + ( f o r e a c h - a t t r i b u t e  w S e g m e n t ?  : s p e c - h e a t - f l o w ) ) 
d t )  ) )

Figure 15.22: Prototype object for walls.

15.5.4 Example of Wall Model Usage

We now  present an exam ple o f  the use o f these prototypes to define a  particular wall, and calculate the heat 

flow through it. T he sam ple wall will consist o f  two segm ents, a large rectangular segm ent containing a 

w indow  and a  door, and a sm aller triangular segm ent with no  openings. Figure 15.23 defines these two
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segm ents, and the wall they compose.

( ' Jr . - f ine cngl
( no w  ( S egme n t :  R e c t a n g l e )  ; S e g m e n t  #1

( ( d o o r  D o o r ?  ( QDoo r  w o o d , p i n e , w h i t e  1 2 0 . 0 6 ) )
(•wdw Wdw? ( ne w (Wdw, I P a n e ,  5 R e c t a n g l e )  ()

( w i d t h  1) ( h e i g h t  0 . 6 ) ) )
( o u t e r  L a y e r ?  ( Q L a y e r  b r i c k , f a c e  0 . 1 ) )
( c o r e  L a y e r ?  ( O L a y e r  w o o l , r o c k  0 . 1 ) )
( i n n e r  L a y e r ?  ( Q L a y e r  p l a s t e r , g y p s u m  0 . 0 1 ) ) )

( w i d t h  4)  ( h e i g h t  2 . 5 ) ) )

( d e t i n e  s e g 2  ; S e g m e n t  02
( n e w  ( S e g m e n t  T r i a n g l e )

( ( o u t e r ?  L a y e r ?  ( Q L a y e r  w o o d , p i n e , w h i t e  0 . 0 0 5 ) )
( o u t e r  L a y e r ?  ( Q L a y e r  b r i c k , c o m m o n  0 . 1 ) )
( c o r e  L a y e r ?  ( Q L a y e r  w o o l , r o c k  0 . 1 ) )
( i n n e r  L a y e r ?  ( Q L a y e r  w o o d , p i n e , y e l l o w  0 . 0 0 5 ) ) )  

( w i d t h  4)  ( h e i g h t  1 . 5 ) ) )

( d e t i n e  w ; T h e  w a l l  i t s e l f
( n e w  Wa11

( ( s i  S e g m e n t ?  s e g l l  
( s 2  S e g m e n t ?  s e g 2 ) ) ) )

Figure 15.23: Two sam ple wall segm ents.

T he rectangular segm ent, s e g l ,  is com posed o f  three layers: an ou ter layer o f  brick, a  central layer o f 

rock wool (for insulation), and an inner layer o f  plaster. T he door is m ade o f  pine, and the w indow  is 

single-paned. The triangular segm ent, s e g 2 ,  is com posed o f  four layers: an inner pine layer, a  central 

layer o f  rock wool, and two outer layers, pine over brick. The w a l l  object itse lf is ju s t  an  aggregate o f 

the two segm ents.

Figure 15.24 show s three m essages sent to the wall w, and the values returned; the last query returns the 

heat flow through the wall for a  tem perature difference o f 20  degrees.

( :  a  r e a  w ) = > 1 3
( . - o p e n i n g - a r e a  w) ^ 2 . 5
C h e a t - f l o w  w 2 0 )  => 1 7 1 2 . 5 5 3 9 1 9 0 0 9 3 1

Figure 15.24: M essages sent to the sam ple wall.

We can then change the window in wall w to be double-paned, to see w hat the saving in heat flow will 

be, if  any. T his is show n in Figure 15.25. We find that a double-paned w indow  can greatly  im prove the
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overall therm al insulation o f  the wall.

(wdw:  ( ? s e g l  w) ( n e w  ( W d w , 2 P a n e , 5 - 4 - 5  R e c t a n g l e )  (I
( w i d t h  1) ( h e i g h t  0 . 5 ) ) )

( :  h e a t - f l o w  w 2 0 )  => 2 13  . 00  4 7 4 8 3 5 7 9 3 ?

Figure 15.25: Altering the sam ple wall.

15.5.5 Observations

T his exam ple dem onstrates the conciseness with which relatively com plex m odels can be created. The 

entire wall m odel as defined in this Section consists o f less than 200 lines o f  code, and som e o f  the model 

prototypes (i.e. M a t e r i a l ,  S h a p e )  could easily be re-used in m any o ther applications.

Furtherm ore, because design intention is m odeled in a relatively straight-forw ard manner, we conclude 

that analysis o f  design entity m odels created with D esigner can accurately reflect on the adequacy o f 

o u r conceptual m odels o f  those entities. For exam ple, both segm ents o f the wall created in Figure 15.23 

inherit m ultip ly  from S e g m e n t  and from descendants o f S h a p e  (i.e. R e c t a n g l e  and T r i a n g l e ) .  It 

is at th is po in t that the geom etric and com positional aspects o f  the m odel arc com bined. These aspects 

are, insofar as we have defined them here, independent. T heir com bination has been deferred to the point 

w here it w as absolutely necessary. We m ay have com bined S h a p e  and S e g m e n t  objects earlier in the 

developm ent o f  the m odel, but this would have led to an increased num ber o f  prototypes (i.e. there would 

have been proto types for rectangular openings, rectangular segm ents, triangular openings, and triangular 

segm ents). T h is approach would have introduced a great deal o f  redundant inform ation that would have 

m ade o u r m odel m ore difficult to com prehend. As well, the subsequent addition o f o ther kinds o f  S h a p e  

objects (e.g. C i r c l e )  w ould have required the addition o f  circular opening and segm ent prototypes to 

m aintain  consistency w ith the rest o f the model. But as we have done it here, wc would only need to 

define the C i r c l e  prototype and use it in the creation o f  various wall segm ents as required. Thus, an 

analysis o f  the com putational m odel o f  a wall in D esig n er  corresponds to an analysis o f  the conceptual 

m odel underly ing the com putational one. Such analysis can im prove o u r collective ability to perform 

design.
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Discussion

D e s ig n e r  represents a new com putational paradigm for engineering applications com bining the advan­

tages o f  functional and object-oriented program m ing paradigm s in a seam less and usable system . The 

functional paradigm  lets us use robust form alism s that ensure logical rigor o f  the resulting system , while 

object-orientation gives us the ability to model complex entities and relationships directly. Sem antic data 

m odeling provides a  unique view point on the nature o f  attributes.

D e s ig n e r  largely satisfies HM. Since HM m inim izes im pedance m ism atches w ith respect to the u se r’s 

cognitive m odel o f  design inform ation by m eans o f its isom orphism  (see Part III), D e s i g n e r  also m ini­

m izes im pedance m ism atches w ith respect to the u ser’s cognitive m odel.

D e s ig n e r  is not intended to m anipulate data, satisfy constraints, perform  analysis o f  design m odels, 

o r  database m anagem ent. It is a  static data m odeling language. However, because o f  S chem e’s meta- 

circularity and its ab ility  to operate w ith higher order functions, it is possible to extend D e s i g n e r  to 

include dynam ic data m odeling capabilities (i.e. the capability to operate on  and otherw ise m anipulate 

data as opposed to its specification).

Experim entation w ith D e s ig n e r  has included three m ajor exam ples to date. Firstly, a  c lass-like object has 

been successfully im plem ented using D e s i g n e r ’s low-level prototyping facilities. T h is im plem entation 

captures all the basic properties o f  object classes as they are conventionally defined in  languages such 

as S m a l l t a l k -8 0 . T his indicates that ou r com putational m odel is as expressive as m odels used by

157
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conventional object-oriented languages, yet sim pler and more general than those models.

T he second exam ple is the four-bar linkage model. This exam ple dem onstrates D esign er's ability to 

capture quite arbitrary design inform ation, and that it is not restricted to m odeling the design artifact alone, 

but can include the artifact’s functional specifications and design intent (e.g. the relationships between 

the specification o f  the design problem and its solution). The ability o f  D esigner to assist in m odeling 

design  artifacts in the conceptual stages o f a design process arc also indicated.

Third, the exam ple o f  structural and thermal m odeling o f  walls dem onstrates the abilities o f  D esig n er  and 

its underlying form al m odels to capture detailed technical inform ation as well its m ore general conceptual 

inform ation about designs. A lso, the correspondence between D esig n er  com putational m odels and users’ 

conceptual m odels facilitates the analysis o f  designs in general.

T he current im plem entation o f  D e s ig n e r  is quite compact. The object-oriented extensions to Scheme 

that form  the core o f  D e s ig n e r  am ount to about 3 0 0  lines o f  code. The D e s ig n e r  prototype library is 

only  about 7 0 0  lines o f  code and includes circular lists, queues and stacks, com plex num bers, 3 D  points 

and vectors, hom ogeneous 3 D  transform ation matrices, coordinate frames, and som e sim ple param etric 

so lid  prim itives. D e s ig n e r  currently has no graphics capabilities; but even so, the author feels it is a 

strong dem onstration o f  the conciseness that can be achieved using object-oriented concepts in a  formal 

Junctional fram ework.

D e sig n e r  currently  satisfies all the axiom s o f HM but two: view s and generalization. D esig n er  docs 

perm it the creation o f  sub-objects (subsets), but does not capture the view relationship betw een an object 

and its sub-objects explicitly. Views are difficult to deal with because object constraints introduce coupling 

betw een attributes in an object. A t this tim e, it appears that each object constraint im plicitly defines a 

view  uncoupled from o ther views; however, it is not c lear that providing support only for such uncoupled 

view s is sufficient. Suitable theory will have to be generated regarding the interaction betw een object 

constrain ts and view s before the latter can be supported fully by  D esig n er . We note here that D esign er  

has fulfilled its role as a  testbed for HM  by providing us w ith this insight regarding its adequacy as a 

m odel o f  design inform ation; however, it does not affect the logical validity o f  HM , which is preserved.

G eneralization  (the inverse o f  specialization) can sim plify (norm alize) a hierarchy o f  objects. This 

sim plification can bring to light relationships between objects -  and hence between the design entities 

they m odel -  that m ay have been obscured by the com plexity  o f  the initial hierarchy. N orm alization
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can also im prove the efficiency o f operations on the software m odel. However, there do exist som e 

arguments (28,93] that strongly suggest norm alization is o f  limited usefulness in engineering software 

system s. These arguments are based on the observation that norm alization requires a  stable schem a 

(organization) o f  inform ation to operate correctly. But schem a definitions in design tend to exhibit a 

highly dynam ic nature; norm alizing a dynam ic schem a leads to unpredictable and possibly disastrous 

results. Additionally, generalization implies som e fairly complex com putation and certainly m ore so than 

specialization. F o r these reasons, the author has elected to defer addition o f  generalization in DESIGNER 

to future work.

One final aspect o f HM that is not directly supported by the current version o f  DESIGNER is that o f 

d im ensions o f  m easurem ent, as defined in Section 9.5. Very little work has been done to support 

dim ensions o f  m easurem ent in computational environm ents; the author is only aware o f  the work o f 

Cunis [217]. Because o f  the lick  o f available inform ation on the treatm ent o f  dim ensions o f  m easurem ent 

in com putational environm ents upon which to build this capability into DESIGNER, the au tho r has elected 

to defer the m atter to future work.

T he distinction betw een cxtensional attributes and intentional attributes perm its the capture o f  various 

kinds o f  relationships (i.e. constraints) between attributes in a  straight-forw ard m anner; as well, this 

approach is integrated seam lessly into the functional paradigm, thus greatly  sim plify ing  the overall 

com putational m odel. However, this does indicate a  further relationship betw een the m odeling  o f  attributes 

and o f  constraints. C onstraints relate entities at a  g iven degree o f  abstraction, bu t logic d ictates that the 

constraints them selves m ust exist at a higher degree o f  abstraction. T his essentially  defines a rule, o r 

crif jrion , that governs the form ation o f  constraint hierarchies. A s was d iscussed in Section 14.7, the 

m odeling o f  attributes as intentional o r extensional depends on the requirem ents o f  the  design model; 

m is, in turn, will affect the constraint hierarchy o f  the mode M ore research is needed in the area o f 

attribute m odeling in o rder to define the relationship betw een attributes and constrain ts m ore clearly. 

T h is constitutes a  future extension o f  HM which the author intends to undertake. T h is is another insight 

provided by D e s ig n e r  regarding HM.

D esigner em ploys a canonical message passing mechanism. Though unconventional, the author con­

siders there to be a significant advantage to this approach: the clean separation between function (using 

generic functions) and structure (using objects) provides a simple, intuitive computational model for
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simulation o f  design artifacts and systems. Furthermore, the notion o f self, and all the complications that 

arise from it, are avoided entirely. Although the evaluation o f  generic functions in the current implemen­

tation o f  DESIGNER is not particularly efficient, several techniques exist that can significantly improve its 

performance.

In a multi-user environment such as a design group, generic functions offer another potential advantage. 

Individual group members may locally overload particular functions (because, for example, they arc so 

often used by the group member) without affecting the objects and other data structures to which other 

group members would have access. This would significantly decrease the chances o f  accidental data 

corruption.

Finally, the distinct separation o f  functions that act on objects (i.e. methods in classical object models) 

from the objects themsel ves permits the bundling together o f  groups o f  functions into modules providing a 

coarser form o f  functionality. These modules can be loaded automatically as requited, and automatically 

freed when they are no longer needed, without affecting the data defining the design models themselves. 

For example, a single design model could be used in two different tasks (e.g. solid modeling and numerical 

analysis) by sim ply loading modules o f generic functions that provide the functionality needed for each 

task (e.g. color graphical rendering for solid modeling, versus automatic mesh generation for numerical 

analysis).

Even though inheritance is generally used in class-based system s, the author has found it to be be usable 

in a prototype-based system like D esigner, where, in conjunction with cloning, it has replaced both 

subclassing and class instantiation. Furthermore, the use o f  canonical message-passing eliminates the 

need for the user to be aware o f  occurrences o f  inheritance, and rather treat the relationship as the more 

intuitive notion o f  specialization.

D e sig n e r  permits multiple inheritance only from parent objects that have sets o f  attributes disjoint from 

one another. Although this restriction does not exist in other object-oriented languages, the author is 

constrained to impose it because o f  the validity requirements o f  HM. Although the goal o f maintaining 

validity is a desirable one, we must also ask ourselves if  this kind o f multiple inheritance is enough 

to satisfy the general requirements o f  engineering design. There is no simple answer to this question 

yet; indeed, there is som e evidence to suggest that multiple inheritance p e r  se  is not needed at all, and 

that the abstractions it provides can be supplied by single inheritance combined with various forms o f
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aggregation [218], In the m eantim e, the author conjectures that m ultiple inheritance o f  the kind defined 

by HM  and supported by D e s ig n e r  is sufficient. This is based on the grounds that a  counter-exam ple has 

yet to be found. Obviously, this issue requires further study.

T he formal dcnotational sem antics o f DESIGNER has yet to be defined. However, Schem e itse lf is a 

form alized com puter language w ith a com plete dcnotational sem antics [ 183,184], D enotalional sem antics 

is derived from set theory and the predicate calculus by way o f the A-calculus. Since DESIGNER does not 

alter Schem e but only extends it w ithin its ow n formal framework, there is  a  continuity  o f  logical rigor 

from the formal dom ain m odel (HM ) through to the actual im plem entation o f  D esigner. Nonetheless, 

form alizing D esigner’s extensions is a  worthwhile goal to pursue in o rder to (a) further corroborate the 

validity  o f HM , (b) identify areas where the im plem entation o f  Designer m ay be im proved, (c) provide 

formal p roof that Designer in fact satisfies HM (from the point o f  view  o f  com puter science), and (d) 

provide formal tools to analyze design m odels generated w ith Designer.

T here exist o ther various formal sem antics (e.g. [208,219]) that define objects in  functional program m ing 

environm ents. Som e aspects o f  these efforts are sim ilar to the approaches taken w ith D esigner. T he 

author is therefore confident that a formal sem antics for D esigner is possible w ithout changes to Schem e's 

essential structure.

A lthough the experience w ith Schem e has indicated to the author that it is a  very useful language fo r such 

projects as D esigner, som e difficulties remain: Schem e’s syntactic form s can be ra ther clum sy: support 

is lacking for certain useful m athem atical constructs (such as m atrices); the language itse lf is no t tuned to 

com pute efficiently given the im portant m echanism s Designer requires (i.e. generic functions and object 

encapsulation). Recent advances in program m ing language design, however, indicate that these problem s 

m ay be solved adequately in the near term.

There are many other directions in which Designer can expand in the future. We mention some o f  them 

here to indicate the potential for growth.

An argum ent has been m ade in [ 181 ] that functional program m ing can perm it various degrees o f  parallelism  

in com pulation, and that due to the nature o f engineering com puting only certain  kinds o f  coarse-grained 

parallelism  can be expected to enhance perform ance. E lim inationof side-effects and strict explicit control 

o f  program  state vastly sim plify parallelization o f  computation. Objects p roviding strict encapsulation o f 

infom iation. as in Designer, m eet this requirem ent and m ay provide the m eans by  w hich granularity  o f
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parallelism can be made more coarse. The inclusion o f an object system in a functional language may thus 

be an ideal solution. Although Designer does not currently support any parallelism, the author intends 

to investigate this possibility in the future.

A nother area w here DESIGNER m ay find application is in system  sim ulation. Advanced com puterm odcling  

and sim ulation  o f  products has been gaining popularity [220] because o f its potential to save a significant 

am ount o f tim e by elim inating the need for physical prototypes. T he functional paradigm  permits the 

straight-forw ard developm ent o f  quite com plex procedural units. Functions to m easure tim e and generate 

signals are included in m any im plem entations o f  Scheme. Detailed m odels o f  com ponents and design 

artifacts are also possible in Designer, ow ing to the object-oriented m echanism s it em bodies. Thus, 

system  sim ulation  is also possible within the sam e computational m odel as are o ther k inds o f  engineering 

com puting.

Since Schem e can be used for sym bolic m anipulation, a  system  to sym bolically m anipulate mathematical 

expressions could be integrated w ith D esigner to provide extensive m athem atical support o f  various 

kinds o f  analysis and synthesis in a seam less and integrated way. For exam ple, algebraic functions can be 

overloaded to operate on sym bolic expressions (in Scheme -  and hence in Designer as well -  sym bols 

such as “x ” are acceptable data values that m ay be operated on). Furthermore, functions that manipulate 

sym bolic representations o f  equations m ay be overloaded to provide num erical approxim ations if  numeric 

data  is provided. T his would be particularly useful for constraint m anagem ent [ 130 |.

T he culm ination  o f  the research effort that the author has started and described herein will be a new 

com puter language and associated com putational model specifically geared to engineering design. The 

language and com putational model would satisfy HM  and be formally defined using dcnotational (o r som e 

other) sem antics. T h is language will provide a  com puting environm ent for engineering that will be usable 

not on ly  fo r conventional engineering com putation, but also as a vehicle for the continued formal study 

o f  engineering design.

We note that this approach is itself a  strictly formal approach. It m akes use o f  existing, proven tools o f 

com puter science and logic, rather than the m ore hap-hazard m eans by w hich m any languages currently 

in use in  engineering environm ents were developed.
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Chapter 17

Final Discussion

T he contribu tion  o f  this thesis has been to explain the nature o f engineering design inform ation in objective, 

form al term s.

T h e  form alization o f  design inform ation m ust be treated independently o f  design processes w hich aflcct 

o r  otherw ise m anipulate the inform ation. Because o f  its independence from design processes, such a 

form alization is universally applicable to any stage o r aspect o f  design. T he au thor has achieved this goal 

w ith  the  Hybrid M odel o f  design information, introduced in Part III. It provides isom orphism s that let 

us v iew  design  inform ation objectively, and its structured notation perm its us to reason form ally about 

design  inform ation. T he abstraction m echanism s introduced in C hapter 10 are founded on  ontologic 

considerations o f  design. T hey perm it various organizational schem es to be developed, m axim izing the 

am ount o f  available explicit inform ation; this in turn m inim izes the am ount o f  interpretation  required, 

thus increasing confidence in the outcom e o f  actions based on that inform ation. Furtherm ore, by adhering 

to the rules regarding the extension  o f  classical set theory, H M  is proved valid w ith respect to its logical 

foundation  (set theory); that is, H M  is no less valid than is ZF. HM  can facilitate continued research into 

design  by providing a universal form al language for the specification o f  design inform ation. Its use can 

im prove com m unications betw een designers, contribute to the developm ent o f  effective new  taxonom ies 

o f  design  entities and processes, and lead to the creation o f  m ore powerful com puterized designers’ aides.

T he u se  o f  form al system s greatly clarifies o u r understanding o f  design  inform ation by helping to resolve 

difficulties arising from incom plete and vaguely defined nom enclature, m anaging the changes resulting
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from an evolving notion o f design, and elim inating sources o f logical inconsistencies such as self- 

reference. Insights o f  logic have lead the author to introduce conceptual tools -  the layered structure o f 

design  (Section 6.1), and the notions o f  a design space  (Section 6.2) and artificial science  (Section 5.2) 

-  to help  organize our collective design and design research efforts. T he results will assist in unifying 

otherw ise incom patible techniques and m ethodologies by providing a robust and valid reference.

In clearly  separating the structure o f  design itself from the m anner in w hich it is conducted (the w hat o f  

design, versus the how  o f  it), the author acknowledges the im portant role o f  the designer as the singular 

agent by w hich design is manifested. In this sense, logic is seen as the m eans by w hich the designer’s 

creativ ity  and intuition can be channeled  in directions m ost likely to result in successful solutions to 

design  problem s, m uch as it has been in other “scientific” fields, and forcing us to th ink  m ore clearly 

by providing a system  wherein logical errors are m ore easily detected w ithout restricting o u r freedom  to 

express consistent, relevant information.

In o rder to dem onstrate the advantage o f  formal system s in design, HM  is applied to the developm ent 

o f  a new  program m ing language for design (see Part IV). T he D esigner language is m eant to capture 

arbitrary design inform ation in a flexible fram ework while largely satisfying HM . In so doing, we provide 

a bridge betw een design theory on the one hand and the developm ent o f  practical com putational tools to 

aid the designer on the other. T his continuity o f  formal rigor has not been achieved before, and increases 

o u r confidence in the validity o f the language. The unique approaches taken in D esigner (e.g. the use o f  

proto types rather than classes, and canonical rather than conventional m essage passing) are necessary to 

m eet the requirem ents o f  design as a unique and unconventional inform ation m anagem ent dom ain. T he 

brevity o f  its im plem entation in Schem e is suggestive o f the clarity and elegance possible through the use 

o f  form al theories to guide the developm ent o f  engineering software.
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Chapter 18

Future Directions

Future research d irections for both HM and Designer are discussed in detail at the ends o f  parts III and 

IV. Here, the author outlines in a  more general sense what the future m ay hold for the work presented 

herein.

The key relationship  betw een HM  as a form al system  and design theory is the isom orphism  the author 

has identified betw een set theory and design information. The advantage o f  a  form al system  with a 

precise notation  is that it lets one see relationships between inform ation in a  far sim pler and objective 

w ay than  is possib le w ith m ore verbose system s requiring significant interpretation (e.g. using the English 

language instead o f  m athem atical logic). Further study o f  the axiom s o f  HM  will likely bring to light new 

re lationships betw een kinds o f engineering inform ation, and thus im prove o u r understanding o f design 

on the w hole. T he discovery o f  new relationships m ay necessitate m odifications o r  o ther extensions to 

HM ; th is feedback will be beneficial to the developm ent o f  both HM and design in general. The particular 

issues that w ill require further investigation in the near term are aggregations (the prim ary m eans by wh ch 

specific sim ple  design  entities are grouped into m ore com plex entities) and constraints (the driving force 

behind the  design  process).

Besides the im plem entation o f program m ing languages for design, HM  could be applied to a num ber o f  

o th er areas o f  com puter-aided engineering.

The axiom atic form  o f  HM  m akes it quite  am enable to im plem entation with existing logic program m ing
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languages (e.g. Prolog). The resulting "expert system ” would not depend on heuristic  know ledge, and 

would be useful as an analysis tool for design m odels generated using other com puterized  tools (e.g. 

Designer). The use o f  heuristic knowledge, as has been indicated in the literature survey (Section 2) can 

m arkedly reduce the confidence level o f  expert system s by capturing “know ledge” the soundness o f  which 

cannot be proved. Since the num ber o f  axiom s in HM  is quite sm all, an expert system  im plem enting it 

m ay be able to perform  in a tim ely manner.

A nother area where HM could find use is in the generation o f  engineering databases. M any operations 

for object-oriented databases may be written in term s o f  the axiom  o f  separation o f  se t theory [193]. This 

im plies a  relationship betw een database theory and set theory (and hence HM ) w hich appears prom ising. 

There is a  w ell-established precedent in the literature fo rthe  general usefulness o f  object-oriented  databases 

in engineering [56 ,102 ,106 ,168 ,221 ,222].

One important difference between program m ing language design and database design  is the notion o f  

equality. Currently, in both HM and D esigner, identity is defined in term s o f  structure  and behavior 

o f  objects; this m eans that identical objects are perm itted to exist. However, in database  theory, such 

identical entities are generally disallowed [223-225] to m aintain the database in  a  norm alized  form; in 

o ther words, the conventional definition o f  identity in  database theory differs from  that w e have accepted 

in this work. T h is discrepancy will have to be addressed before HM  can be used  to generate useful 

engineering databases.

Finally, and perhaps m ost importantly, HM  can be used to help teach design in an  objective  and rigorous 

manner. It is a  relatively sm all formal system  that allows precise definition o f  term s, and a  consistent 

system  for the organization and presentation o f  inform ation. The actual language o f  sym bolic logic, as 

used in Part 111 o f  this docum ent, need not be introduced im m ediately: key notions o f  any theory can be 

taught by exam ple, as has been done by others [31,86]. However, the author feels that an  introduction to 

formal system s and sym bolic logic sufficient to understand HM  would not be a  lengthy undertaking and 

would prove a  w orthw hile pedagogic investm ent.
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Chapter 19

Closing Remarks

W hat is engineering design?

T h is docum ent began w ith that very question. It is useful now to return to it and determ ine w hat headway, 

if  any, has been m ade tow ards answering it. Has the au thor’s w ork presented in this docum ent answered 

this question? T he answ er is: to a  certain extent, yes.

It m ay be aigued that the question itself is not a  particularly good one. It is too vague, too open to 

interpretation, and tends to invite oversimplified responses. Therefore, som e provision is needed to deal 

w ith  the inherent am biguity. In keeping w ith the general tone o f  this w ork, the author regards the intention 

o f  the question  “W hat is engineering design?" as being o f  a descriptive nature. T hat is, we do not wish 

to confuse th is question  w ith its procedural com plem ent "H ow  is engineering design perform ed?"

M any o f  the param eters by  w hich designs are judged are based on quantitative m easures. T h is indicates 

that design is rooted in  the physical world. A designer’s “artistic” abilities are constrained insofar as the 

results o f  his efforts m ust com ply  w ith the exigencies o f  the physical world. Furthermore, upon reflection 

on  the argum ents m ade in this docum ent, it is clear that any extem alization o f the design process m ay be 

subjected to  logical analysis. Therefore, the author concludes design m ust be largely rational in nature.

T his is not a  statem ent o f  fact, since the rationality o f  design is not d irectly  observable; n o r is the 

au th o r’s w ork  to be construed as a (technical) p ro o f  o f  this notion. But the body o f  evidence herein —  

the argum ents m ade in  Part II, the definition o f HM , and its use to create the Designer program m ing
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language —  strongly indicate that design has a definite structure that can be treated formally, objectively, 

and rationally.

We have intentionally said nothing about how  design is perform ed. T h is issue includes the role o f  the 

hum an designer and is prone to effects (such as self-reference) that severely lim it the applicability  o f  

I'onnal techniques. Nonetheless, som e very important headway has been m ade in this work, headway 

that represents a strong first step towards a better understanding o f  engineering design. A lthough it has 

traversed the spectrum from the theoretic to the practical, the central them e o f  this w ork has been to 

dem onstrate that the use o f  logic can give us useful and relevant insights into the nature o f  design. The 

m ost im portant o f  all, in the opinion o f  this author, is that logic has been found to  be sufficient to explain 

part o f  the problem : HM has given us the m eans o f  defining the nature o f  design inform ation in form al 

and objective terms. It provides the m eans o f capturing, analyzing and com m unicating design inform ation 

effectively, efficiently and in a tim ely manner. It gives us, designers and design  researchers, a  fram ew ork 

to guide o u r thinking and o u r work, by providing a logical system  to verify our ideas and thoughts. U pon 

this foundation new  theories o f  the design process m ay be built, strengthening o u r understanding and 

im proving o u r abilities to m eet the challenges o f  the future.
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Appendix A

Source Listings of Designer

A .l Designer Source

T his section lists the source o f Lhe Designer language.

1 ; P i l e c o r e . s c m
"» . D e s c r i p t  i o n C o r e  D e s i g n e r  f u n c t i o n s .
3 ; V e r s i o n k
A ; R e v i s e d 1 9 - 0 1 - 9 3

5 ; C o p y  r i g h t 1 9 9 3  by  F i l i p p o  A.  S a l u s t r i
6 ; N o t e s
7
0 { r e q u i r e  * b e n c h . o )
9
0 ; ; MISCELLANEOUS

12 ( d e f i n e - m a c r o  ( w a r n  f m t  . 1 s t )
13 ' ( p r i n t  ( f o r m a t  #£ , ( s t r i n g - a p p e n d  " W a r n i n g :  " f m t )  , 0 1 s t ) ) )
H
15 ( d e f i n e  ( a n n o u n c e - > £ i l e n a m e  s ym)
16 ( s t r i n g - i - s y m b o l  ( s t r i n g - a p p e n d  ( s y m b o l - > s t r i n g  s y m)  * . s c m " ) ) )
17
18 ( d e f i n e  ( f i l e n a m e - > p r o v i d e - s t m t  f n )  ( l i s t  ' p r o v i d e  ' ' , f n ) )
18 ( d e f i n e  ( f  i l e n a m e - ' - r e q u i r e - s t m t  f n )  ( l i s t  ' r e q u i r e  ' ' ,  f  n ) )
:o
Cl  ( d e f i n e - m a c r o  ( a n n o u n c e  . 11
CC ' ( b e g i n  , t ! ( m a p  f i l e n a m e - > p r o v i d e - s t m t  ( map  a n n o u n c e - > f i l e n a m e  1 ) ) ) )
C3
C-l ( d e f i n e - m a c r o  ( n e e d s  . 1)
25 ' ( b e g i n  , 0 ( m a p  £ i l e n a m e - > r e q u i r e - s t m t  ( map  a n n o u n c e - > f i l e n a m e  1 ) ) ) )
C 6
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27  ( d e f i n e  ( f l a t t e n - l i s t  1 s t )  ; ' 1 s t '  i s  a  l i s t  o t  1 i : 1 : =.
28  ( l e t  l o o p  ( (1 1 s t )  )
2 9  ( i f  ( n u l l ?  1)
3 0  ' ()
31  ( a p p e n d  ( c a r  i )  ( l o o p  ( c d r  1 ) ! ) ) ) )
32
33 ( d e f i n e  ( a n d m a p  p r e d  1 s t )
34 ( l e t  l o o p  ( (1 1 s t )  )
3 5  ( i f  ( n u l l ?  1)
3 6  t t t
37  ( i f  ( n o t  ( p r e d  ( c a r  1 ) ) )
3 8  Of
39  ( l o o p  ( c d r  1) ) ) ) ) )
4 0
41  ( d e f i n e  ( o r r a a p  p r e d  1 s t )
4 2  ( l e t  l o o p  ( ( 1  1 s t ) )
43  ( i f  ( n u l l ?  1)
44  tt f
4 5 ( i f  ( p r e d  ( c a r  1 ) )
46  # t
47 ( l o o p  ( c d r  1 ) ) ) ) ) )
48
49  ( d e f i n e  ( f i l t e r  p r e d  1 s t )
50  ( l e t  l o o p  ( ( 1  1 s t ) )
51 ( i f  ( n u l l ?  1)
52  ' ()
53  ( i f  ( p r e d  ( c a r  1 ) )
54  ( c o n s  ( c a r  1) ( l o o p  ( c d r  1 ) ) )
55  ( l o o p  ( c d r  1 ) )  I ) ) )
56
57  ( d e f i n e  n o t - f o u n d  ' n o t - f o u n d )
58  ( d e f i n e  ( n o t - f o u n d ?  x )  ( e q ?  x  n o t - f o u n d ) )
5 9  ( d e f i n e  n o - v a l  ' n o - v a l )
6 0
61  ( d e f i n e  ( i n - l i s t ?  v a l  1 s t )
62  ( l e t  l o o p  ( ( 1  1 s t ) )
63  ( c o n d
64  ( ( n u l l ?  1)  # f )
6 5  ( ( e q ?  v a l  ( c a r  1 ) )  t t t )
66  ( e l s e  ( l o o p  ( c d r  1 ) ) ) ) ) )
67
68  ; ; ;  TYPE MODI FI CATI ONS
69
7 0  ( d e f i n e  ( a t t r i b u t e ?  x )
7 1  ( a n d  ( v e c t o r ?  x)
7 2  ( e q ?  ( v e c t o r - l e n g t h  x )  3)
73  ( e q ?  ( v e c t o r - r e f  x  0 )  ' a t t r i b u t e ) ) )
74
7 5  ( d e f i n e  ( o b j e c t ?  x )
7 6  ( a n d  ( v e c t o r ?  x )
77  ( e q ?  ( v e c t o r - l e n g t h  x )  4)
7 8  ( e q ?  ( v e c t o r - r e f  x  0 )  ' o b j e c t ) ) )
7 9
8 0  ( d e f i n e  ( g e n e r i c ?  x )
8 1  ( a n d  ( c o m p o u n d ?  x )
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82 ( e q u a l ?  ( p r o c e d u r e - l a m b d a  y.) t h e - g £ - d e f i n i t i o n ) ) )
81
84 ( d e f i n e  ( f u n c t i o n ?  x)  ( o r  ( p r o c e d u r e ?  z !  ( c o m p o u n d ?  x ) ) )
85
86 ; ; ;  GENERIC FUNCTIONS 
HI
88  ( d e f i n e  ( i n a k e - s i g n a t u r e  s i g )
89  ( v e c t o r  ( i f  ( l i s t ?  ( c a r  s i g ) )  ( l e n g t h  ( c a r  s i g ) )  - 1 )
9 0  ( e v a l  ' ( l a m b d a  , ( c a r  s i g )  ( a n d  , @ ( c a d r  s i g ) ) ) )
91 ( e v a l  ' ( l a m b d a  , ( c a r  s i g )  . G M c d d r  s i g ) ) ) ) )
92
93 ( d e f i n e  ( e v a 1 - s i g n a t u r e  s i g - l s t  a r g - l s t )
94 ( l e t  l o o p  ( ( s i g - l  s i g - l s t ) )
95 ( i f  ( n u l l ?  s i g - l )
96  n o t - f o u n d
97 ( i f  ( a n d  ( o r  (= ( v e c t o r - r e f  ( c a r  s i g - l )  0 )  - 1 )
96  (= ( v e c t o r - r e f  ( c a r  s i g - l )  0 )  ( l e n g t h  a r g - l s t ) ) )
99  ( a p p l y  ( v e c t o r - r e f  ( c a r  s i g - l )  1) a r g - l s t ) )

1 0 0  ( a p p l y  ( v e c t o r - r e f  ( c a r  s i g - l )  2) a r g - l s t )
101 ( l o o p  ( c d r  s i g - l ) ) ) ) ) )
102
1 03  ( d e f i n e  ( g f - s e t t e r  n a m e )
104 ( s t r i n g - > s y m b o l  ( s t r i n g - a p p e n d  “g f s e t - "  ( s y m b o l - > s t r i n g  n a m e ) ) ) )
105
1 0 6  ( d e f i n e  t h e - g t - d e f i n i t i o n  ' ( l a m b d a  a r g - 1
107 ( i n c r - g f c )
108 ( e v a l - s i g n a t u r e  s i g - l  a r g - 1 ) ) )
109
1 10  ( d e f i n e - m a c r o  ( o v e r l o a d  n a m e  . s i g - l )
111  ' ( b e g i n
11 2  ( i f  ( n o t  ( b o u n d ?  ' . n a m e ) )
113  ( b e g i n
114  ( i n c r - g f )
1 1 5  ( d e f i n e  . n a m e )
1 1 6  ( d e f i n e  , ( g f - s e t t e r  n a m e ) )
117 ( l e t  ( ( s i g - l  ' ( ) ) )
1 1 8  ( s e t !  . n a m e
11 9  ( l a m b d a  a r g - 1
1 2 0  ( i n c r - g f c )
12 1  ( e v a l - s i g n a t u r e  s i g - l  a r g - 1 ) ) )
1 22  ( s e c !  , ( g f - s e t t e r  n a m e )
1 2 3  ( l a m b d a  ( n e w - s i g - 1 )
124 ( s e t !  s i g - l  ( a p p e n d  ( ma p  m a k e - s i g n a t u r e  n e w - s i g - 1 )
12 5  s i g - l ) )
1 2 6  ' ( ) ) ) ) ) )  ; r e t u r n  n u t h i n .
127 ( , ( g f - s e t t e r  n a m e )  ' . s i g - l ) ) )
128
1 2 9  LOW-LEVEL ATTRI BUTE FUNCTIONS
130
131 ( d e f i n e  ( A n y ?  v a l u e )  # t )
132
1 33  ( d e f i n e  ( g e n - a t c r i b u t e ) ( v e c t o r  ' a t t r i b u t e  A n y ?  n o - v a l ) )
134
1 3 5  ( d e f i n e  ( d o m a i n  a )  ( v e c t o r - r e f  a  1 ) )
13 6  ( d e f i n e  ( s e t - d o m a i n  a  d )  ( v e c t o r - s e t !  a i d ) )
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1 3 7
1 3 8  ( d e f i n e  ( v a l u e  a )  ( v e c t o r - r e f  a  21)
1 3 9  ( d e f i n e  ( s e t - v a l u e  a  v )
1 4 0  ( i f  ( o r  ( e q ?  v  n o - v a l )  ( ( d o m a i n  a )  v ) )
1 4 1  ( v e c t o r - s e t !  a  2 v )
1 4 2  ( e r r o r  ' v a l u e  " C o n s t r a i n t  ~s  n o t  s a t i s f i e d  f o r  ' s . ” ( d o m a i n  i l  v l i )
1 43
1 44  ( d e f i n e  ( a t t r i b u t e  d  v)
1 4 5  ( i f  ( n o t  ( p r o c e d u r e ?  d ) )
1 4 6  ( e r r o r  ' a t t r i b u t e  " D o m a i n  ~s  m u s t  b e  p r e d i c a t e s . "  d ) )
1 4 7  ( l e t  ( ( a  ( g e n - a t t r i b u t e ) ))
1 4 8  ( s e t - d o m a i n  a  d )
1 4 9  ( s e t - v a l u e  a  v)
1 5 0  a ) )
1 5 1
1 5 2  ; ; ;  THE COPY FUNCTION
1 5 3
1 5 4  ( d e f i n e  ( c o p y  t h i n g )
1 5 5  ( l e t  l o o p  ( ( x  t h i n g ) )
1 5 6  ( c o n d
1 5 7  ( ( a t t r i b u t e ?  x )  ( a t t r i b u t e  ( d o m a i n  x )  ( l o o p  ( v a l u e  : < ) ) ) )
1 5 8  ( ( o b j e c t ?  x )  ( c l o n e  x ) )
1 5 9  ( ( p a i r ?  x )  ( c o n s  ( l o o p  ( c a r  x ) ) ( l o o p  ( c d r  x ) ) ) )
1 6 0  ( ( v e c t o r ?  x )  ( l e t *  ( ( v l  ( v e c t o r - l e n g t h  x ) )
1 6 1  ( n v  ( m a k e - v e c t o r  v l  n o - v a l ) ) )
1 6 2  ( d o  ( ( i  0 ( 1+  i ) ) I ( ( >=  i  v l )  n v )
1 6 3  ( v e c t o r - s e t !  n v  i  ( l o o p  ( v e c t o r - r e f  x  i ) ) ) ) ) )
1 64  ( e l s e  x ) ) ) )
1 6 5
1 6 6  ; ; ;  LOW-LEVEL OBJECT FUNCTIONS
1 67
1 6 8  ( d e f i n e  ( g e n - o b j e c t )
1 6 9  ( i n c r - g o )
1 7 0  ( v e c t o r  ' o b j e c t  ' ( )  ' ( )  ' ( ) ) )
1 7 1  ( d e f i n e  O b j e c t  ( g e n - o b j e c t ) )  ; t h e  p r o g e n i t o r  o b j e c t .
1 7 2
1 7 3  ( d e f i n e  ( s l o t s  o )  ( i f  ( o b j e c t ?  o )  ( v e c t o r - r e f  o  1)  ' ( ) ) )
1 7 4  ( d e f i n e  ( a d d - s l o t  o  n a m e  v )
1 7 5  ( v e c t o r - s e t !  o  1 ( c o n s  ( c o n s  n a m e  v )  ( v e c t o r - r e f  o  1 ) ) ) )
1 7 6  ( d e f i n e  ( a d d - s l o t s  o  1)  ( v e c t o r - s e t !  o  1 ( a p p e n d  1 ( v e c t o r - r e f  o  1 ) ) ) )
1 77  ( d e f i n e  t s e t - s l o t s  o  1)  ( v e c t o r - s e t !  o i l ) )
1 7 8
1 7 9  ( d e f i n e  ( p a r e n t s  o )  ( i f  ( o b j e c t ?  o )  ( v e c t o r - r e f  o  2 )  ' ( ) ) )
1 8 0  ( d e f i n e  ( a d d - p a r e n t  o  p )  ( v e c t o r - s e t !  o  2 ( c o n s  p  ( v e c t o r - r e f  o  ? ) ) ) )
1 8 1
1 8 2  ( d e f i n e  ( c o n s t r a i n t s  o )  ( i f  ( o b j e c t ?  o )  ( v e c t o r - r e f  o  3)  ' ( ) ) )
1 8 3  ( d e f i n e  ( a d d - c o n s t r a i n t  o  ) ( v e c t o r - s e t !  o  3 ( c o n s  c  ( v e c t o r - r e f  o  ' ! ) ) ) )
1 8 4  ( d e f i n e  ( a d d - c o n s t r a i n t s  o  1)  ( v e c c o r - s e t !  o  3 ( a p p e n d  1 ( v e c t o r - r e f  o  3 ) ) ) )
1 8 5
1 8 6  ( d e f i n e  ( :  o  n a m e  . v)
1 8 7  ( l e t  { ( s  ( a s s q  n a m e  ( s l o t s  o ) ) ) )
1 8 8  ( i f  ( n o t  s )  ( e r r o r  ' :  " ~ s :  no s u c h  s l o t  n a m e "  n a m e ) )
1 8 9  ( i f  v
1 9 0  ( s e t - c d r !  s  ( c a r  v ).)
1 9 1  ( c d r  s ) ) ) )
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152
153 ( d e f i n e  ( r e s o l v e - o b j e c t - n a m e  x )  ( i f  ( s y m b o l ?  x )  ( e v a l  x )  x )  )
154
1 5 5  ; ; ; OBJECT CONSTP.A I UTS
1 9 6
197 ( d e f i n e  ( c o m p i l e - c o n s t r a i n t - s p e c  c - s p e c )
19 8  ( e v a l  ' ( l a m b d a  ( o b j )
15 9  ( l e t  , (map  ( l a m b d a  ( x )  ( l i s t  x  ' ( v a l u e  ( :  o b j  ' , x ) >) )
2 0 0  ( c a r  c - s p e c ) )
201 ( c d r  c - s p e c ) ) ) ) )
2 0 2
2 0 3  ( d e f i r i e - m a c r o  ( c o n s t r a i n  o b j  . c - s p e c - 1 )
2 0 4  ' ( b e g i n  ( a d d - c o n s t r a i n t s  , o b j  (map c o m p i l e - c o n s t r a i n t - s p e c  ' , c - s p e c - l ) l
2 0 5  ' ( ) )  )
2 0 6
2 0 7  ( d e f i n e  ( e v a l - c o n s t r a i n t s  o b j  c o n s t r - 1 )
2 0 8  ( l e t  l o o p  ( ( c - 1  c o n s t r - 1 ) )
2 0 9  ( i f  ( n u l l ?  c - 1 )
2 1 0  * t
21 1  ( a n d  ( ( c a r  c - 1 ) o b j )
2 1 2  ( l o o p  ( c d r  c - 1 ) ) ) ) ) )
2 1 3
2 1 4  ( d e f i n e  ( c h e c k - o b j e c t - c o n s c r a i n c s  o b j )
2 1 5  ( e v a l - c o n s t r a i n t s  o b j  ( c o n s t r a i n t s  o b j ) ) )
2 1 6
2 1 7  ; ; ;  HI GH- LEVEL ATTRIBUTE FUNCTIONS
2 1 8
2 1 9  ( d e f i n e  ( a t t r i b u t e - v a l u e s - > l i s t  o b j )
2 2 0  ( ma p  v a l u e  ( f i l t e r  a t t r i b u t e ?  (map  c d r  ( s l o t s  o b j ) ) ) ) )
2 2 1
2 2 2  ( d e f i n e  ( a t t r i b u t e - n a m e s - > l i s t  o b j )  ( ma p  c a r  ( s l o t s  o b j ) ) )
2 2 3
2 2 4  ; ;  f o r  e a c h  a t t r i b u t e  i n  o b j  s a t i s f y i n g  p r e d ,  m a p  f u n .
2 2 5  ( d e f i n e  ( f o r e a c h - a t t r i b u t e  o b j  p r e d  f u n )
2 2 6  ( ma p  f u n  ( f i l t e r  p r e d  ( a t t r i b u t e - v a l u e s - > l i s t  o b j ) ) ) )
22 7
2 2 8  ; ;  e x t e n s i o n s  o f  ' a n d m a p '  a n d  ' o r m a p '  t o  o b j e c t  a t t r i b u t e s .
2 2 9  ( d e f i n e  ( f o r a l l  o b j  p r e d )  ( a n d m a p  p r e d  ( a t t r i b u t e - v a l u e s - > l i s t  o b j ) ) )
2 3 0  ( d e f i n e  ( e x i s t s  o b j  p r e d )  ( o r m a p  p r e d  ( a t t r i b u t e - v a l u e s - > l i s t  o b j ) ) )
231
2 3 2  ; ; ;  HIGH- LEVEL OBJECT FUNCTIONS
2 3 3
2 3 4  ( d e f i n e  ( d o - i n h e r i t a n c e  d e s t  s r c )
2 3 5  ( a d d - s l o t s  d e s t  ( c o p y  ( s l o t s  s r c ) ) )
2 3 6  ( a d d - p a r e n t  d e s t  s r c )
2 3 7  ( a d d - c o n s t r a i n t s  d e s t  ( c o p y  ( c o n s t r a i n t s  s r c ) ) ) )
2 3 8
2 3 9  ( d e f i n e  ( e x p a n d - f r o m - c l a u s e  o b j  1)
2 4 0  ( c o n d
2 4 1  ( ( l i s t ?  1)
2 4 2  ( f o r - e a c h  ( l a m b d a  ( p )  ( d o - i n h e r i t a n c e  o b j  p ) ) ( ma p  r e s o l v e - o b j e c t - n a m e  1 ) ) )
2 4 3  ( e l s e  ( d o - i n h e r i t a n c e  o b j  ( r e s o l v e - o b j e c t - n a m e  1 ) ) ) ) )
2 4 4
2 4 5  ( d e f i n e  ( e x p a n d - w i t h - c l a u s e  o b j  1)
2 4 6  ( f o r - e a c h  ( l a m b d a  ( s p e c )
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2 4 7  ( a d d - s l o t  o b j
2 4 8  ( c a r  s p e c )
2 4 9  ( a t t r i b u t e  ( e v a l  ( c a d r  s p e c ) )
2 5 0  ( i £  ( c d d r  s p e c )
2 5 1  ( e v a l  ( c a d d r  s p e c ) )
2 5 2  n o - v a l ) )  )
2 5 3  d e c *  ( i n  ( c a r  s p e c ) )
2 5 4  ( q - n a m e  ( s t r i n g - > s y m b o l
2 5 5  ( s t r i n g - a p p e n d  " ? *  ( s y m b o l - > s c r i n g  n ) ) ' )
2 5 5  ( s - n a m e  ( s t r i n g - > s y m b o l
2 5 7  i s t r i n g - a p p e n d  ( s y m b o l - > s t r i n g  n )  “ : “ ) ) ) )
253 ( i f  ( n o c  ( b o u n d ?  q - n a m e ) )
2 5 9  ( e v a l  ‘ ( d e f i n e  ( , q - n a m e  o )  ( v a l u e  ( :  o  ‘ , n ) ) l
2 5 0  t o p - l e v e l - e n v i r o n m e n t  I )
2 6 1  ( i f  ( n o t  ( b o u n d ?  s - n a m e ) )
2 6 2  ( e v a l  ‘ ( d e f i n e  ( , s - n a m e  o  v)
2 6 3  ( s e t - v a l u e  ( :  o  ‘ , n )  v)
2 6 4  ( i f  ( n o t  ( c h e c k - o b j e c t - c o n s t r a i n t s  o )>
2 6 5  ( w a r n  " O b j e c t  c o n s t r a i n t s  n o t  s a t i s f i e d . " ) ) )
2 6 6  t o p - l e v e l - e n v i r o n m e n t ) ) ) )
2 6 7  1 ) )
2 6 8
2 6 9  ( d e f i n e - m a c r o  ( n e w  p a r e n t - s p e c  w i t h - s p e c  . i n i t - s p e c )
2 7 0  ‘ ( l e t  ( ( n e w - o b j  ( g e n - o b j e c t ) ) )
2 7 1  ( e x p a n d - f r o m - c l a u s e  n e w - o b j  ‘ , p a r e n t - s p e c )
2 7 2  ( e x p a n d - w i t h - c l a u s e  n e w - o b j  ‘ , w i t h - s p e c )
2 7 3  ( i f  i n i t - s p e c
2 7 4  ( b e g i n
2 7 5  , @ ( m a p  ( l a m b d a  (x)
2 7 6  ( l i s t  ' s e t - v a l u e  ' ( :  n e w - o b j  ' , ( c a r  x ) ) ( c a d r  x )  ) )
2 7 7  i n i t - s p e c ) ) )
2 7 8  ( i f  ( n o t  ( c h e c k - o b j e c t - c o n s t r a i n t s  n e w - o b j ) )
2 7 9  ( w a r n  " O b j e c t  c o n s t r a i n t s  n o t  s a t i s f i e d . " ) )
2 8 0  n e w - o b j ) )
2 8 1
2 8 2  ( d e f i n e  ( c l o n e  o b j )
2 8 3  ( l e t  ( ( n e w - o b j  ( g e n - o b j e c t ) ) )
2 8 4  ( d o - i n h e r i t a n c e  n e w - o b j  o b j )
2 8 5  n e w - o b j ) )
2 8 6
2 8 7  ; ; ;  OTHER OBJ ECT FUNCTIONS
2 8 8
2 8 9  ( d e f i n e  ( p a r e n t ?  c h i l d  p )  ( i n - l i s t ?  p  ( p a r e n t s  c h i l d ) ) )
2 9 0
2 9 1  ( d e f i n e  ( l i n e a g e  o b j )
2 9 2  ( i f  ( n o t  ( o b j e c t ?  o b j ) )
2 9 3  ' ( )
2 9 4  ( c o n s  o b j  ( f l a t t e n - l i s t  ( ma p  l i n e a g e  ( p a r e n t s  o b j ; ; ) ) ) )
2 9 5
2 9 6  ( d e f i n e  ( a n c e s t o r ?  o b j  a n c )
2 9 7  ( i f  ( n o t  ( o b j e c t ?  o b j ) )  # f )
2 9 8  ( l e t  l o o p  ( ( o  o b j ))
2 9 9  ( o r  ( e q ?  o  a n c )
3 0 0  ( o r m a p  ( l a m b d a  ( p )  ( l o o p  p ) ) ( p a r e n t s  o ) ) ) ) )
3 0 1
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3 02  ( d e f i n e - m a c r o  ( m a k e - t y p e - p r e d i c a t e  o )
3 0 3  ' ( d e f i n e  ( ,  ( s t r i n g - > s y m b o l  ( s t r i n g - a p p e n d  ( s y m b o l - > s c r i n g  o )  • ? “ ) )  >:)
30 4  ( a n c e s t o r ?  x  , o ) l )
305
3 0 6  ( d e f i n e - m a c r o  ( m a k e - c o n s t r u c t o r  o  . r e s t )
30 7  ' ( d e f i n e  , ( s t r i n g - > s y m b o l  ( s t r i n g - a p p e n d  ( s y m b o l - > s t r i n g  o ) ) )
308 ( l a m b d a  , O r e s t ) ) )
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A.2 Support/Utility Functions

T his section lists various functions used extensively in Designer, but w hich arc not part o f  Scheme.

1 ; ; ;  F i l e  : P r e a m b l e . sera
2 ; ; ;  D e s c r i p t i o n  : b a s i c  f u n c t i o n s  a n d  p r i m i t i v e  o v e r l o a d i n g s  u s e d  t h r o u g h o u t  .
3 ; ; ;  V e r s i o n  : k
■1 ; ; ;  R e v i s e d  : 1 6 - 0 1 - 9 3
5 ; ; ;  C o p y r i g h t  : 1 9 9 2  b y  F i l i p p o  A.  S a l u s t r i
6 ; ; ;  N o t e s  :
7
8 ; ' o r i e n t a t i o n - e u l e r '  a n d  ' o r i e n t a t i o n - r p y ' f r o m  [ r e f  p a u l l .
9

10  ; C o n s t a n t s
11
12 ( d e f i n e  P i  3 . 1 4 1 5 9 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 )  : f r o m  / u s r / i n c l u d e / m a t h . I)
13
14 ; F u n c t i o n s  ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; j ;
15
16  ( d e f i n e  ( n u m b e r - g t O ?  x )  ( a n d  ( n u m b e r ?  x )  (> x  0 ) ) )
17 ( d e f i n e  ( p o s i t i v e ?  x )  ( a n d  ( n u m b e r ?  x )  (>= x  0 ) ) )
18
19  ( d e f i n e  ( r a d - > d e g  r )  ( /  (* 1 8 0 . 0  r )  P i ) )
2 0  ( d e f i n e  ( d e g - > r a d  d )  ( /  ( *  P i  d )  1 8 0 . 0 ) )
21
22  ( d e f i n e  ** e x p t )
23
24 ( d e f i n e  ( m a t r i x 4 4 - x - m a t r i x 4 4  a  b)
2 5  ( l e t  ( ( r e s  ( v e c t o r  1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) ) )
2 6  ( d o  ( ( i  0 ( + i  1 ) ) )  ( ( = i  4 )  r e s )
27 ( d o  ( ( j  0  (+ j  1)  ) ) ( (= j  4)  r e s )
2 8  ( d o  ( ( k  0 (+ k  1)  )
2 9  ( v  0 (+ v  (* ( v e c t o r - r e f  a  (+ I '  i  4 )  k ) )
30  ( v e c t o r - r e f  b  ( ‘ (* k 4 )  j ) ) ) ) ) )
31 ( ( =  k 4)  ( v e c t o r - s e t !  r e s  (+ (* i  4 )  j )  v ) ) ) ) ) ) )
32
33 ( d e f i n e  ( v e c t o r 4 - c r o s s  a  b )

34 ( v e c t o r  ( -  (* ( v e c t o r - r e f a 1) ( v e c t o r - r e f b 2)  )

35 (* ( v e c t o r - r e f b 1) ( v e c t o r - r e f a 2)  ) )

36 ( -  (* ( v e c t o r - r e f a 2) ( v e c t o r - r e f b 0 ) )

37 (* ( v e c t o r - r e f b 2) ( v e c t o r - r e f a 0)  ) )
38 ( -  ( ’ ( v e c t o r - r e f a 0) ( v e c t o r - r e f b 1)  )
39
40

C
1)  )

( v e c t o r - r e f b 0) ( v e c t o r - r e f a 1)  ) )

41
42  ( d e f i n e  ( v e c t o r 4 - d o t  a  b)
43 (+ ( *  ( v e c t o r - r e f  a  0 )  ( v e c t o r - r e f  b  0 ) 1
44 (* ( v e c t o r - r e f  a  1)  ( v e c t o r - r e f  b  1 ) )
45  ( ’  ( v e c t o r - r e f  a  2 )  ( v e c t o r - r e f  b  2 ) ) ) )
46
47 ( d e f i n e  ( v e c t o r 4 - x - m a t r i x 4 4  v  m)
4 8  ( l e t  ( ( r e s  ( v e c t o r  0  0 0  1 ) ) )
49  ( d o  ( ( i  0 ( * i  1 ) ) >  ( ( =  i  4)  r e s )
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' , 0 ( do  ( ( j  0 ( * j  1)  )
51 ( a  0 (+ a  (* ( v e c t o r - r e f  v  j )
52  ( v e c t o r - r e f  m (+ (* j  4)  i ) ) ) ) ) )
53 ( (  = j  4)  ( v e c t o r - s e t !  r e s  i  a l l ) ) ) )

4
5 5  ( d e f i n e  ( s c a l a r - x - v e c t o r 4  s  v )
5 6  ( v e c t o r  (* s  ( v e c t o r - r e f  v  0 ) )
07 (* s  ( v e c t o r - r e f  v  1 ) )
08  (* s  ( v e c t o r - r e f  v  2 ) )
09  1) )
00
01 ( d e f i n e  ( v e c t o r 4  v e c t o r 4  a  b)
02 ( v e c t o r  ( -  ( v e c t o r - r e f  a  0 )  ( v e c t o r - r e f  b  0 ) )
03  ( -  ( v e c t o r - r e f  a  1)  ( v e c t o r - r e f  b  1 ) )
04 ( -  ( v e c t o r - r e f  a  2 )  ( v e c t o r - r e f  b  2 ) )
60  1) )
06
67  ( d e f i n e  ( v e c t o r 4 - + - v e c t o r 4  a  b )
68  ( v e c t o r  ( t  ( v e c t o r - r e f  a  0 )  ( v e c t o r - r e f  b  0 1 )
69  (+ ( v e c t o r - r e f  a  1)  ( v e c t o r - r e f  b  1 ) )
7 0  {+ ( v e c t o r - r e f  a  2 )  ( v e c t o r - r e f  b  2 ) )
7 1  1) )
72
7 3  ( d e f i n e  (v e c t o r 4 - m a g n i t u d e  v )
74  ( s q r t  ( r  (* ( v e c t o r  r e f  v  0 )  ( v e c t o r - r e f  v  0 ) )
7 5  (* ( v e c t o r - r e f  v  1 )  ( v e c t o r - r e f  v  1 ) )
7 6  ( ’  ( v e c t o r - r e f  v  2 )  ( v e c t o r - r e f  v  2 ) ) ) ) )
77
7 8  ; O r d e r :  r o t ( z , p h i )  + r o t ( y * , t h e t a )  + i o t ( z ' ' , p s i )
7 9  ;
8 0  ( d e f i n e  ( o r i e n t a t i o n - e u l e r  m)
81 ( l e t *  ( ( p h i  ( i f  ( a n d  (= ( v e c t o r - r e f  m 9)  0 )  (= ( v e c t o r - r e f  m 8 )  0 ) )
8 2  0 ( a t a n  ( v e c t o r - r e f  m 9)  ( v e c t o r - r e f  ra 8 ) ) ) )
8 3  ( c p h i  ( c o s  p h i ) )
8 4  ( s p h i  ( s i n  p h i ) ) )
85  ( v e c t o r  p h i
86  ( a t a n  (+ (* c p h i  ( v e c t o r - r e f  m 8 ) )  ; t h e t a
87  (* s p h i  ( v e c t o r - r e f  m 9 ) ) )
88  ( v e c t o r - r e f  m 1 0 ) )
8 9  ( a t a n  ( -  (* c p h i  ( v e c t o r - r e f  m l ) )  ; p s i
9 0  (* s p h i  ( v e c t o r - r e f  m 0 ) ) )
91  ( -  (* c p h i  ( v e c t o r - r e f  m 5 ) )
92  (* s p h i  ( v e c t o r - r e f  m 4 ) ) ) )
93  1 ) ) )
94
95  ; O r d e r :  r o t ( x . p s i )  + r o t ( y , t h e t a )  + r o t ( z . p h i )
96  ; w i t h  r e s p e c t  t o  t h e  g l o b a l  ( f i x e d )  f r a m e .
97  ;
9 8  ( d e f i n e  ( o r i e n t a t i o n - r p y  m)
9 9  ( l e t *  ( ( p h i  ( i f  ( a n d  (= ( v e c t o r - r e f  m 1)  0 )  (= ( v e c t o r - r e f  m 0 )  0 ) )

1 0 0  0 ( a t a n  ( v e c t o r - r e f  m 1)  ( v e c t o r - r e f  m 0 ) ) ) )
101 ( c p h i  ( c o s  p h i ) )
10 2  ( s p h i  ( s i n  p h i ) ) )
10 3  ( v e c t o r  ( a t a n  ( -  (* s p h i  ( v e c t o r - r e f  m 8 ) )  ; p s i
104 (* c p h i  ( v e c t o r - r e f  m 9 ) ) )
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1 0 5 1- * c p h i ( v e c t o r - r e f  m 5 ) )
1 06 * s p h i ( v e c t o r - r e f  ra 4 ) ) ) )
1 07 ( a t a n  ( - v e c t o r - r e f  m 2 ) )  ; t h e t a
1 0 8 ( + * c p h i ( v e c t o r - r e f  m 0 ) )
10 9 ’ s p h i ( v e c t o r - r e f  m 1 ) ) ) )

1 10 p h i
111 1)  ) )
1 12
1 13 ( d e f i n e ( l i s t - l a s t  1) ( l i s t - r e f  1 ( 1 -  ( l e n g t h  1 ) ) ) )

1 14
1 1 5 ( d e f i n e ( l i s t - i n t e r r e c t  a  b) ■ . i l t e r  ( l a m b d a  ( x )  ( i n - l i s t ?
1 1 6
1 17 ; u v e r l o a u i n g s  ; ; ; ; ; ; t > t ! ! •  t > > !  t >• t ' • > < > • • • • • • • • • •  •

118
1 1 9 ( o v e r l o a d  ; o h o w
1 2 0 ( ( o)  ( ( o b j e c t ?  o ) ) ( f o r m a t  t t f "An O b j e c t " ) )
121 (  ( X )  ( )  x )  )
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Appendix B

Designer Prototype Library

T his chapter lists the object prototype definitions available in the Designer library.

B.l Complex Numbers

1 ; ; ;  F i l e  : C o m p l e x . s c m
2 ; ; ;  D e s c r i p t i o n  : c o m p l e x  n u m b e r s
3 ; ; ;  V e r s i o n  : k
4 ; ; ;  R e v i s e d  : 1 4 - 0 1 - 9 3
5 ; ; ;  C o p y r i g h t  : 1 9 9 2  b y  F i l i p p o  A.  S a l u s t r i
6 ; ; ;  N o t e s  :
7
8 ( a n n o u n c e  C o m p l e x l
9

10 ; ; ;  P r o t o t y p e
11
12 ( m a k e - t y p e - p r e d i c a t e  C o m p l e x )
13 ( d e f i n e  C o m p l e x  ( n e w  O b j e c t
14 ( ( r e a l  n u m o e r ?  0)
15 ( ' m a g  n u m b e r ?  0 ) ) ) )
16 ( m a k e - c o n s t r u c t o r  C o m p l e x  ( r  i )  ( n e w  C o m p l e x  ()  ( r e a l  r )  ( i m a g  i ) ) )
17
18 ; ; ;  O v e r l o a d i n g s
19
20  ( o v e r l o a d  : z e r o ?  ( ( c )  ( ( C o m p l e x ?  c ) )
21 ( a n d  (= ( ? r e a l  c )  0 )  (= ( ? i m a g  c )  0 ) ) ) )

23 ( o v e r l o a d  r m a g n i t u d e  ( ( c )  ( ( C o m p l e x ?  c ) )
24 ( s q r t  (+ (* ( ? r e a l  c )  ( ? r e a l  c ) )
25  (* ( ? i m a g  c )  ( ? i m a g  c ) ) ) ) ) )
26
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27  ( o v e r l o a d  :+
2 8  ( ( a  b )  ( ( C o m p l e x ?  a )  ( C o m p l e x ?  b ) )
2 9  ( S C o m p l e x  (+ t ? r e a l  a )  ( ? r e a l  b )  ) (* ( ? i m a g  a !  l . ' i n u g  b ! M >
3 0  ( ( c  n)  ( ( C o m p l e x ?  c )  ( n u m b e r ?  n ))
31 ( S Cor . i p l e x  (<■ ( ? r e a l  c )  n )  ( ? i m a g  c l )  i
32  ( < n c )  ( ( C o m p l e x ?  c l  ( n u m b e r ?  n i l
3 3 ( S C o m p l e x  (-*■ n ( ? r e a l  c ) l  ( ? i m a g  c > ) ) )
34
3 5  ( o v e r l o a d
3 6  ( l a  b )  ( ( C o m p l e x ?  a )  ( C o m p l e x ?  b ) )
37 ( S C o m p l e x  ( -  ( ? r e a l  a )  ( ? r e a l  b )  ) ( -  ( V i m u g  a )  ( l i n i n g  b )  M I
38  ( ( c  n )  ( ( C o m p l e x ?  c l  ( n u m b e r ?  n i l
3 9  ( S C o m p l e x  ( -  ( ? r e a l  c )  n )  ( ? i m a g  0 ) 1
4 0  ’ ' n  c )  ( ( C o m p l e x ?  c )  ( n u m b e r ?  n i l
41  ( S C o m p l e x  ( -  n  ( ? r e a l  e l l  ( ? i m a g  c l ) ) )
42
4 3  ( o v e r l o a d  : *
44  ( ( a  b l  ( ( C o m p l e x ?  a )  ( C o m p l e x ?  b ) I
4 5  ( S C o m p l e x  ( -  ( '  ( ? r e a l  a )  ( ? r e a l  b )  )
4 6  (* ( ? i m a g  a )  ( ? i m a g  b i l l
4 7  (+ (* ( ? r e a l  a )  ( ? i m a g  b ) I
4 8  ( '  ( ? r e a l  b )  ( ? i m a g  a ) ) ) I ) I
49
5 0  ( o v e r l o a d  : /
51  ( ( a  b )  ( ( C o m p l e x ?  a )  ( C o m p l e x ?  b ) )
52  ( I f  ( : z e r o ?  b)
5 3  ( e r r o r  ' : /  “C o m p l e x  d i v i s o r  i s  z e r o . “ I )
54  ( S C o m p l e x  ( /  (+ ( '  ( ? r e a l  a )  ( ? r e a l  b )  )
55 (* ( ? i m a g  a )  ( ? i m a g  b ) ) )
5 6  (+ (* ( . r e a l  b )  ( ? r e a l  b )  )
57  (* ( V i ma g  b )  ( ? i m a g  b )  ) ) )
5 8  ( /  ( -  (* ( ? r e a l  d )  ( ? i m a g  a ) )
5 9  (* ( ? r e a l  a )  ( ? i m a g  b )  ) )
6 0  (+ (* ( ? r e a l  b l  ( ? r e a l  b ) I
61  (* ( ? i m a g  b )  ( ? i m a g  b ) I ' ) I I )
62
63  ( o v e r l o a d  : s h o w
64 ( ( a )  ( ( C o m p l e x ?  a ) )  ( f o r m a t  #£ " ( ~ s  ' s ) “ ( ? r e a l  a )  ( ? i i n a g  a ) ) ) )
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B.2 3D Spatial Coordinates

1 ; ; ;  F i l e  : C o o r d ,  scin
2 ; ; ;  D e s c r i p t i o n  : 3D c o o r d i n a t e s  ( 4 v e c t o r ) .
3 ; ; ;  V e r s i o n  : k
4 ; ; ;  H e v i s e d  : 1 4 - 0 1 - 9 3
5 ; ; ;  C o p y r i g h t  : 1 99 3  b y  F i l i p p o  A.  S a l u s t r i
>1 ; ; ; M o t e s  :
7
H ( a n n o u n c e  C o o r d )
9 ( n e e d s  T r a n s f o r m )

10
I I  ; ; ;  S p e c i a l  f u n c t i o n s  ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;  ; ;  ; ; ; ; ;  ; ;  ; ;  ; 
1)1
13 ( d e f i n e  ( v e c t o r ! - > C o o r d  v)
14 ( O C o o r d  ( v e c t o r - r e f  v  0 )  ( v e c t o r - r e f  v  1) ( v e c t o r - r e f  v  2 ) ) )
15
1 (1 ; C o o r d  p r o t o t y p e  : ; : ; ; ; ; ; : ;  ; : :  ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;  ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;  ; ; ; ; ; ; ; ; ; ;
17
I B ( m a k e - t y p e - p r e d i c a t e  C o o r d )
19 ( d e f i n e  C o o r d  ( n e w  O b j e c t
20  ( ( x  n u m b e r ?  0 )  ( y  n u m b e r ?  0 )  ( z  n u m b e r ?  0 ) ) ) )
21 ( m a k e - c o n s t r u c t o r  C o o r d  ( x v  y v  z v )  ( n e w C o o r d  ()  ( x  x v )  ( y  y v )  ( z  z v ) ) )

23  ( o v e r l o a d  . - show ( ( c )  ( ( C o o r d ?  c ) )
24 ( f o r m a t  Ilf " ( ~ s  " s  ~ s ) "  ( ? x  c )  ( ? y  c )  ( ? z  c )  ) ) )
25
2G ( o v e r l o a d  : a s - v e c t o r  ( ( a )  ( ( C o o r d ?  a ) )  ( v e c t o r  ( ? x  a )  ( ? y  a )  ( ? z  a )  1 ) ) )
27
2 8  ( o v e r l o a d  m a g n i t u d e  ( ( c )  ( ( C o o r d ?  c ) )  ( v e c t o r ! - m a g n i t u d e  ( : a s - v e c t o r  c ) ) } )
2 9
3 0  ( o v e r l o a d  : n o r m a l i z e  ( ( c )  ( ( C o o r d ?  c ) )
31 ( l e t  ( (m ( v e c t o r 4 - m a g n i t u d e  ( : a s - v e c t o r  c ) ) ) )
32 ( O C o o r d  ( /  ( ? x  c )  m) ( /  ( ? y  c )  m) ( /  ( ? z  c )  m l ) ) ) )
33
34 ( o v e r l o a d  := ( ( a  b )  ( ( C o o r d ?  a )  ( C o o r d ?  b ) )
35  ( a n d  (= ( ? x  a )  ( ? x  b ) )
36  (= ( ? y  a )  ( ? y  b ) )
37 (= ( ? z  a )  ( ? z  b ) ) ) ) )
38
39  ( o v e r l o a d  : c r o s s  ( ( a  b)  ( ( C o o r d ?  a )  ( C o o r d ?  b ) )
4 0  ( v e c t o r 4 - > C o o r d
41 ( v e c t o r 4 - c r o s s  ( : a s - v e c t o r  a )  ( : a s - v e c t o r  b ) ) ) ) )
4 2
4 3  ( o v e r l o a d  : d o t  ( ( a  b )  ( ( C o o r d ?  a )  ( C o o r d ?  b ) )
44  ( v e c t o r ! - d o t  ( : a s - v e c t o r  a )  ( : a s - v e c t o r  b ) ) ) )
4 5
4 6  ( o v e r l o a d  s*
47  ( ( c  t )  ( ( C o o r d ?  c )  ( T r a n s f o r m ?  t ) )
4 8  ( v e c t o r ! - > C o o r d
4 9  ( v e c t o r ! - x - m a t r i x ! 4 ( : a s - v e c t o r  c )  ( : a s - v e c t o r s  t ) ) ) )
5 0  ( ( s  c )  ( ( n u m b e r ?  s )  ( C o o r d ?  c )  )
51 (v e c t o r 4 - > C o o r d  ( s c a l a r - x - v e c t o r 4  s  ( : a s - v e c t o r  c )  ) )  )
52  I ( c  s )  ( ( C o o r d ?  c )  ( n u m b e r ?  s ) )
53  ( v e c t o r ! - > C o o r d  ( s c a l a r - x - v e c t o r 4  s  ( : a s - v e c t o r  c ) ) ) ) )
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54
5 5  ( o v e r l o a d
5 6  ( ( a  b )  ( ( C o o r d ?  a )  ( C o o r d ?  b ) )
57  ( v e c t o r 4 - > C o o r d
5 8  ( v e c t o r 4  v e c t o r 4  ( : a s - v e c t e r  a )  ( : a s v , v t  o r  b i l l ) '
59
6 0  ( o v e r l o a d  :+
61  ( ( a  b )  ( I C o o r d ?  a )  ( C o o r d ?  b ) )
6 2  ( v e c t o r 4 - > C o o r d
63  ( v e c t o r 4 - + - v e c t o r 4  ( : a s - v e c c o r  a )  ( : a s ■v e c t o r  b ) ) ) ) )
64
6 5  ; S u b t y p e s
66
67  ( d e f i n e  O r i g i n  ( c l o n e  C o o r d ) )
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B.3 Cuboid Parametric Volumes

1 ; ; ; F i l e
2 ; ; ;  D e s c r i p t i o n

C u b o i d . s o n
c u b e - l i k e  g e o m e t r y .

1 ; ; ;  V e r s i o n
A R ev i se d 1 4 - 0 1 - 9 3

1 9 9 2  by  F i l i p p o  A.  S a l u s t r it  ; ; ;  C o p y r i g h t  
6 ; ; ; N o t e s
7
8 (announce  Cuboid)
9 ( n e e d s  G e o m e t r y )

10
11 ( m n k e - t y p e - p r e d i c a t e  C u b o i d )
12 ( d e f i n e  C u b o i d  ( r e w  G e o m e t r y
13 ( ( x  n u m b e r - g t O ?  1)
14 (y n u m b e r - g t O ?  1)
19 ( z  n u m b e r - g t O ?  1 ) ) ) )
16 ( m a k e - c o n s t r u c t o r  C u b o i d  ( x v  y v  z v )  ( n e w  C u b o i d  0  ( x  x v )  ( y  y v )  ( z  z v ) ) )
17
18 ( o v e r l o a d  : v o l u m e  ( ( c )  ( ( C u b o i d ?  c ) )  (* ( ? x  c )  ( ? y  c )  ( ? z  c ) ) ) )
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B.4 Coordinate Frames

1 ; ; ;  F i l e  : F r a m e ,  s c m
2 ; ; ;  D e s c r i p t i o n  : a  c o o r d i n a t e  f r a m e .
3 ; ; ;  V e r s i o n  : k
4 ; ; ;  R e v i s e d  : 1 3 - 0 1 - 3 3
5 ; ; ;  C o p y r i g h t  : 1 9 9 2  b y  F i l i p p o  A.  S a l u s t r i
6 ; ; ;  N o t e s  :
7
8 ( a n n o u n c e  F r a m e )
9 ( n e e d s  T r a n s f o r m  C o o r d )

10
11 ( m a k e - c y p e - p r e d i c a t e  F r a m e )
12 ( d e f i n e  F r a m e  ( c l o n e  T r a n s f o r m ) )
13 ; ; ;  n o  c o n s t r u c t o r  y e t .
14
15 ( o v e r l o a d  : p o s i t i o n  ( ( f )  ( ( F r a m e ?  f ) )  ( : '  O r i g i n  £ ) ) )
16  ( o v e r l o a d  : o r i e n t a t i o n  ( ( f )  ( ( F r a m e ?  £ ) )
17 ( v e c c o r 4 - > C o o r d
18 ( o r i e n t a t i o n - r p y  ( : a s - v e c t o r s  I ) ) ) ) )
19
2 0  ( o v e r l o a d  : i n v e r t  ( ( f )  ( ( F r a m e ?  £ ) )
21  ( l e t  ( ( o  ( : o r i e n t a t i o n  £ ) )
2 2  ( n£  ( c l o n e  F r a m e ) ) )
23  ( : z - r o t a t e  n f  ( -  ( ? z  o i l )
24  ( : y - r o t a t e  n f  ( -  ( ? y  o ) ) )
2 5  ( : x - r o t a t e  n f  ( -  ( ? x  o ) ))
2 6  n f ) ) )
2 ?
2 8  ( o v e r l o a d  : t r a n s l a t e
2 9  ( ( f  x  y  z ) ( ( F r a m e ?  f ))
30  ( m a t :  f  ( ? ma c  ( : *  f ( : t r a n s l a t i o n  x  y  z i i l l l l
31 ( o v e r l o a d  : x - r o t a t e
32  ' ( f  r )  ( ( F r a m e ?  £ ) )  ( m a t :  £ ( ? m a t  ( : *  £ ( : x - r o t a t i o n  r ) ) ) ) ) )
33  ( o v e r l o a d  : y - r o t a t e
34  ( ( £  r i  ( ( F r a m e ?  £ ) )  ( m a t :  f  ( ? m a t  ( : *  f  ( : y - r o t a t i o n  r ) ) ) ) ) )
3 5  ( o v e r l o a d  : z - r o t a t e
36  ( ( £  r )  ( ( F r a m e ?  £ ) )  ( m a t :  f ( ? m a t  ( : *  f ( : z - r o t a t i o n  r ) ) ) I ) )
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3
4
5
6

1 F i l e
D e s c r i p t i o n
V e r s i o n
R e v i s e d
C o p y r i g h t
N o t e s

G e o m e t r y ' . s c m
3 d  g e o m e t r i c  s p e c s  -  s o l i d  o b j e c t s .
k
1 3 - 0 1 - 9 3
1 9 9 2  b y  F i l i p p o  A.  S a l u s t r i

7
8 ( a n n o u n c e  G e o m e t r y )
9 ( n e e d s  F r a m e )

10
11 ( m a k e - t y p e - p r e d i c a t e  G e o m e t r y )
12  ( d e f i n e  G e o m e t r y  ( c l o n e  F r a m e ) )
13
14  ( o v e r l o a d  : v o l u m e  ( ( g )  ( ( G e o m e t r y ?  g ) )
1 5  ( e r r o r  ' G e o m e t r y  " M u s t  b e  i m p l e m e n t e d  i n  s u b t y p e s . " ) ) )

16
17 ( o v e r l o a d  : l o c a t e
1 8  ( (g  p  w r t )  ( ( G e o m e t r y ?  g )  ( f u n c t i o n ?  p )  ( G e o m e t r y ?  w r t ) )
19  ( p  ( : -  ( : p o s i t i o n  g )  ( : p o s i t i o n  w r t ) )
2 0  ( : o r i e n t a t i o n  ( : *  ( : i n v e r t  w r t )  g ) ) ) )
2 1  ( ( g  p )  ( ( G e o m e t r y ?  g )  ( f u n c t i o n ?  p ) )
2 2  ( p  ( : p o s i t i o n  g )  ( : o r i e n t a t i o n  g ) ) ) )
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B.6 3D Lines

1 ; ; ;  F i l e  : L i n e . s c m
2 ; ; ;  D e s c r i p t i o n  : p a r a m e t r i c  l i n e  s e g m e n t s  i n  3D
3 ; ; ;  V e r s i o n  : k
4 ; ; ;  R e v i s e d  : 1 4 - 0 1 - 9 3
5 ; ; ;  C o p y r i g h t  : 1 9 9 2  b y  F i l i p p o  A.  S a l u s t r i
0 ; ; ;  M o t e s  :
7
8 (announce  Line)
9 ( n e e d s  Trans f orm  C o o r d )

10
11 L i n e  p r o t o t y p e
12
13 ( m a k e - t y p e - p r e d i c a t e  L i n e )
14 ( d e f i n e  L i n e  ( n e w  o b j e c t  ( ( s t a r t  C o o r d ? )  ( e n d  C o o r d ? ) ) ) )
15  ( m a k e - c o n s t r u c t o r  L i n e  ( a  b )  ( n e w  L i n e  ()  ( s t a r t  a )  ( e n d  b ) ) )
16
17 ( o v e r l o a d  : =  ( ( a  b )  ( ( L i n e ?  a )  ( L i n e ?  b ) )
18 ( a n d  ( : =  ( ? s d a r t  a )  ( ? s t a r t  b ) )
19 ( : =  ( ? e n d  a )  ( ? e n d  b ) ) ) ) )
20
21 ( o v e r l o a d  : *  ( ( 1  t )  ( ( L i n e ?  1)  ( T r a n s f o r m ?  c ) )
22  ( @L i n e  ( : *  ( ? s t a r t  1 )  t )  ( : *  ( ? e n d  1 )  c ) ) ) )
23
24 ; ; ;  B a s e d  o n  s o l u t i o n  i n  [ r e f  z e i d ]  [ p  2 4 4 - 2 4 5 ]
2 5  ; T h e r e  i s  a  d e g e n e r a t e  c a s e  i f  1 l i n e  i s  i n  t h e  p l a n e  f o r m e d  b y  t h e  o r i g i n
2 6  ; ; ;  a n d  t h e  o t h e r  l i n e .  T h i s  i s  d e a l t  w i t h  i n  t h e  ' i f ' .
2 7  ( o v e r l o a d  : i n t e r s e c t
2 8  ( ( a  b )  ( ( L i n e ?  a )  ( L i n e ?  b ) )
2 9  ( l e t  ( ( b x  ( : c r o s s  ( ? s t a r t  b )  l ? e n d  b ) ) )
3 0  ( d a  ( : -  ( ? e n d  a )  ( ? s t a r t  a ) ) ) )
31 ( i f  (= ( : d o t  b x  d a )  0 )
32  ( l e t  ( ( s h i f t  ( : t r a n s l a t i o n  0 0 1 ) ) )
33  ( : *  { : i n t e r s e c t  ( : ’  a  s h i f t )  ( : *  b  s h i f t ) )
34 ( : t r a n s l a t i o n  0 0 - 1 ) ) )
3 5  ( : +  ( ? s t a r t  a )
3 6  ( : *  ( -  ( /  ( : d o t  b x  ( ? s t a r t  a ) )
37 ( : d o t  b x  d a ) ) )
3 8  d a ) ) ) ) ) )
39
4 0  ( o v e r l o a d  . - show
41  ( ( 1 )  ( ( L i n e ?  1 ) )
42  ( f o r m a t  (If " ( ~ a  ~ a ) “ ( : s h o w  ( ? s t a r t  1 ) )  ( : s h o w  ( ? e n d  1 ) ) ) ) )
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B.7 Generalized Physical Parts

1 F i l e P a r t . s cm
2 D e s c r i p t i o n a  p h y s i c a l  p a r t
3 V e r s i o n k
4 R e v i s e d 1 4 - 0 1 - 9 3
5 C o p y r i g h t 1 9 9 2  b y  F i l i p p o
6 N o t e s
7
8 a n n o u n c e  P a r t )
9 n e e d s  G e o m e t r y )

10
11 m a k e - t y p e - p r e d i c a t e  P a r t )
12 d e f i n e  P a r t  ( c l o n e  G e o m e t r y ) )
13 n o  c o n s t r u c t o r  y e t
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B.8 Queues

4
n 

6
7
8 ( announce  Queuej
9 ( n e e d s  L i s t )

10
11 ; ; ;  P r o t o t y p e
12
13 ( n i a k e - t y p e - p r e d i c a t e  Q u e u e )
14 ( d e t i n e  Q u e u e  ( c l o n e  L i s t ) )
15  ( m a k e - c o n s t r u c t o r  Q u e u e  a r g - 1
16 ( l e t  ( ( o  (c l one  Queuel l )
17 ( f o r - e a c h  ( l a m b d a  ( x )  ( : p u s h  o  x )  ) a r g - 1 )
18 o )  I
19
2 0  ; ; ;  O v e r l o a d i n g s
21
22  ( o v e r l o a d  : p u s h  ( ( q  v )  ( ( Q u e u e ?  q ) ) ( : a p p e n d !  q  v ) ) )
23
24 ( o v e r l o a d  : p o p  ( ( q )  ( ( Q u e u e ?  q ))
2 5  ( i f  ( : e m p t y ?  q )  ( e r r o r  ' : p o p  " n o t h i n g  l e f t  t o  p o p . " ) )
2 6  ( : c h o p !  q ) ) )

r  1 J *.
Description 
V e r s i o n  
R ^ v i  S Od  

C o p y r i g h t  
Nodes

v u t i u ' :  . o ' - m

F I LO  l i s t s  
Y.
1 3 - 0 1 - ^ 3
1 9 9 2  b y  F i l i p p o  A.  S a l u s t r i
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B.9 Circular Lists

1 ; ; ;  F i l e  : R i n g . s c m
2 ; ; ;  D e s c r i p t i o n  : c i r c u l a r  l i s t  o b j e c t s .
3 ; ; ;  V e r s i o n  : I:
4 ; ; ;  R e v i s e d  : 1 3 - 0 1 - 9 3
5 ; ; ;  C o p y r i g h t  : 1 9 9 2  by  F i l i p p o  A.  S a l u s t r i
6 ; ; ;  N o t e s  :
7
8 ( a n n o u n c e  R i n g )
9

1 0  ; ; ;  P r o t o t y p e
11
12  ( m a k e - t y p e - p r e d i c a t e  R i n g )
13 ( d e f i n e  R i n g  ( c l o n e  O b j e c t ) )
14  ( a d d - s l o t  R i n g  ' 1 s t  ' ( ) )
15  ( a d d - s l o t  R i n g  ' o f f s e t  0 )
1 6  ( m a k e - c o n s t r u c t o r  R i n g  1
17 ( l e t  ( ( o  ( c l o n e  R i n g ) ) )
1 8  ( :  o  ' 1s t  1 )
1 9  o )  )
20
2 1  ; ; ;  O v e r l o a d i n g s
22
2 3  ( o v e r l o a d  : f i r s t  ( ( r )  ( ( R i n g ?  r ) )
2 4  ( :  r  ' o f f s e t  0)
2 5  ( l i s t - r e f  ( :  r  ' 1s t )  0 ) ) )
2 6
2 7  ( o v e r l o a d  : l e n g t h  ( ( r ) ( ( R i n g ?  r ) ) ( l e n g t h  ( :  r  ' 1 s t ) ) ) )
2 8
2 9  ( o v e r l o a d  : a s - l i s t  ( ( r )  ( ( R i n g ?  r ) ! ( v e c t o r - > l i s t  ( l i s t - > v e c t o r  | :  r  ' 1 s t ) ) ) ) )

3 0
31  ( o v e r l o a d  : n e x t  ( ( r )  ( ( R i n g ?  r ) )
3 2  ( l e t  ( ( 1  ( l e n g t h  ( :  r  ' 1 s t ) ) ) )
3 3  ( i f  (= 1 0)
34  ( e r r o r  ' : n e x t  " z e r o - s i z e d  r i n g . " ) )
3 5  ( :  r  ' o f f s e t  ( m o d u l o  ( I t  ( :  r  ' o f f s e t ) )  1 ) )
3 6  ( l i s t - r e f  ( :  r  ' 1 s t /  ( :  r  ' o f f s e t ) ) ) ) )
37
3 8  ( o v e r l o a d  : p e e k - n e x t  ( ( r )  ( ( R i n g ?  r ) )
39  ( l e t  ( ( 1  ( l e n g t h  ( :  r  ' 1s t ) ) ) )
4 0  ( i f  (= 1 0)
41  ( e r r o r  ' : p e e k - n e x t  " z e r o - s i z e d  r i n g . " ) )
4 2  ( l i s t - r e f  ( :  r  ' 1 s t )
43  ( m o d u l o  ( I t  ( :  r  ' o f f s e t ) )  I ) ) ) ) )

44
4 5  ( o v e r l o a d  : p r e v  ( ( r )  ( ( R i n g ?  r ) )
4 6  ( l e t  ( ( 1  ( l e n g t h  ( :  r  ' 1s t ) ) ) )
47  ( i f  (= 1 0)
4 8  ( e r r o r  ' : p r e v  “ z e r o - s i z e d  r i n g . " ) )
49  ( :  r  ' o f f s e t  ( m o d u l o  ( 1 -  ( :  r  ' o f f s e t ) )  1 ) )
50  ( l i s t - r e f  ( :  r  ' 1s t )  ( :  r  ' o f f s e t ) ) ) ) )
51
52  ( o v e r l o a d  s p e e k - p r e v  ( ( r ) ( ( R i n g ?  r ) )
53  ( l e t  ( ( 1  ( l e n g t h  ( :  r  ' 1s t ) ) ) )
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04 ( i f  (= 1 0)
i ;  ( e r r o r  ' : p e e k - p r e v  " z e r o - s i z e d  r i n g . " ) )
00 ( l i s t - r e f  ( :  r  ' 1s t )
07 ( m o d u l o  ( 1 - ( :  r  ' o f f s e t ) )  1 ) ) ) ) )
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B.10 Stacks

1 ; ; ;  F i l e  : S t a c k . s c m
2 ; ; ;  D e s c r i p t i o n  : F I F O  l i s t s
3 ; ; ; V e r s i o n  : k
4 ; ; ; R e v i s e d  : 1 3 - 0 1 - 9 3
5 ; ; ;  C o p y r i g h t  : 1 9 9 2  b y  F i l i p p o  A.  S a l u s t r i
6 ; ; N o t e s
7
3 ( a n n o u n c e  S t a c k )
9 ( n e e d s  Q u e u e )

10
11 ; ; ;  P r o t o t y p e
12
13 ( r a a k e - t y p e - p r e d i c a t e  S t a c k )
14 ( d e f i n e  S t a c k  ( c l o n e  Q u e u e ) )
15  ( r a a k e - c o n s t r u c t o r  S t a c k  a r g - 1
15  ( l e t  ( ( o  ( c l o n e  S t a c k ) ! )
17 ( f o r - e a c h  ( l a m b d a  ( x )  ( : p u s h  o
18 o )  )
19
20  ; ;  ; O v e r l o a d i n g s
21
22  ( o v e r l o a d  : p u s h  ( ( s  v )  ( ( S t a c k ?  s ) ) ( : p r e p e n d !  v  s ) )

t) ) a r g - 1 )

)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

194

B .ll Geometric Transforms

1 } F i l e
2 ; D e s c r i p t i o n
3 V e r s i o n
A ; R e v i s e d
c C o p y r i g h t
6 ; M o t e s
7
8 ( a n n o u n c e  T r a n s
9

10 
11 
12
13
14 
11 
16
17
18
19
20 
21  
22
23
24
25
26
27
2 8
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44 .
45
46
47
48
49
50
51
52
53

T r a n s f o r m . s c m
3 d  t r a n s f o r m s  ( 4x 4  m a t r i c e s )
y.
1 4 - 0 1 - 9 3
1 9 9 2  b y  F i l i p p o  A.  S a l u s t r i

; ; ;  P r o t o t y p e

( m a k e - t y p e - p r e d i c a t e  T r a n s f o r m )
( d e f i n e  T r a n s f o r m  

( n e w  O b j e c t
( ( m a t  v e c t o r ?  ( v e c t o r  1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 ) ) ) ) )

; ; ;  n o  c o n s t r u c t o r  - -  p r o b a b l y  u s e l e s s  a n y w a y s .
; ; ;  m a y b e  c o u l d  u s e  L o c i  a s  a r g u m e n t s  i n  a  c o n s t r u c t o r  i n  t h e  f u t u r e .  

; ; ;  O v e r l o a d i n g s

( o v e r l o a d  : s h o w  ( ( t ) ( ( T r a n s f o r m ?  t ) ) ( f o r m a t  ftf ” ~ a “ ( ? m a t  t ) ) ) )

( o v e r l o a d  : a s - v e c t o r s  ( ( A)  ( ( T r a n s f o r m ?  A ) )  ( v e c t o r - c o p y  ( ?mat .  A ) ) ) )

( o v e r l o a d  : *  ( (A B) ( ( T r a n s f o r m ?  A) ( T r a n s f o r m ?  B ) )
( n e w  T r a n s f o r m  ()

( ma t  ( m a t r i x 4 4 - x - m a t r i x 4 4
( : a s - v e c t o r s  A)  ( : a s - v e c t o r s  B ) ) ) ) ) )

( o v e r l o a d  :=  ( (A B) ( ( T r a n s f o r m ?  A) ( T r a n s f o r m ?  B ) )
( e q u a l ?  ( ? m a t  A) ( ? m a t  B ) ) ) )

; S u b t y p e s  ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;  ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; : ; ; ;  ; ; ; ; ; ; ;  ; ; ; ; ;  ; ; ; ; ; ; ;  i

( d e f i n e  I d e n t i t y T r a n s f o r m  ( c l o n e  T r a n s f o r m )  )

( o v e r l o a d  : s c a l i n g  ( ( x  y  z )  ( ( n u m b e r ?  x )  ( n u m b e r ?  y )  ( n u m b e r ?  z ) )
( n e w  I d e n t i t y T r a n s f o r m  ()

( ma t  ( v e c t o r  x  0 0 0 
0 y  0 0 
0 0 z 0 
0 0 0 1) )) ) )

( o v e r l o a d  : t r a n s l a t i o n  I ( x  y  z )  ( ( n u m b e r ?  x )  ( n u m b e r ?  y )  ( n u m b e r ?  z ) )
( n e w  I d e n t i t y T r a n s f o r m  ()

( m a t  ( v e c t o r  1 0  0 0 
0 1 0  0 
0 0 1 0  
x  y  z 1 ) ) ) ) )

( o v e r l o a d  : x - r o t a t i o n  ( ( x)  ( ( n u m b e r ?  x ) )
( n e w  I d e n t i t y T r a n s f o r m  ()

(mat ( v e c t o r  1 0  0 o
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5 4  0  ( C O S  X)  I S  i l l  X '  0

55 0 ( -  ( s i n  x i !  ( c o s  x )  0
56  0 0 0 > ) n  )

57
58  ( o v e r l o a d  : v - r o t a t i o n  ( ( y ) | ( n u m b e r ?  y ) )
59 ( n e w I d e n c i t y T r  m s  f o r m  (!
60 (mac  . v e c t o r  ( c o s  y )  0 ( -  ( s i n  y ) '  o
61  0 1 0 0
62 ( s i n  y '  0 ( c o s  y )  o
63 0 0 0 1 ) )  ) ) )

64
65 ( o v e r l o a d  : z - r o t a t i o n  ( i z )  ( ( n u m b e r ?  z l )
66 ( n e w  I d e n t i t y T r a n s f o r m  ()
67 ( m a t  ( v e c t o r  ( c o s  z )  i s i n  z)  o 0
68 I -  ( s i n  z ) ) ( c o s  z )  0 n
6 9  0  0  1 0
70  0  0  0  1 ) ) ) ) )
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